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IWASAWA’S MAIN CONJECTURE (A SURVEY)

JAN NEKOVAR, Praha

This paper is intended as an introduction into the basic ideas of cyclotomic
fields theory and their relationship to both classical results and modern trends
in number theory.

The origins of the subject can be traced back to works of Kummer. At first
sight, his results appear completely mysterious. Indeed, how the truth of the
Fermat’s Last Theorem for the exponent p can be deduced from the good p-adic
behaviour of Bernoulli numbers? The answer has two independent ingredients:

(A) Vanishing of certain arithmetic invariants of Z[{] implies the FLT.

(B) These invariants are controlled by Bernoulli numbers.

A more sophisticated approach to (B) is due to Iwasawa, who investigated
arithmetic of the tower K, c K, c ..., where K, = Q({,»+1). The corresponding
arithmetic object, Iwasawa’s module, is then conjecturally related to a priori
given p-adic analytic functions constructed first by Leopoldt and Kubota that
interpolate values of Dirichlet L-functions at non-positive integers. Recently,
this conjecture has been proved by Mazur and Wiles (see [4], [17]).

There exists a parallel theory for descent on abelian varieties in towers of
number fields ([12], [14]). In this case Main Conjecture is closely related to the
famous conjecture of Birch and Swinnerton-Dyer ([5], [8], [19], [20], [22]).

1. Classical results

Let p > 2 be a prime, {,» a primitive p"-th root of unity, K, = Q({+1), A=
= G(Ky/Q), C, the class group of K,, 4, its p-primary part, @: (Z/pZ)* - u, _,
the Teichmiiller character defined by w(a) = a(mod p).

Let C}, A} be (& 1)-eigenspaces for the action of complex conjugation on
C, and A, respectively. Dirichlet characters, denoted by y, are supposed pri-
mitive, of conductor f,. Bernoulli polynomials and numbers are defined by
generating functions:

ter v B.(X)
= L=l
e —1 n=0 n!

»  B,=B,(0)
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filﬂa)te‘"= ié&lt" (f=_/;)

a=|ef'—-l n=0 n!

General results available to Kummer were the following:
(1.1) Class number formula

Res £, (s) = 2"'(2n)*h R

w|d|"?

which he proved himself for a cyclotomic field K.
(1.2) Decomposition of the zeta-function of an abelian number field X

Gx(s) =[] L(s, 2
where characters of G = G(K/Q) are identified with Dirichlet characters.
f
(1.3) L1, = ——T(fl Y Z(a)log|l — %, x#+1 even
a=1
= ”i T(X)Bl,i, l Odd9

f
where f=f,, {={, 1(x) = ; x(a)c”.

(1.4) BX)=Y (':) BX".
i=0
E a .
(1.5) B.=F-'Y x(a)B,,(;), if f|F.
a=1
(16) Fornx1 £ —n, = — 2az
n
and B,,+#0 iff n=06mod2,

’ . 1
where 6 = 0 for y even, 1 for y odd <Wlth the exception of B, = — 5)

Applying (1.2) to the fields Ky, K§ = Q(¢,+ ¢,) gives

1
1.7 # Cqy =:" =2pl_[(—53|,d),

K+ iodd

since G(K,/Q) = {1, o, ..., "%, G(K$/Q) = {1, o, ..., o %}
Kummer’s foundational achievements are the following:
Congruences: Let m, n be even positive integers, p — 1 f n,
m = n(mod p* (p — 1)). Then
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(1.8a) By o1 = Z2(mod p)
n

(18b) (l—p’"")g—'ﬂE(l—p"")&(modp"*').
m n

Results on the Fermat’s Last Theorem:
(1.9a) Ay =0 iffforalleveni,2<i<p—3, B;%£0(modp)
(1.9b) Ay =0 =4,=0
(1.9¢) A, =0 implies FLT for exponent p.

Note that (1.9a) is an immediate consequence of (1.7) and (1.8a).

A more detailed information on the group A4; is provided by the classical
Stickelberger’s theorem (see [2], [10], [25]):
(1.10) For any integer ¢ prime to p the element

=(c—-oa) Z 0"€Z[G(K0/Q)]

annihilates 4,; here o,: {,;+— {; corresponds to a under the Artin’s isomorphism

(ZIpZ)* = G(K,/Q). )
If A is a finite abelian group and ye€ A its character, put

& = ;zgdx (@)ae 0[4]

Then any @[A]-module M decomposes into M = @ &M and

z€4

M={meM;VaeA, ‘m= y(aym}.

