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FUNCTIONS THAT PRESERVE UNIFOM DISTRIBUTION
(PRELIMINARY ANNOUNCEMENT)

STEFAN PORUBSKY, Bratislava

This is a preliminary report on a joint work with T. Salat and O. Strauch
and a more detailed version will be published elsewhere.

We shall use the following basic notation:

I stands for the interval <0, 1),
M, denotes the system of the functions from 7 to 1,
R, is the system of the Riemann-integrable functions from M,.

We shall study properties of functions f'e€ M, sharing the property that for
every uniformly distributed sequence {x,};_, of numbers from I also that
sequence {f(x,)};_, is uniformly distributed in I. We shall denote by 7, the
system of all such functions.

The starting result is the following one:

Theorem 1. A function fe 7, belongs to 7;if and only if for every function
g € R, also the composition g o f belongs to R; and

L g(x)dx = L g(f(x))dx.

The same proof technique leads to the expected modification:
Theorem 1’. A function fe M, belongs to 7; if and only if for every ge C,
also gof e R, and

L g(x)dx = '[) gU(x))dx.

The function g(x) = x gives that every function in 7;is Riemann-integrable.
However for such functions the following surprising result can be proved.

Theorem 2. Let fe R,. Then f belongs to 7; if there exists a uniformly
distributed sequence {x,}_, in I such that {f(x,)}>_, is also uniformly distri-
buted.

The function
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x if x is rational

S = {0 otherwise
shows that there are functions fe R, which preserve infinitely many uniformly
distributed sequences and simultaneously for infinitely many not uniformly
distributed sequences {x,}>_, the sequence {f(x,)};_, is not uniformly distri-
buted.

Some additional conditions on functions f from 7 reduce considerably the
possibilities for f. Here are some of them:

Theorem 3. Let fe 7. If fis continuous and injective then either f(x) = x
orf(x)=1—x.

Theorem 4. If a function fe 7, has the derivative at every point interior to
I then either f(x) = x or f(x) =1 — x.

Theorem 5. A Darboux function f'e M, belongs to 7; if and only if for every
x, x" € I we have

(x) — f(x) = |x" — x]|.

A sufficient condition is given in the next result.
Theorem 6. If a function f'e€ M, has the property that

max (f(x,) —x,) =0

for every sequence {x,};-_, of numbers from / then fe T;.

There is a close connection between the functions f€ R, and the functions
measurable in the Jordan sense. In this direction the following result can be
proved. ‘

Theorem 7. A function fe M, belongs to 7;if and only if fis measurable in
the Jordan sense and if

If'(B)| = |E|

for every interval E c I.

This theorem enables us to construct examples of functions from 7;. The
most simple of them are the zigzag functions with the height of every tooth
exactly equal to one.

The closet generalization of zigzag functions are the piecewise linear fun-

ctions. Let f be such a function. Let ’

f_l(y) = {Xl, X3y eees xk}

be the so called level set at y € i. The function f has the derivative at every point
of the level set for all but a finite set of points y € I. It can be proved for instance:
Theorem 8. A piecewise linear function f belongs to 7; if and only if
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for every such y e I for which all the required derivatives exist.

This result in a rewritten form can be used for a construction of the all
piecewise linear functions from 7;.

If we endow the set M, with the supremum metric then it can be easily seen
that the set 7; is closed in M,. The topological properties of 7;in M, culminates
in the next theorem.

Theorem 9. The set T; is perfect and nowhere dense in M,.

The last result we mention is of a more specific nature. We first recall the
notion of the somewhat continuous function. A function f from the topological
space X to a topological space Y is somewhat continous if for every open set V
in Y the condition f~'(V) # @ implies that the interior Intf~'(¥) is also
nonempty. Then Theorem 7 implies in turn that:

Theorem 10. Every function f from 7; is somewhat continuous.
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SUHRN
FUNKCIE ZACHOVAVAJUCE ROVNOMERNE ROZDELENIE
Stefan Porubsky, Bratislava

V praci sa podavaji vybrané vysledky o funkciach f: <0, 1)+ <0, 1), ktoré prevadzaju kazdu
rovnomerne rozdeleni postupnost {x,},". ; do rovnomerne rozdelenej postupnosti {f(x,)};- .
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ON DISTRIBUTION FUNCTIONS OF SEQUECES
MILAN PASTEKA, Bratislava

1. Introduction

The work has 3 parts. Part 1 is an introduction. In Part 2 we examine the
topological properties of the metric space (M, d) from the point of view of
distribution functions. Let (M, d) denote the metric space of"all sequences of
elements from interval [0, 1) with the sup — metric d. In Part 3 we examine the
transformation of sequences which preserve the distribution functions of
sequences.

In this paper we used the following notation:

(1) y = (»,) is a sequence of elements of the interval (0, 1].
(i) y* is a sequence of elements of M, where y* = (/).

