#3D
VAL 7

—/

Werk

Label: Article
Jahr: 1987
PURL: https://resolver.sub.uni-goettingen.de/purl?312901348_50-51|log14

Kontakt/Contact

Digizeitschriften e.V.
SUB Géttingen

Platz der Gottinger Sieben 1
37073 Gottingen

& info@digizeitschriften.de


http://www.digizeitschriften.de
mailto:info@digizeitschriften.de

UNIVERSITAS COMENIANA
ACTA MATHEMATICA UNIVERSITATIS COMENIANAE

L—LI—1987

ONE-STEP MULTIDERIVATIVE METHODS FOR SOLVING
DIFFERENTIAL EQUATIONS OF THE FIRST ORDER

JOZEF DANCO, Bratislava
The subject of this paper is the problem of obtaining coefficients for a
special class of numerical methods for solving ordinary differential equa-
tions.

1. Introduction.

One-step multiderivative methods are a means for numerical solution of a
- first-order differential equation

Y =f(x,y)

Y(x0) = yo 1)

at the point x,. In this paper we suppose that the function f(x, y) satisfies the
conditions of existence and unit theorem of the solution of the differential
equation. This theorem has been proved in [1]. Numerical methods for solving
the above mentioned problem are using also derivatives of the function fx, »).
The problem is solved in the interval <a, b). Interval {a, b is divided into parts
separated by points x, x;, X,, ..., x,, where x, = a, x, = b. A step we define as
h, = x,,, — x, and in this paper we suppose h, = h.

The basic idea of these methods is very simple. To find the next value of the
solution, the values of the function f(x, y) and the derivatives of this function

in the points (x,, y,) and (x,, ;, ¥,. ) have to be used. This can be written as
follows,

k
Yny1 =Yt Z H ' (af? + b.fVs (2
i=0
where a;, b, for i = 0, 1, ..., k are unknown coefficients of the method,

his a step, h=x,,, — x,
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and

9= %f(x, () 3)

Y=X"

are total derivatives of the right-hand side of initial value problem (1) in the
point x,.

As can be seen the method defined by (2) is implicit. We suppose, that coef-
ficients a;, b, for i = 0, 1, ..., k are derived by scheme (2) in order to obtain the
maximal order of accuracy. This sort of methods are A-stable, so this property
predestinates this methods as a corrector of an explicit one-step methods.

2. The general formula for finding the unknown coefficients

In this part we shall find the general formula for counting the unknown
coefficients a;, b, for i = 0, 1, ..., k for any value of k. If we expand y, . ,, f?, /|

to the Taylor’s series in the pomt X,, compare the coefficients of the denvatlves

of f(x, y) and powers of A, we get the linear equations system of the following
form:

Ot=s, 4)
where ¢ is the unknown coefficients vector in the form
= (ao, a|, Saie ak, bo, bl’ .o bk)T

S is the vector of the right-hand side of the linear equations system and can be
written in the form:

si=_l' fori=1,2,..,2k+2

Q denotes the matrix of dimension 2k + 2 and has the form:

Q,=20; fori=1,2,...,2k+2
j=12, ..., k+1

1
= fori>j—k—1
O (i—j+k+1) /
i=1,2,...,2k+2 )
j=k+2,..,2k+2
0,=0 fori<j—k—1

i=1,2,..,2k+2
j=k+2,...,2k+2
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Figure 1

Figure 1 shows the matrix Q. The general form of the solution of the linear
equations system can be written in the form:

_ k4 DIk + 1))
2k + 2! (k — )G + 1)!

(6)

J

and

b= (—1)aq;. )

Let us prove this hypothesis. First we shall prove this for the unknowns b, so
we use the right-down quadrant of the matrix Q and the solution must satisfy
the equations foralli = k + 2, ..., 2k + 2. So we have to prove this implication:

The equality

}k:(—l)" k+DI@k+1-jt 1 1
i k=D'G+D'Qk+2)! G—j—1)! !

is correct only fori=k+2,k+3, ...,2k + 2. -
In order to prove the equality (8) we step-wise modify left side as follows
k+D)Q2k+1-))! g+
k—N)NG+D)Rk+2)!G—j—-1D! i'G+ 1)

®

k
2 (=1y
i=1 (
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_—1<2k+2—i>_<2k+2>"'+l=—_1(2k+2—i)lk+,]+l
k+1 k+1 it k42, i!

n'[\/j»~

i!
where ny, denotes the decreasing factorial. The previous equality was proved in
a general form in [4]. If one writes the equality (8) in the form

__l(2k+2_i)[k+”+l=l
it 2k + 24y it
can be easily seen that the equality can be written

and that is what we had to prove.
Now let us show that the unknown coefficients a,, b,fori = 0, 1, ... k satisfy
also the first k + 1 equations. This can be written in the form:

Qk +2 — i) (k + 1)! Z( Qk + 1 — ) (k + 1)! 1

(k—i+ DNk +2)! 5 (k_—j)!(j+ Dk +2)1G—j—1)! !

