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Introduction

In [1]J. Franel used the following integral

R Ny, _ L@y .
J, (ta0=3) (100 - )ar - S 022,

where (a, b) denotes the greatest common divisor of positive integers a, b and
{t} is the fractional part of .

In the theory of uniform distribution and particularly in the definition of
the so-called L? discrepancy, the integral

f Ri(t)dr ()
0

plays an important role. Here, by standard notations in [2],
Ry(1) = A([0, 1); N) — Nt
A([0, t); N) =card{i; i< N,0L x; < t}
for a finite nondecreasing sequence
XSXS ... Sxy 3)

of real numbers from the interval [0, 1].
Some calculations of the integral (2) are very well known, for example (2)

is equal to

N2 —1 )2 |

N —_— =X +— 4
igl( 2N “)

(£G4 +smL il

Z CZM'II.\:}
see [2, p. 161 and p. 110].

or, equivalently,
2

&)

j=
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In Part I we shall calculate the integral (2) using the integral (1) for special
sequences (3) of rational numbers. Also for these sequences we shall calculate
(2) using (5) and the very well known Ramanujan identity (cf. [3, p. 197])

2m'%.r= (p(b) ( b > .
0<;<be ( b )ﬂ (a, b) ' (6)
(x,b)=1 o\ ——

(a, b)

where @, u are standard Euler and MGbius number-theoretic functions.
In Part II we shall point at some connection between the summ of squares
(4) and the Duffin—Schaefer conecture.

L

Let q,, 95, ..., g, be a finite sequence of positive integers and

dy= (9 q), q;= q_lzl
d:
ij
Let us order by magnitude the sequence of all reduced fractions from the
interval [0, 1] whose denominators are from ¢,, ¢,, ..., g,, i.e.
2l M D
9y i i

where all g, are from ¢,, g, ..., ¢, and*)

0 <x() £ g9y, x0G)s gy =1, j=12,..., N, N=Z‘P(‘L‘)- (7)

i=1
Next, let us abbreviate
v(x) = card {p; klx, p is a prime number}

ind, (x) = max{a; p“|x, a is an integer}.

Theorem 1. For every finite sequence ¢,, ¢, ..., g, of integers greater than
1 and N, x(j)/qi;,j = 1, 2, ..., N which are defined by (7) it holds

X 2i=1 x()) , 1
NZ(J___&> 4+ — = (8)
A\ aN g,/ 12
*) How many times g, is contained in q,, ¢>, ..., g, so often x(j)/g;;, is contained in (7).
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AT (-Yn(-2(+Y) o

j=1 q,] P\q,qj p\dij p ”\\dij 2 p
Pid; PGy P\g;
SR RN R . (D) (%)2
B ENT! ' 10
271’2h§lh2 i;l(p< qi )ﬂ (h,q) (10
(h’ q:)

Proof. Let us substitute to (3) the sequence (7). According to the elementary
sieve we have

Y ¥ i=% <t¢(q,) — ¥ u(d) {"g’}) = A0, 1]; N).

’=10<£§I i=1 d\g;

9
(x.q) =1

Since the integral (2) is independent of values Ry in points x;, applying (1) we

have
[ mou=[ (5, guoft)a
0 0 \i=1d\g

-2
1 \d| d; 1

=3 dyudy| =2+ g
MZM d.%,”( NZICH] s R (11)
d3\g; di d;

But if ¢, > 1 for all i, then we can omit i in (11). For a simplicity let

dy=1[lp, dj= Hdp~
p\ o

P4 P\g;
Obviously,
0 — 1
di= I p. dj= T ».
P\4;.P\g; P\q;p\g;
indp (g) = indp (q) ind,, (g) # indp (g

In what folllows, without loss of generality, we may suppose that d;, d} are
square-free. From it

u(d)p(dy) = p(dyy),

where
i dj
(@i, d) ], dy)

diz =

(12)
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Computing g.c.d. (i‘,-, gL) we must diminish ind, (d;) not only for prime
1 2

p\(d7, d3) but also for this p if, e.g. p\ d;, p\d}, pAd; and ind,(g) < ind, (g).

