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ADDITION TO ,,SOME QUESTIONS OF QUASICONTINUITY“
ONDREJ NATHER, Bratislava

In [1] the following theorem was introduced.

Theorem A. (Théorem 4 in [1]) Let X be a first countable Hausdorff
topological space and let Y be a metric space. If a multifunction F: X - Y is
quasicontinuous at a point x, and uniformly compact near x,, if a set F(x,) is
closed and if a function f: X x Y — (— 00, + 00) is continuous at (x,, y) for any
Y € F(x,), a multifunction M: X — Y defined by the equality

M(x) = {y € F(x): flx, y) = sup{f(x,y): z€ F(x)}}

is upper semi-quasicontinuous at x,,.
Recall that a multifunction F: X — Y is said to be uniformly compact near

x, if there exists neighbourhood U of x, such that the set | ] F(x)is compact.

xeU
The proof of this theorem was based on a characterization of the quasicon-

tinuity which can be found in [2]. The majority of the assumptions given on
spaces X, Y and on the multifunction F in the mentioned theorem are needed
for the sake of this characterization.

The main aim of this paper is to give another proof of the introduced result
which allows to omit several assumptions. Speaking more precisely, the follow-
ing theorem is valid.

Theorem B. Let X, Y be arbitrary topological spaces, let a multifunction F
be quasicontinuous at a point x, € X, let F(x,) be compact and let a function f
be continuous at (x,, y) for any y € F(x,). Then the multifunction M is upper
semi-quasicontinuous at x,.

The connection of this theorem with mathematical programming is evident
since the value of the multifunction M can be interpreted as the set of optimal
solutions when the objective function fand the set F of constraints are given. A
preservation of a certain type of the generalized continuity as e.g. the quasicon-
tinuity, can be understood as a certain stability of this solution set.

Before giving the proof, let us remark that a multifunction F: X — Y is said
to be upper semi-quasicontinuous at x, if for any open set V' < F(x,) and for any
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neighbourhood U of a point x, there exists a nonempty open set G = U such
that F(x) = V for any x € G. A multifunction F is said to be quasicontinuous at
x, if for any open sets V¥, V¥, and U such that F(x)c

c W, F(x,) = V; # 0 and x,€ U there exists a nonempty open set G < U such
that F(x) = ¥, and F(x) n V; # @ for any x€ G.

Proof. Let U, ¥, be open sets such that x,e U, and M(x,) = V;. Suppose
that F(x,) = ¥, does not hold because in this case the upper semi-quasicontinu-
ity of M at x, is obvious.

If we denote ¥, the complement of the set V;, then the sets F(x,) and K =
= F(x,) N V, are compact and from the continuity of f we obtain the existence
of ymax € M(x,) and y,,,, € Ksuch that

S(x0, ymax) = sup {f(xo, »): y € F(xo)} >
> sup {f(xo)a y)' y € K} =ﬂx0’ymax) 2

Denote & = f(xo, Ymax) — f(X0» Ymax) > 0.
Furthermore, from the continuity of f it follows that for any y € K there
exist neighbourhoods U; of x, and V; of y such that we have

f(x, y) < f(x0, §) + § (1)

for any (x, y)e U; x V;.
Since the set K is compact, there are y,, ---, y,€ K such that K c V; =

i=1

It is evident that the set L = F(x,) n V/ is also compact and, moreover,
L = F(xo) n Vi © F(xo) n K’ = F(xo) n (F'(x0) U W) = b

For any j e L there exist neighbourhoods U; of x, and ¥; of 7 such that have
£
f(xO’ i) - 5 <.f(xa y) (2)

for any (x, y)e U; x V.
Neighbourhoods ¥; can be chosen in such a way that ¥; c ¥, Also, since
L is compact, we obtain L < ,L-Jl V;; If we denote ¥; = ,ur Vi, then ¥, < .
Consider a neighbourhood ¥, of the point yy.x considered as a point
from the set L. Then we have

Fx)nV, #0 and F(x)< Lul,.

MAX
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Denote

U=UynuU,, n (ﬂuy) (ﬂu)

i=1 vy =1
where U, U),j and U, . are the neighbourhoods of x, corresponding to V;, V,,j
and ¥ respectively.
From the quasicontinuity of F at x, there follows the existence of a nonemp-
ty open set G < U such that F(x) < V,u V;, F(x)n ¥, ax = 0 for any xeG.