For aninterval I c [0, 1], a sequence y € M and a positive integer N we used

the standard notation the monograph [1].

(iii) ALy, =Y 1
: _A400,%), y, N)
(iv) Fy(x) ~

In [1] the notions of the asymptotic distribution function (ADF) and the
distribution function (DF) of sequences are introduced.
Definition 1. Let ye M and g: [0, 1] - [0, 1]. Then
(v) g is said to be an ADF of y if
Fy(x) > gx), N— o
for all xe[0, 1].
(vi) g is said to be a DF of y if there exists a sequence of indices (M) such that

Fy(x)—g(x), j— o
for all xe[0, 1].

227



By investigation of the topological properties of (M, d) from the point of view

of distribution functions we shall need the foolowing generalization of an ADF.

(vii) if a function g is nondecreasing on [0, 1] and g(0) = 0, g(1) = 1, then g is

said to be a weak asymptotic distribution function of y (abbreviated as WADF)

if '
F>g

where P,'VL g denotes that the sequence (Fy(x)) converges to g(x) at each continuity

point of g.
Every nondecreasing function g: [0, 1] — [0, 1] such that g(0) = 0, g((1) = 1

will be called a distribution function-(DF).
Proposition 1.

(a’) Leta g bea DF. Then there exists a sequence y € M such that g isand ADF
of y.

(a”) If g is DF of y and it is not ADF of y, then g has at least two DF.

(b) If y has increasing DF, then the sequence y is dense in [0, 1].

(c) Let g be a DF of y. Then every point of discontinuity of g is a limit
point y.

(d) If g is a continuous DF, then every sequence dense in [0, 1] can be
rearranged into a sequence whose ADF is g.

(¢) LetgbeaDF and ye M. Then g is a WADF for the sequence y if and only
if for each continuous function A: [0, 1] — R the function g and the sequence
y satisfy the condition

. 1 J'
lim— Y h(y,) = | hdg.
Nl”";Nn;I (y) 0 g

The proofs af (a’), (e) can be found in [1], p. 53, the proof of (d) is in [2]. The
proofs (a), (b), (c), are trivial.

2. Some topological properties of the space M

The metric d is defined in the following way:

ay', y) =sup{ly,—yil; n=12,...}

for all y', y’e M.

In this part we shall study the structure of (M, d) from the point of view of
DF.

Theorem 1. Let (y*) be a sequence of elements from M and let

ye-y in (M, d). (1)
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Let f, be a WADF of y* (k =1, 2, ...). Then.
(a) y has a WADF f'such that f, = f.

(b) If f'is DF and f, % fthen fis a WADF of y.
Proof. By assumption

1 X :
lim — Y A "=jhd
fim 3 LoD = | s

for every continuous function 4 and for every k. Since 4 is uniformly continuous
on the interval [0, 1] according to (1) for every ¢ > 0 there exists a k, such that
for k > k, and for all » we have '

lh(n) —h(p)l <.

Hence for k > k, and each N we obtain

L5 ho9-L5 o
n N’l=l n.

N2 <8s. ' (2)

From this for k > k,
1

. 1 X
lim sup— Y A ,,—jhd <e
ansup X Ap— | hdfy

1

. 1 N .
lim inf— Y & "-fhd <e
N"’wl Nngl (y) 0 f;‘

SO
] X 1 &
lim sup— ) A — lim inf— ) h(y,<2-¢.
Jim pNn; @) — lim Nﬂ; 6%
Therefore for every continuous function 4 there exists a finite limit
l N
Lh) = lim — ) h(y,).
() = lim N..Zn (8]

Clearly, L is a bounded linear functional on C [0, 1]and L(k) > 0 for A > 0, thus
by Riesz representation theorem there exists a nondecreasing function f on [0,
1] such that

1
L(h) = L hdf.

If we put f = f'— f(0), then for A = 1 we have f(1) = 1 and thus by Proposition
1 (e) the function fis a WADF for y. It follows from (2)
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lim J hdf, = f hdf.
0 0

N-— o0
Therefore
fi>f.

If f, > f'and f'is a DF, then for every continuity point x of f and of f we
have

f) =(x).
From this part (b) follows.
Theorem 1 has the following immediate cconsequence.
Corollary 1. The set of all y e M, having WADF, is closed in the metric
space (M, d).
Let g be a DF. Denote by B, the set of all sequences y e M, having
WADF g.

Theorem 2. The set M is a set of the second Baire category in the space (M,
d).
Proof. Let

M* ={y =(,); y.€l0, 1]}.