The equality we denote as (10), and it is true fori = 1,2, 3, ..., k + 1. Itis correct
because of the factorial (k 4+ 1 — i)!, so i must not decrease to k + 1. Now let us
prove the equality (10). The first member can be written as follows:

Qk+2-)lk+1)! (k+1)! <2k+2—i).(2k+2)" 1
(k+1—=i)'Qk+2i! (k+ 1) k+1 k+1

i!

The second member of (10) can be written in .the form:

1 (2k+2—i).(2k+2)"+1
it \ k+1 k+1 i!

So the equality has the form:

1 (2k+2—i)<2k+2)"_l(2k+2——i><2k+2)“'+l=l
it \ k+1 k+1 i k41 k+1 it

96



Therefore the equality (10) is true for all i =1, 2, ..., k + 1. By this two parts
of the proof, formule (6) and (7) can be considered as the solution of the linear
equations system (4). The equality (7) is very important, since the coefficients
computation requires only the solution of a smaller linear equations system of
the form:

Pb=z, (11)

where b is the vector of unknowns
b= (by b, ... b7,
vector z can be written as follows: _
2= Sipkt1 fori=l,2,...,kji—l
and matrix P is a reduced matrix from matrixﬁQ, 1.e.:
Bi=0Qitks1jrk+1 fori,j=1,2, .., k+1

That means that for finding the unknown coefficients the right down quadrant
of matrix Q is used. )

3. The local truncation error and the aproximation order

Suppose we have a general form of the one-step method:

Yny1 = th(xns Vs Vn+ 15 h) (12)
Then the local truncation error 7, , in the point x, . , is given by:
T::+l = y(xn +h) — th(xm y(xn s )’(xn + h)a h)’

where y(x) is the exact solution of differential equation (1). In our case, the
methods defined by (2), the local truncation error is given

2k +3
T;x =c (2k + 3) X, +0h2k+4 13
+1 k(k+2)!y (xn) + O™ %) (13)
where the constant term ¢, is
1 & _ k+D'k+1+0)
C,=— _1 k — i 1
k4 3y -;o( ) (k +2)Vit(k — i + 1) (k + 3)" &

and n is the k-th increasing factorial from n.
Approximation order can be as simple as possible defined as the greatest power
of polynom G(x) =1+ x + x>+ ... + x" which excatly satisfies the method. From

expresion (13) we can see that the methods described in this paper are of order
2k + 2. |
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4. Particular methods

In the case when k = 0, we have to do with a well-known Euler’s method.
When k = 1 we get the method described in [2], but the procedure for finding
the coefficients does not exist.

The coefficients from k = 0 to k = 8 are tabulated in Table 1. Here only the
coefficients a; for i=0, 1, ..., k and the coefficients b, for i =0, 1, ..., k,
multipled by 1 or — 1 are written in Table 1 consists also of the constant term
¢, for the local truncation error, but the exact local truncation error is given by
(13).

There are three possibilites for the unknown coefficients a,, b, (i =0, 1, ..., k)
to find.

The first possibility is to solve the linear equation system as given by (4) and
a, b;fori=0, 1, ..., k are obtained. The second possibility is to solve the reduced
linear equations system specified by (11) from whicch only b, coefficients for
i=0,1, ..., k are found and coefficients g, for i =0, 1, ..., k from equation (7)
can be determined. -

The above mentioned g; coefficients starting k = 0 up to k = 8 are given in
Table 1. A computation program in FORTRAN was prepared for generating
matrices Q and P as well as the right-hand sides of the linear equation systems
(4) and (11) also a special computer program has been written for solving the
linear equations system. The algorithm used for this purpose is a Gaussian
elimination method using fractions. More abouth this method as well as the
computer program can be found in [5]. Also a separate computer program was
written for obtaining the constant ¢, of the equation (14) from local truncation
error.

The third possibility is to get the unknown coefficients as given in (6) and
(7). This way is the simpliest one. Also for this third possibility a special
computer program was written for finding the unknown coefficients. For the
case where k = 8, the last unknown denominator of the coefficients is so great
that it is impossible represent it in the full range in the computer. Therefore all
the numbers are cut into parts and represented in a vector form. After this
“number cuts” it is possible to get coefficients g, and b, for any value of k.