Therefore for any x € G there is y. € F(x) n ¥, = and according to (2) we have

S0 Yaax) — § < f(x,,). 3)

We shall show that if y € F(x) n V;, then y must belong to V. The inclusion
Vs = Vjis valid for the sake of the choice of V_;j. From this inclusion we sec that
such y cannot belong to ¥; and therefore y € ] is valid. Thus y € V;, for some i
and according to (1) we have

f(x, ) < fixe, ) + g < %> V) + § )

Combining (3) and (4) we obtain
S0%, ¥) < f(X0, Yonar) + § < f(%0, Yax) — § < f(x, 7).

Thus we see that y cannot belong to M(x) and therefore M(x) = ¥,. The uppcr
semi-quasicontinuity of M at x, is proved.
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SUHRN
DODATOK K ,,NIEKTORE OTAZKY KVAZISPOJITOSTI*
ONDREJ NATHER, Bratislava
V préci sa uvddza novy dokaz vety 4 z [1], ktora pojednava o mnozine optimalnych riefeni
popisanej pomocou uréitej multifunkcie a o kvazispojitosti tejto multifunkcie. Tento dokaz dovoluje
vypustit niektoré predpoklady uvedené v [1] a rozsiruje platnost vety na Tubovolné topologické
priestory.
PE3FOME
AOBABJIEHME K «<HEKOTOPBIE BOITPOChI KBA3U-HEIPEPBIBHOCTHU»
OHJIPEN HATOP, BpaTucnasa
B pa6ote naércs HOBOE IOKa3aTENLCTBO TeopeMsi 4 U3 [1], KOTOpas TPaKTYeT MHOXECTBO
ONTHMAJILHBIX PEIlIEHHH ONMHMCAHHOE NMpPH NMOMOLIH ONPEAENEHHON MYJIbTH(YHKUMH, H paccMa-
TPHBATh KBa3H-HENPEPBIBHOCTb 3TOH MYJIbTHQYHKIMA. ITO AOKA3aTeNILCTBO MO3BOJIAET NPOMNYC-

THTb HEKOTOPbIE YCIIOBHS, IPHBEAEHHBIE B [1], H paciunpseT AeHCTBHE TEOPEMBI HA TIPOH3BOJILHBIE
TOMNOJIOrHYECKHE MPOCTPAHCTBA.

74



UNIVERSITAS COMENIANA
ACTA MATHEMATICA UNIVERSITATIS COMENIANAE

L—LI—1987

ON CERTAIN CHARACTERIZATION OF GENERALIZED
CONTINUITY OF MULTIFUNCTIONS

ONDREJ NATHER, Bratislava

In the first part of the present paper a concept of the so called &-continuity
for multifunctions is introduced. This concept, which was introduced for fun-
ctions in [2], includes several generalizations of the continuity. The aim of the
paper is to give a characterization of the % -continuity of a multifunction with
the help of the #-continuity of functions from a certain family corresponding
to this multifunction. .

Several theorems are proved using the above-mentioned characterization.
The majority of these results were already proved before, some of them in the
weaker and some in the stronger form. But the news of the work is the approach
which enables to exploit well-known properties of real functions and makes the
proofs very simple.

If not specified, X, Y denote general topological spaces, R denotes, the set
of real numbers with the usual topology and R*, R{ denote the set of all positive
and nonnegative real numbers respectively.

1. #-semicontinuity

In [2] the following concepts are introduced.
Definition 1. A family &, of subsets of X is called a local sieve at a point
xe X if:

1. xe A for any Ae &,,

2. A < Band A€ ¥, implies Be &,

3. %, c &, where %, denotes the system of all neighbourhoods of a point
X

Definition 2. A local sieve %, is called strongly local if 4 n U e &, for any
Ae &, and for any Ue %,.

In everything that follow: we shall consider only strongly local sieves.
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Examples of the sieves which are not strongly local can be found in [2], where
also the following concept is introduced.

Definition 3. If ¥ is a local sieve at a point x € X, we say the function f from
X to Yis &-continuous at x if f (V) € &, for any neighbourhood V of the point
Sx).

If we consider real-valued functions we can introduce the concept of
& -semicontinuity which we shall call order & -semicontinuity to distinguish this
one from the %~ semicontinuity of multifunctions. In the following definitions
we suppose that a local sieve &, at a point x € X is given.