M* is a complete space, therefore M* is a space of second Baire category in
itself. Let us denote

H ={yeM* y =1}

H=|\JH,.
n=1
Then M*=MOUH. Let K()°, ) be a ball in M*. If y? <1, denote
n=min{s, 1 — y}}. For ye K(3°, n) we have y, < 1, therefore K(°, n) " H, =
= 0. If y§ = 1 denote by y" the sequence (¥!’) where

0 n#k

) _
" l-—§ n=k

Then K(y“’,g) < K(y° d)andforye K(y“’, 15) we have y, < 1, s0 K(y”’, :—f) V)

U H, = 0. Therefore H, is a nowhere dense set. From this we get that H is a set
of the first Baire category in M*. Therefore M is a set of the second Baire
category in itself.

Theorem 3. If g is a continuous DF then B, is a closed nowhere dense set
in that the metric space (M, d).
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Proof. We have seen that B, is a closed set (see Corollary 2). Put
H,=M-—B,.
It suffices to prove that H, is a dense set.

Let K(y, ¢) be an arbitrary ballin M. If ye H, then H,n K(y, ¢) # 0. Let y¢ H,.
Then ye B,. Let a€ (0, 1). Denote

a=sup{nel0, 1]; g(n) =a}.
Then a > 0 and from the continuity of g it follows that g(a) = a. Thus

a<g(a+ 9)
for every 6 > 0 for which a + 5€ [0, 1]. Let ¢ satisfy the conditions 0 < 6 < g,

a—9d,a+30€[0, 1].
Define the sequence y’ = (y;) in such a way that

, yn+26‘ y,,E[O, a+5)
Yn=
Vs Va0, a+9).

Then d(y, y’) =26 < ¢, thus y’ e K(y, €). But y, <a+ <y, <a+ o<y, =
=y, + 20. From this we have

A([O,a+é)’yl!N)=l Z l=l Z

N N n'<n N n'<n

yn<a+d yp<a—24

l-ogla—d)<a<g(a+)).

From this it follows that g is not a WADF for y’. Therefore H,n K(y, &) # 0,
hence H, is a dense set. From this it follows that B, is a nowhere dense set.
In the end of this part we shall prove the following theorem about a
diagonal sequence.
Theorem 4. Let (y*) be a Cauchy sequence of elements of M. Let f, bbe a

WADF of y* (k =1, 2, ...) and let £,  f, where f'is a DF. Then

. 1 &, . [
@ tim L% o = | s
(b) Nlim%‘l‘h(y:hj haf

for every continuous function A.

Proof. The function 4 is uniformly continuous on [0, 1]. Since (y*) is a
Cauchy sequencce for every £ > 0 there exists a k, such that for each k", k" > k,
we have
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lh() — h(y")l < & 3

By P. Levy convergence theorem
| |

lim | hdf, = _[ hdf.
0 0

k —=

Thus, there exists k, > k, such that

1 1
f hdfk—J‘ hdf1<€ 4)
0 0
for every k > k,.

By assumption there exists N, > k, such that

<é& %)

1 & !
5.2 Ao —L hdf.,

for every N > N,. By (3), (4), (5) we have

LA ‘

LS poom— LS peph
N";h(yn) N";h(y,.)

1 1
+U hdﬁ(l—jhd/1$3-s
0 0

Thus part (a) is proved. The function /4 is bounded on [0, 1]. From this,
according to (a), part (b) follows. Thus the proof is finished.

+

_1_. u ky I
L3 00 + [ as,

3. Transformations of sequences and ADF preserving Function

Letye Mandf: [0, 1] — [0, 1]. Denote f(y) = (f(,))- In this part we examine
the properties of the sequence f(y) if y has WADF or ADF.
"~ Directly from the Riesz representation theorem we get:

Theorem 5. Let f: [0, 1] = [0, 1] be a continuous function and ye M have
WADF. Then f(y) has WADF.

Theorem 6. Let y have continuous ADF g and f: [0, 1] [0, 1] be a
continuous function. Then the sequence f(y) has a continuous ADF if and only
if

L(x, »); fO)—f(x)eZ A x, ye[0, 1]}) =0 (6)

where A.: is a 2-dimensional Lebesgue—Stielties measure.
Proof. By the Wiener—Schoenberg theorem (see [1] p. 55) there exists a
finite limit
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& 1 : 2m5imAy,) '[l .
Wy = lim — e Yn) e2mmf(x)d X
”-'wNn; i g(x)

for every m. By Wiener—Schoenberg theorem f(y) has a continuous ADF if and
only if -

1 M :
lim — Y |w,=0. (7

Moo Mm=1

By theorem on dominated convergence we have

1 M 5 1 M
lim — w,|’= lim — W, - W, =
X Iwal” = lim — ¥

M- Mm=1
| M 1l
— 1 = mim(f(x) — f()) =
A}llnw MmZ‘l L J; e dg(x)dg(y)
1 pl | M
= [ [ (tim L $: cromno-00) o) =
0Jo \M~>© Mpum=)
= 1dg()dg0) = Ai(x. y); Sx) —fD)eZ)).
{(x.): /() = f()eZ}

Thus by (7) the proof is finished.