The same is true if one takes any ring containing values of all ¥’ s and
(% A)~'instead of Q. In particular, for A = G(K,/Q), A= {l, @ ..., % and
£4€ Z,[A]. It follows that

= @ (A)w, As = D (Ao
ieven iodd

As @, acts on (4,),; by multiplication on (¢ — @'(c))B, ,-i, Stickelberger’s theo-
rem implies that
(1.11) (A4y), =0 and for i odd, 3 <i<p —2, B, i kills (4,),,. but gives no
information on A4; .

From (1.8a) and (1.11) it follows that
(1.12) (Pollaczek, Herbrand) if for some oddi < p — 2(4,),s * 0, then B, _
divisible by p.
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It took fifty years to prove the converse:
(1.13) (Ribet [21]) If for i odd, 3 < i< p — 2, p\B, _,, then (4,),-: # 0. Ribet’s
prof required deep results on representations of G(Q/Q) related to modular
forms and can be considered as a first step towards the proof of Iwasawa’s Main
Conjecture.

2. p-adic L-functions

Kummer’s congruences (1.8) suggests that the function
B, =
S =0-p)=L=~=0-p~H1-n
n

might be extended to a function of a p-adic variable se C,. This is indeed the

case; in fact, also values of Dirchlet L-series at negative 1ntegers admit p-adic

interpolation. We recall two elementary constructions of p-adic L-functions.
Construction 1 (see [25]) starts with the Hurwitz function

xL

{(s,a)= ) (n+a)~* satisfying

2.1 C(l—n,a)=—£i’@ for 0<a<l1, n>1.
n

Suppose y is a Dirichlet character and F an integer divisible by the conductor
of x. Then (2.1) together with (1.4) imply

L(l1—np) = — Fn_lﬂ;x(a)B < ) Ell(")"" Z < > (Di

One is temped to substitute 1 — s for # in the last expression and view s as a
p-adic variable. Before doing this, however, one must define what &* would mean
in this context. Note that any ae Z; can be decomposed into a = w(a) (a) with
{a) = 1 (mod p). The series

@ =3 (*)a -1y

i=0\1

)

is convergent for |s|, <p 7*'.

This justifies the following definition: let y be a Dirichlet character with
values in Q,, F any multiple of p and f,. Put

-

2.2) Ls,2) = z Ha)ay' = 3, (‘ :s) B(f)

(s—1)F D Fash <o
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Properties of L,(s) (see [10], [25]):

(L1) The series (2.2) defines a meromorphic function of seC,, |s|, <
1

< pl P+ the only simple pole being at s = 1 fory = 1 when Rels L,s,1)=

=1 —

N |-

(L2) Forn>1
L(1=n, )= = 207 (@) YL — n, zo~) =
= — (1 - g0y ) Pt

(L3) If x + 1 and p* f f,, then

Lp(s’l) = Z a,-(s - l)i, |a0|p < l, plai for i>1.

(L4) If y is an odd character, then, by (1.6) and (L2), L,(s, y) is identically
zero.

If y is even, then L,(1 —n, )+ 0 foralln> 1.

It may be surprising that the only information concerning Bernoulli num-
bers necessary for a proof of (L1)—(L4) is the theorem of Clausen- von Staudt
on denominators of B;” s. On the other hand, Kummer’s congruences imm-
ediately follow from (L2) and (L3):

B
(a) Biy-1= = L0, = ~ L(1 —n,0/) = ~*(modp)
(b) If m = nmod (p — 1)p*, then L,(s, o) = L,(s, ") and

A—p Yo L —mary= — L1 = ma) = by (L3))
m

=-L(0-no)=(1-p"" ')ﬂ(modp’”“ h.
n

p-adic L-functions inherit certain properties of their complex counterparts,
but not all of them:
(LS) If y is an even Dirichlet character, then

_ (1N ED L
Lp(19X)— —<1 p ) f a§|1(a)logp( C)9

i
where =7, f=/, (=& ) = ;z(a)e““-
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(L6) If K is a totally real abelian number field, then