4. Numerical results

The methods described in this paper are acceptable for solving the stiff
differential equations as a correctors for one-step methods. As a predictor the
clasic Runge—Kutta method of the 4-th order could be used. The Runge—
Kutta method can be written as follows.
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By this method we find the predicted value of y, , ;. Then by using the methods
presented in this paper the predicted value of y,,, can be corrected. General
formula of these methods is as follows:

P(Ek+IC)m,

where P denotes the predictor (in our example the classic Runge—Kutta
method of the 4-th order)
E is the evaluation of the ringt-hand side of the differential equation
and the derivatives (evaluated k + 1 times)
C s the corrector of the method (corrector of the predictor)
m is the number of repeated uses of the corrector
Certain disadvantage of these methods is that we have to find the derivatives of
the right-hand side of the diferential equation. The first derivative is:

Sn=Ler Lop

and the remaining derivative formula can be written

di a i—1) a i—1)
=¥ g L2
ox oy
Example:
Suppose we have a differential equatlon
= 10y
y@0) =1

with the exact solution y(x) = exp(10x). Function y(x) is sharply increasing in
x. The one-step explicit methods are not able to take into account this sharp
increase. If the methods described in this paper are used for solution of differen-
tial equation with step A = 0.1 in the interval {0, 1) the accuracy of solution
substintially differs. Tables 2—4 demonstrate the error terms in absolute value
at the end point of interval <0, 1) as well as the advantage of the described
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Table 2
The Runge—Kutta methods

Method The order Inacouracy

Euler’s 2 0.125E5S
King’s 3 0.384 E4
Merson’s 4 0.242E3
Clasical 4 0.793E3
Nystrom’s 5 0.121 E3
Huta‘s 6 0.363E1
Huta-Peniak’s 7 0.383

methods for the mentioned initial value problem. The numbers are given in the
following form: !

0.765E5 = 0.76510°.

The methods described in this paper

Table 3
The method order Inaccuracy
4 0322 EF 3
6 0227E 1
8 0893 E -2
10 0.184 £ —4
12 0.379 E -5

In the following the predictor-corector pairs were used to solve the initial
value problem. The Adam’s—Bashforth’s method was used as a predictor and
Adam’s—Moulton’s method as a corector and this predictor-corrector pairs is
identified as ABM.

Table 4

Method The order Inaccuracy
ABM 2 0272 ES
ABM 3 0.530 E 4
ABM 4 0.186 E 4
Milne’s 4 0.585 E3
Hemming’s 4 0.191 E4
ABM 5 0817 E3
ABM 6 0333 E3
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The methods proposed in this paper are a bit complicated ones,because of
derivatives, but by this algorithm more accurate results could be obtained for
some kind of initial value problems (stiff or when the solution is sharply
increasing).
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SUHRN

JEDNOKROKOVE METODY RIESENIA DIFERENCIALNYCH ROVNIC PRVEHO
RADU VYUZiVAJUCE DERIVACIU PRAVEJ STRANY DIFERENCIALNEJ ROVNICE

Jozef Danco, Bratislava

V praci sa uvadza postup odvodenia koeficientov jednokrokovych metod, ktoré vyuZivaju
derivaciu pravej strany diferencialnej rovnice. Tieto metody maju tvar:

k
Yn+1 =yn+ Z hi+|(aif}r’) + biﬁ)+l
i=0

Suéasne s koeficientami je odvodena i chyba metody. V zavere prace s uvedené konkrétne metody
pre k = 0 az k = 8 a rieSena jednoducha zaciato¢na uloha prvého radu.

PE3FOME

OJIHOIATOBBIE METO/[bl PELIEHUS AW®PEPEHLIMAJILHBIX YPABHEHU
MMEPBOI'O MOPSAAKA, UCTIOJIB3YIOMUX MPOU3BOJHBIE [TPABOY CTOPOHBI
AUOPEPEHLIMAJIBHOI'O YPABHEHUA

B paGote n3yuaerca MeTol Nojay4eHHs KO3(GHUHEHTOB OAHOLIATOBBIX METOJOB, MCIOJb-

3YIOLIMX NMPOU3BOAHYIO NpaBoi cTOPOoHE! AH¢depeHIHaNbHOrO ypaBHEHHSA. DTH METOABI HMEIOT
BHA: :
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k
— i+ 1 i) )
yn+|_.|'n+ Zh‘ (ai./‘n' +bij‘n‘+l)
i=1
OﬂHOBpeMeHHO BBIBOOHUTCS TOXE NOrpelIIHOCTL aNMpPOKCHMAaLMH METOA0B. B KOHLIE paGOTbl
NMPHBOAATCH KOHKPETHE MeTonbl A x = ( nok=8mu NpHMeEp OJHO# KOHKPCTHOﬁ HavaJbHOMK
3a4avu, pelﬂaeMOﬁ MPpH MOMOLLKH OMHCAHHBIX METO/0B.
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