Definition 2. Let g be a DF. The function f: [0, 1] = [0, 1] is said to be a_g
preserving function if the following assertion holds:

If g is an ADF of y, then g is also ADF of f(y) for every ye M.
If g(x) = x, f is said to be a u. d. preserving function. Analogously as in the
paper [3] we can prove the following:

Proposition 2. A continuous function £ [0, 1] — [0, 1] is g-preserving, where
g is a continuous DF if and only if

(@) ' j hofdg = j hdg
0 0

for every he C[0, 1].

(b) A1) = A,

for every interval I < [0, 1].

Corollary 3. A continuous function f is g-preserving if and only if there
exists a ye M, having ADF g, such that f(y) has ADF g.

Corollary 4. If for a continuous function f: [0, 1] —[0, 1] there exists
x€[0, 1] such that the sequence x, f(x), f(f(x)), ..., has a continuous ADF, then
fis g-preserving.

Let g be a continuous DF. Then g is a surjection and we can define the
function
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g(x) = sup{ae(0, 1]; g(a) = x}

From the continuity g we get g(g(x)) = x.
Lemma 1. For x,, x,€[0, 1] we have

g(x)) < x> x; < g(xy)

The proof is trivial.
Proposition 3.
(a) If y has ADF g, then g(y) is a uniformly distributed sequence.
(b) If y is a uniformly distributed sequence, then g is and ADF for g(y).
Proposition 3 is an immediate consequence of Lemma 1.
Then, if f'is u. d. preserving and y has ADF g, g(y) is uniformly distributed
sequence, fo g(y) is a uniformly distributed sequence. Therefore g - fo g(y) has
ADF g. Therefore go fo g is a g-preserving function. We can prove also that if
f is g-preserving, the g o f, o g is u. d. preserving. Thus we have proved:
Corollary 5. If g is continuous, increasing DF, then every g-preserving
function can be written in the form g~'o fo g, where f'is u. d. preserving.
Using the results from [3] we obtain
Theorem 7. If fis a continuous, monotone g-preserving function, then

fG)=x or fx)=g7'(1-gx).
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SUHRN
DISTRIBUCNE FUNKCIE POSTUPNOST{
Milan Pastéka, Bratislava

V tejto praci zavadzame okrem iného pojem slabej asymptotickej distribuénej funkcie pre
postupnosti prvkov intervalu [0, 1]. VySetrujeme topologické vlastnosti asymptotickych distri-
bucnych a slabych asymptotickych distribuénych funkcii. V praci je okrem iného dokazané, Ze
mnoZina vietkych postupnosti intervalu, ktoré maju slabu asymptotickd distribuént funkciu, je
uzavretd vzhladom na suprémovii metriku, dalej, Ze mnozina vietkych postupnosti, ktoré maju
spojitu asymptoticku funkciu g, je tiez uzavreta, vzhladom na suprémovi metriku. V posledne;j Gasti
sa zaoberame transforméciami postupnosti. Mimo iného je dokazana veta o jednoznaénom rozk-
lade funkcii, ktoré zachovavajii asymptotické distribuéné funkcie.

PE3FOME
®YHKLMUW PACINIPEAEJEHUN MOCJIEJOBATEJIBHOCTEN
Munan IMawreka, Bpatuciasa

B HacTosueil paboTe ucmonb3yercs MOHATHE cNaboil aMMNTOTHYECKOH (YHKIMH pac-
NpeZieJICHHs TIOCJIEA0BATEILHOCTH 3JIeMEHTOB MHTepBana [0, 1]. MccaeayroTcs Tononoruyeckue
CBOWCTBA aCUMIITOTHYECKUX (yHKIMi pacnpenenenus. B paboTte kpoMe TOro JOKa3bIBaeTCs, YTO
MHOXECTBO BCEX MOCJIEIOBATEILHOCTEN HHTEPBAIA, HMEIOLIHX CIabyI0 aCHMIITOTHYECKYIO (YHK-
LHMIO pacnpe/esieHus], 3aMKHYTO B COOOTBETCTBYIOLIEH METPHKE, H JaJiee, YTO MHOXECTBO BCEX
TOCNIe10BATENPHOCTEH, MMEIOLIMX HETPEPLIBHYIO ACHMITOTHYECKYIO QYHKIHIO TOXE 3aMKHYTO. B
TOCJIeIHER YaCTH U3Y4aloTCs NMpeo6Gpa3oBaHus MOCIIe0BATENLHOCTEH U 10Ka3bIBAETCA TeOpeMa 06
OHO3HAYHOM pa3bHeHMH OYHKUMH, KOTOpble COXPaHAIOT aCMMNTOTHYECKHE (YHKIMH pac-
npeJeseHus.
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