@) _2"'hR,
O e e

%1
G = G(K/Q), n =[K:Q] and R, is a p-adic analogue of the regulator.
(L7) Uhlike the complex case, there is no functional equation for the p-adic
L-function of the form

JG)L,(s, 2) = h()g()L,(1 — 5, 7)

with f, g non-zero meromorphic, independent of y and h,(s) nonvanishing.
Note that (L6) for K = K" tells us that

n—1p+ p+
Lp(l,ay')=3_ﬂ:;

[d+
As for each unit 7 in K one has log, ne Z, ® 0*, where O+ denotes the
+

ring of integers in K, it follows that 5\/;;: is p-integral. This means, by the
above formula, that h* = # C{ is divisible by p iff L,(1, @) s, for some even j,
2<j<p-3.By(L3)L,(,&) = L,(0,&/) = — B, ,,-1 (mod p), hence, in view
of (1.7), p|lh* implies p|h~, which proves Kummer’s theorem (1.9b).

Construction 2 is based on p-adic integration and is due to Iwasawa, save for a
language. .

Let ...« X,_, < X, « ... be a projective system of finite sets with all 7,
surjective, X = lim X, with the projective limit topology. A distribution on the

space X with values in an abelian group 4 is a finitely additive functional ¢ on
compact-open subsets of X with values in 4, or, equivalently, a system (¢,) of
functions ¢,: X, — A4 satisfying

b= T 40)

(indeed, if p,: X — X, is the canonical projection, then

$(x) = ¢(p, ' (X)) .

Distributions form an abelian group Dist (X, 4). Assume that 4 is a subring
of C, complete in the p-adic norm. Then ¢ is called a measure iff there is a
constant K such that |¢,(x)|, < K for all n, xe X,,. If ¢ is a measure, then there
is a unique A-linear continuous mapping

jd¢: C(X,A)— 4,
x

208



such that

'[ (characteristic function of U) d¢ = ¢(U)
X

for all compact-open subsets U of X. Here C(X, A4) denotes the space of all
continuous functions f: X — 4 equipped with the norm

171 = sup G2,

In the construction of p-adic L-functions, a crucial role is played by Ber-
noulli distributions on the space X = !iﬂl(Z/dp"+ 'Z)*, where d is an integer

prime to p. They are defined by the formula

#0x) = @1 5§ per 1)

where {a} denotes the fractional part of a. Though %, is not a measure, it can
be smoothed as follows:
take an integer ¢ prime to dp and put

Ek,c(xn) = gk(xn) - ckgk(c_lxn)

for x,e X, (c™' is the inverse of ¢ in X). :

E, . is a measure. Suppose y is a p-adic (with values in 0, Dirichlet
character of conductor f, = dp™. Denote by x: X — Z »* the canonical projection
and for ae X put w(a) = w(x(a)), <a) = {(x(a)). One can show by tedious
though elementary computations that the following fact holds:

(Dl) Ek’c=kf_lE].t.

This has as an immediate consequence

(D2) wa"(a)@)"‘ HE, = — (1 — 2(e){cYIL,(1 — k, 7).
Indeed, the former integral is by (D1) equal to
%jxw"‘(a) dE, , = i(l — 0™ (c)H) [ ro~* dR, =
(this is defined since yw~* is locally constant on X )

(l - x(c)<c>k)Bk.zm‘*

_1
k
and by (L2) we are done.
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[
By continuity, for all seC,, |s|,<p "'

(2.3) wa"(aKa)"‘ 'dE, . = — (1 = 2(a)XeX)L,(1 = 5, 7).

An easy argument that this integral is a function holomorphic for
1

Is|, < p] 7=, which gives an independent construction of the function L,(s, %)
and at the same time proves properties (L1), (L2).