From it we have
4 4\ _ 4% 1 1
.? ’ - ’ ’ ’ 0 ’ 1 *' (13)
dy dy) (di,d) (dy,,dy d,,d)

Here (d},, dj)* = Il p, where p ranges over all prime divisors of (d},, d}) for
which:

if ind,(g) < ind,(g), then p\(dldld,) and if ind,(g) <ind,(g), then
s *2
d;

(d;, d3)

Next for the summation (11) we shall find all pairs of positive integers d,
d; for which:

p

1, d are square-free, d\¢;, d;\g; and dj, = constant. (14)

All these pairs we can obtain combining all admissible g.c.d. (d], d3) with all
admissible relatively prime decompositions of d, in the form (12). From (14) it
follows that

0.d} 9 L
@ )\ il BRI T
@i, did) (i, d) (i, d})

]

In the decomposition (12) those primes have a stable place (either in

L o7 in =L ) which divide ——dL-, while places of primes which
(d1, dy) (di, dy) 12> dj

divide (d1,, dj) = (d},, d3) - (d1,, d}) are arbitrary. The place of primes p which
divide (d},, d}) has an influence on the value (d,, dj)* only. From it

5y 1

d.d, (diza dllj)z

satisfy (14)
40 4
2 __Lo___L : 5 1
(d.d% (dy,.d} r((dyy.d%)
=2 12 U)‘ 12 u) 2 12 'I). l_l 1+-—2) (15)
P @jd)) p

Simultaneously,

d,_ d ) e
v(d{z,dg.) @ d) + v((d1,, d))) = v(dy) — v((d},, d))).
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Consequently by (13) and (15) we can do sums (11) in a form

&)
u d, d,;
Y OY u@y Y L. 4

V=1 di\gg, di.d; 12 4 9
satisfy (14) d; d;
1 d; 1 1
=— 3y Yudp) 2 —uun. Y
126721 dpig g5 (i, d))’ s (diy, d)*?
satisfy (14)
1 & 2 |

1 1 1
w(di)d (l + —). (16)
12i.jz=l g dl'zz\;lﬂ; 2 |2(d’ n p?

02 ~oql
125 d,,) zv(dIZ’di/')p\(d,‘d'!j)

All functions from (16) are multiplicative in d;,, therefore

1
1 2u(dy) ( 1 1 , 1 )v((p.d‘.j)))
=5 l-p (1 +— .
12 i,jz=:| q; ,,E“[qj (P, dg)z 2.,((,,,4.!])) pz

Finally, examining three possible cases for p\gq; we have shown (9). With
regard to (10), we only state that

2 x 1)
Z_Z)=0
igl 0<;< q; (q, 2

(x, q,~) =1

and also see (5), (6).
Thus the proof of Theorem 1 is finished.

To an attestation of Theorem 1, let p be a prime. For the sequence p, p?,
P" (8), (9), (10) are equal to

l<1 — l)_
6 4

Remark 1. The particular case n = 1 of (9) first appears explicitly in [8] and
implicitly in [9]. An other expression of (2) can be found in [7].

ceey

IL
: . e [
In [1] Franel has shown that if we put ¢, =i for all i, i.e. if {—¢p

iy li-1
N = .-; o(q,) is the sequence of Farey’s fractions ordered by increasing mag-
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nitude, then the Riemann hypothesis is equivalent to

N (2 —1 x(/))2 3te
NY |Z=—-=F) =0V ).
Z( 2N qii) : )

Jj=1

In the following theorem we shall prove that if for a sequence {g}* , of
positive integers this sum is bounded, then Duffin—Schaeffer conjecture for
{g;}7-  1s valid. This is a little step in the investigation into the coherence between
Riemann hypothesis and Duffin——Schaeffer conjecture, which was conjectured
by V. G. Sprindzuk in [4, p. 61].