Iwasawa’s original construction used instead of E, , its Fourier transform.
The general nonsense is the following:

Suppose that X, = A x [, is an abelian group with [, isomorphic to Z/p"Z,
X=IlmX,=AxITI= !iiﬂj, ~ Z,and the order of Ais prime to p. Let ¥, be

a fixed generator of I', F a finite extension of @,, € the ring of integers in F.
Fourier transform associates to any distribution ¢ = (¢,)e Dist(X, ) the
sequence

ég = ((ﬁ,,) ’ A" = Z ¢n (X)XE (('[/Yn] .

xelX,

From the distribution relation it follows that
Pe0[[X]] = lim O[X,] = C[4] ®, O[],

where the pro-finite group ring O[[I]] is isomorphic to the formal power series
ring O[[T]] via y,— 1 + T. If all roots of unity 9f order # A are contained in 0,
then the group ring O[4] = @ Og;and @ = (Pp)oc s> Poc O[[T]].

fe A

It is easy to see that

(D3) ": Dist(X, 0) —» 0[A] ®, O[[T]] is an isomorphism.
(D4) Regarding ¢ as a measure on Z, via the isomorphism s+ y;, Z, = T its
Fourier transform is equal to

$o(T) = f

A x

5(5) I+ T)yde¢(os,s).
ZP

Return back to X, = (Z/dp"*'Z)*. In this case
A= (ZldpZ)", I'=1+pZ,.

Fix for the moment A€ A4, a character yof | + pZ , of finite order, s€ Z,. Assume
that @ contains all roots of unity of order # A. Then it follows from (D5) that

(2.4) G175 — 1) =L r9(a)w(a)<a>"d¢-
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Combining (2.3) and (2.4), one obtains

(2.5) (B Do (W) 75" — 1) = (p(c){c)' % — DL,(s, Oy) .
Set y=c=1+p, {w=y '(1 + p) (which is a p"-th root of unity), g,(7) =

. 1 l+p |
=(E |l — T)=—+—1and h~'. It can be shown
(E\) 4 pow l<1 n T ) h(T) I+ T Jo= 8o

that for 8 % 1 fy lies in O[[T]]. Resuming what has been said,
(L8) If @c A, 0+ 1 is an even character, then there exists a power series
fo€ O[[T]] such that for each character y of 1 + pZ, of finite order

Ly(s,09) = fow(1 + p)~'(1 +p)' = 1).

In the special case d = 1, formal manipulations with class number formulae and
(L8) give the following result:

2.6) Zo_ Ig; — ,[;]j [T 1u¢ = 1) x (p-adic unit).

jeven

By the Weierstrass Preparation Theorem for f(T') = l_[ f,,,,(T)

() =p*P(T)U(T), where U(T) is a unit of Z [[T]] and P(T) =
+a, T* '+ ... 4+ a, is a distinguished polynomxal ie. pla for i = 0 -
A—1.1Iflisa prlmitive p’-th root of unity, then for n large enough

ord,(P({— 1)) = ord,(({ — 1)%).
It follows then from (2.6) that ‘
2.7 ord,h, = pp" + An+ v for n > n,.

This is also a consequence of the general theory of Z, — extensions, as
explained below.

3. Iwasawa’s theory of Z -extensions
Pursuing an analogy with the function field case, Iwasawa investigated
arithmetic in a tower fc F c ... © E, = () F, of number fields with G(E/FE) ~

n=0
~Z|p"Z, G(E,/K) = I'~ Z,. Let A, be the p-primary part of the class group
of F,. Then A, forms a projective system under the norm maps. Iwasawa’s
module of the extension F, /F is the limit X = !i_n_1A,,. X is a compact module

over A= Z,|[[I' > Z,([T]].
211



Basic results of Iwasawa’s theory are the following (see [2], [9], [10], [25]):

(IW1) X is a finitely generated A-module.

(IW2) For each A-module M of finite type there is a homomorphism
i M—>A®(@A/p™ & (A/(g(T))) with finite kernel and cokernel (such f is
called quasiisomorphism), where g(T)=T*+a,_\T*~'+ ... + a, is an ir-
reducible distinguished polynomial, pla;,, 0 <i< A — 1.

(IW3) X has no free part, i.e. in the notation of (IW2) r = 0. In this case
g= P "I1g, is independent of the quasiisomorphism chosen (up to a p-adic
unit) and is called the characteristic polynomial of X. This polynomial carries
allmost all information on 4, .

Of course, all this depends on a fixed generator of I which determines the
isomorphism Z,[[I']] = Z,[[T]].

(IW4) Assume there is only one prime ramified in F,/F, and assume it is

totally ramified. Then

A, 3X0,X, 0,=(1+TyY —1.
(IWS5) For n sufficiently large,
$A,=pn with e, =uw"+ in+ v,

where gy =X m;, A = degg in (IW3).
Under the hypotheses of (IW4), the above assertion follows from (IW3) and the
computation of M/w,M for standard A-modules A/p™ and A/g.

(IW6) (Ferrero-Washington [7], see also [18]):
suppose F/Q is abelian and F,/F; is the cyclotomic Z,-extension. Then u = 0,
thus

X =~ Z} @ finite p-group.
In the case of the basic cyclotomic extension K, = Q({,+1) X has a decom-
position X = 9@ &X (A = G(K,/Q)). From what has been said it follows that
€A

&X is quasiisomorphic to @A/g?(T ) and has a characteristic polynomial

g«T) = [[7(T).

(IW7) Let i be even, 2<i<p—3, let f,€Z,[[T]] be the power series
associated to the p-adic L-function L,(s, @) by (L8). Then f,(T) kills &, - :X.
This is essentially Stickelberger’s theorem for all n.

(IW8) Suppose Vandiver’s conjecture A; =0 is true. Then X* =
= @ gX=0and ¢g,,- X =A/f,(T)forieven,2 <i<p-—3.

feven .
Both Vandiver’s conjecture and the statement of (IW8) seem to be inaccess-
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ible at the moment. Iwasawa’s Main Conjecture is a weaker form of (IW8), but
still a very strong generalization of all results mentioned in section 1:
(IMC): for each i even, 2 <i<p— 3, g,,-(T) and f,,(T) generate the same
ideal in A. '
Below we shall list the most interesting consequences of the Main Conjec-
ture:
(i) Foreach iodd, i Imod(p — 1)

€4A4o = p-part of B, i = |B, ,-l,".

(i1) Let E, be the group of units in K|, let B, be the group generated by

§=§,,,11;§(i= I, ...,p—1). Then for each ieven,2 <i<p—3

€440 = p-part of £,(Ey/B)

(iii) For each n odd, n > 1, the order of K,,Z is divisible by w, , ,(@){(— n),
where w,(F) is the largest integer m for which G(F(¢{,)/F) is killed by k.

This conjecture has been proved “y Mazur and Wiles[17] (see also [4]). The
germ of their proof can be found in [21], where (1.13) is proved :under the
hypothesis that p/B, _; for some odd i Ribet constructs a Galois representation

0: G(Q/Q) — GLy(F,) with the following properties:

0= ((1); with * non-trivial, ¢ unramified at p, trivial on Ker @ n decom-

position group of p. By class field theory, fixed field of Ker gis then a non-trivial
unramified abelian p-extension corresponding to a non-zero element in &,A4,.
o comes from the representation associated to a suitable cusp form f of weight
2 for I, (p). This cusp form is an eigenform for Hecke operators and is congruent
to the Eisenstein series corresponding to . Properties of o then follow from the
relation of Eichler and Shimura and from the study of the reduction of the factor
of the Jacobian of X,(p) corresponding to the form f at p.

4. Final remarks

We have presented here only the basic facts of the theory of cyclotomic
fields. More detailed information can be found in [2], [9], [10], [25]. p-adic
L-functions can be defined over an arbitrary totally real number field (see [1],
[6], [23]). Also the Main Conjecture can be formulated over any such a field ([2],
[25]). If the field in question is abelian over Q then it has been proved in [17].
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An

alytic p-adic objects conjecturally related to Mazur’s theory mentioned in the

introduction are constructed in [11], [13], [15], [16], [24].

10.
11.

13.

14.

16.
17.

18.

20.
21.

22;
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SOUHRN
O IWASAWOVE HLAVNI HYPOTEZE
Jan Nekovaf Praha

Prace seznamuje se zakladnimi pojmy teorie kruhovych téles, ukazuje na souvislosti s
klasickymi vysledky i s dosud nefeSenymi problémy.

PE3FOME
TJIABHASA 'MITIOTE3A UBACABBI

An Hexosapx, IIpara

B pa601‘e H3J1araroTCsl OCHOBHBIC NTOHATHA TCOPHH KPYTOBBIX MoJie#, KX OTHOLIEHHMS K KJIACCH-
YECKHM pE3YJIbTATaAM H K COBDEMEHHBIM HCCJIENOBAHUAM.
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