Theorem 2. Let {g;}_ | be a one-to-one sequence of positive integers and for

n (7 N
any nlet N= 3 ¢(g) and {L(—/—)}
‘ i=1 i
from the interval [0, 1] whose denominators are from {¢,)’_, and which are
ordered by increasing magnitude. If

; __2/‘—1_5@)3:0]
NZ(zN ) (0,

be the sequence of all reduced fractions
j=1

j=1

then the sequence {g,};_ , satisfies Duffin—Schaeffer conjecture with every non-
negative real function f for which the sequence {f(g,)}~ , is nonicreasing. IL.e. if

; 0(@)f(q) = + ©,
then for almost all 7 and infinitely many i the diophantine inequality

(=X

qi
has an integral solution x relatively prime with ¢;.

The proof is based on our theory of the so called “quick™ sequences given
in the paper [5]. By Definition 3 and 2 from [5]:

A sequence {x;}/_, from the interval [0, 1] is said to be “quick” in [0, 1], if
for every sequence {/}/_, of pairwise disjoint subintervals of [0, 1] for which

e 2

{x}., < U I; and the measure U I,i = Z |Z,] < ][0, 1]| = 1 there exists a con-

< f(q)

i=1 i=1 i=1

stant ¢ = ¢({/}/~,) such that

1\%

c>0

z|R

for all N, where
M = M(N)=card{j; [[n{x}}_, #0, j=12,..}.
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A sequence {x;}~ , from [0 1] is said to be “eutaxic” (J. Lesca) if for every

nonicreasing {z;}~ , such that Z z,= + oo we have for almost all t€[0, 1] that

i=1

|t — t;| < z; for infinitely many i is valid.
Corollary 1 from [5] states that every quick sequence is also eutaxic. This
and the following lemma imply immediately Theorem 2.

Lemma. Let {x;} , be a sequence of points from [0, 1] and let
1 1

1 2 . 2 2
1 1N [2i—1 I
T, =— thdt>=<'— ( —,)+ )
N N(J; w() N,-; N7 12N?

denote L? discrepancy, where y,, y,, ..., yy are the numbers x,, X,, .... Xy
ordered into a nondecreasing sequence.
If 7, = O(N, ", then the sequence {x;}/ | is {N,} — quick, cf. [5, Definition 4].
Proof. For simplicity, let us assume y, = x;fori =1, 2, ..., N. Let us take
an arbitrary system {1 1, of pairwise disjoint subintervals of [0, 1] such that
{x}2, < U I, and Z |Z] < 1. Let us denote

i=1

I/f\{xi}.‘=| = {xll.é Xt 41 S .5 xr,}
L=card{j;[#r, j=12,..}

and let us assume that the initial segment {I}*. | of {I};Z, contains all intervals
which have a nonzero intersection with {x}"_,. Clearly,

M 2r 1. 2l—1
M=N — 1 =N-—-N e )
jz‘l t=b /Z'l( 2N 2N

2 -1 3~ 1
=N- Nz(x _x’)—N;( IN —x’f)_<7—x")'

Applying Cauchy inequality,

M 1/ N 2]_ 1 2\2
- £, -m-arr(E (TN— )

=1

v

M
N

g (5 - () e
(17)

-

; " : MY
If we replace L by M in (17) we can see a quadratic inequality for (—]\7) , from
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it
1 1

()2 om0 - )

oo

Since by assumptions NTy < ¢ < + 00, 1 — Y |I| > 0, this proves Lemma.
i—=1

Finally we notice
Remark 2. It holds

(;J‘(%) ,;( —1 ’;:))) > (;I 2“"'). (18)

The left inequality follows from (according to E. Landau)

N 2mi XD

e i)
Zl

j =

X
"/

Zl‘(‘b)'
i=1 i= I0<r<qj
(x.q) =

Bi())
N " - JE‘;—.(C (lZ_N_ q'(l)>

)

sin n<——2j -1 x_(;))
2N 9

i

N
=2)
i=1

1

%-1_xG)| ., 2(”(2j—l_x_(j))2)2
2N S 25N X '

9i( j=1\ 2N i)

N

<2my

j=1

The right inequality follows from (l 1) and from

b L (d){ H ¥ ¥ lud) = 3. 2.

ll\q,

Applying (18) we see that the expression O(1) in Theorem 2 is not necessary
?(q)

qi
it {g}*, holds Duffin—Schaeffer conjecture automatically, and such that

since we can construct a sequence {g;};~ such tha —= = ¢ > 0 for all i, from

Z u(g)| = + c© as N — oo. Thus in the next investigation it is necessary to

replace O(1) by O(y(N)) for some y(N) - + o0 as N - 0.
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SUHRN
POUZITIE FRANELOVHO INTEGRALU

: Oto Strauch, Bratislava
V praci je okrem iného kokéazané, Ze ak usporiadame racionalne ¢isla x/q;, 0<x<g,

(x,g)=1,i=1,2, ..., n do neklesajucej postupnosti x(j)/gi;,j = 1,2, ..., 3, @(g)=Naak
1

5 (—Zj —_ 1@)2 = oY
2N g

j=1

potom postupnost {g;};% spitia Duffinovu—Schaefferovu hypotézu s kazdou nerastiicou postup-
nostou {f(g)};>, realnych Cisel.

PE3FOME
IMPUMEHEHHUE UHTEIPAJIA ®PAHEJIA
Oro ITpayx, BpaTucnasa

B pa6ote Mexay NMpoOYHM NOKa3aHO, YTO €CH {g;}% ; MOCIEAOBATENIbHOCTh HAaTYpPaJIbHBIX
YHCEJl YAOBJIETBOPAIOT YCIIOBHIO
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2
Sc< +

v L

#=1h?

= o(q) ( qi )
igl (o( qi )” (h,q;)
(h,q;)

(¢ — dyukumus Jiinepa, y — dyHkuus MeEGuyca), nocnenoBaTeNLHOCTh NMOJIOXKHTENbHBIX ACH-
CTBUTENbHBIX uucen {f(g,)}, HeBo3pacTarowas 1

2 ?(g)f(g) = + o,

TO AJisi TIOMTH BCEX [ nuod)au'roro HEPABEHCTBO

21— 5’ < /(@)
qi

HMEET LUEJIOUYHUCIICHHOEC PELLUICHHUE X 15 6eCKOHEYHO MHOTHX I, TAKOE, YTO X, q; — B3aHMHO IIPOCTHIE.
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FOURIER TRANSFORMS AND THE P.N.T. EROR TERM (ABSTRACT)

JIRI CIZEK. Plzen

For every function w(x) such that both w(x) and é]ogx — w(x) are positive

and increasing for x € {3; + o0), the prime number theorem with the error term,
i.e. the assertion

)] Iz(x)=f —dl—l—+0{xexp(—w(x))}.x23
2 logu
is implied by the assertion
gx) = Y Am)logZ = x + O({xexp(— 20(x))}, x > 3
n<x n

where 7(x) is the number of primes less than or equal to x, A(n) = logpforn =
= p’, where p is a prime, r € N, A(n) = 0 otherwise (A is called von Mangoldt’s
function).

For x > 0 we have

24+ i
lf x g
X)=—— —=.2=ds = I,(x) + L(x),
8= = ol 5 e Y T+ B
where
2+ i 24+ i
1 x'ds 1 x°
Ii(x)=— —_— L(x)= —— —h(s)ds,
it 2mid2-wi s* (s — 1) 2 2midr-wi 52 )

and h(s) = {'(s)/{(s) + 1/(s — 1) is an analytic function in the halfplane
Res > 1 (cf. [3]). By the technique of residues we can prove that /,(x) =
= x —logx — 1, x > 1. From Cauchy’s theorem it follows that
] ]+cut>ixs
Lx)=-—| Zh)ds=—IL(logx),
2midi - i 52 2r
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