Definition 4. A function f: X — R is said to be order upper (lower) &-semi-
continuous at a point x if for any re R* there exists a set 4 € &, such that
S(2) <f(x) +r (f(z) > f(x) — r) for any z € A.

Definition 5. A multifunction F: X — Y is said to be upper (lower) #-semi-
continuous at a point x if for any open set ¥ such that F(x) < V (F(x)nV # -
# @) there exists a set 4 € &%, such that F(z) = V (F(z) n V # 0) for any z€ A.

We denote the order upper -semicontinuity, the order lower %-semicon-
tinuity, the upper &-semicontinuity, the lower &-semicontinuity by o.u.#-s.c.,
0.l.F-s.c., u¥-s.c., |.¥-s.c. repectively.

The corresponding notions of 0.u.#-s.c., 0..%-s.c., u.%-s.c. and 1.¥-s.c.
on X are understood as o.u.#-s.c., 0.1.¥-s.c., u.¥-s.c. and 1.¥-s.c. at any xe X
respectively.

By means of a special selection of local sieves &, we can obtain several
known types of generalized continuity. '

If #, = 4., we obtain the continuity with respect to the topology given on
X. In this case the notation o.u.s.c, o.l.s.c., u.s.c. and l.s.c. will be used.

If #, = {4: xe A, x e A°}, we obtain the quasicontinuity. Here the symbols
A° and A are used for the interior and for the closure of the set A respectively.
The notations o.u.q.c., 0.l.q.c., u.q.c. and l.q.c. will be used.

If ¥, ={A4: xe A, xe (A)°}, we obtain the almost continuity.

If X = R", then the approximate continuity can be obtained as the %-con-
tinuity, where the local sieve &, at a point x is formed by all the sets which
contain x as a density point.

For the definitions of the above-mentioned concepts see [2], where all these
sieves are proved to be strongly local, too.

2. Characterization of ¥-semicontinuity

From this moment suppose (¥, ¥") to be a uniform space and consider only
multifunctions with nonempty values in Y.
Speaking about & -semicontinuity, we shall mean the &-semicontinuity of
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a multifunction F: X — Y with respect to a topology on Y induced by the
uniformity ¥".

It is known that there exists a system £ of pseudometrics such that
B={{(x,y)e Y x Y: p(x,y) < 1}: pe P} is a base for ¥ and 2 is the smallest
system in the sense of cardinality. When pe 2, re R* and y e Y denote

v, ={ZeY: p(y, 2) < 1}
and when 4 < Y denote

VPr[A] = yLe)A Vpr[y] .

Using the system £ it is possible to introduce the & -semicontinuity as
follows. A multifunction F: X — Y is said to be .¥-s.c. at a point x € X if for
anype 2, re R* and y € F(x) there exists a set 4 € &, such that F(z) n v, #
# Q for any z € A. A multifunction Fis said to be u.#-s.c. at x if F (x) is compact
and for any p € 2 and r e R* there exists a set A € &, such that F(z) < Vv, [F(x)]
for any z € A.

These definitions coincide with the ones introduced in Definition 5. When
the compactness of F(x) is omitted, then Definition 5 implies the definition
introduced above but not vice-versa.

Before aproaching the main theorems we introduce another notation. Let
Fbe a multifunction from X to Y. For any y € ¥ and p € 2 define a function 1.
X — R{ as follows

J,.,(x) = inf{p(y, 2): ze F(x)}.
For any finite set / c Y define a function f; » X = Ry as follows
J1,(x) = min V(X)) yel}.
It is evident that
J1,(x) = inf{min{p(y, 2): ye I}: z e F(x)}.

Theorem 1. A multifunction F: X — Yis1.%#-s.c. at a point x, € X if and only
if the functions f, , are 0.u.#-s.c. at x, for any pe 2 and y € H, where H = Y.

Proof. Necessity. Let re R*, ye H and p e 2. From the property of infi-
mum follows the existecne of y,e F(x,) such that

PO, yo) <[, ,(x0) + g

Since F is 1L%-sc. at x, there exists a set Ae & such that
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F(x) n Vp ol # @ for any x e A. Therefore there is y, € F(x) such that p(y,,
"2
o) < —zr- Hence we obtain

f:V-P('x) = p(yv\r’ )’) <f_;v'p(x()) +r.

Sufficiency. Let y € F(x,), re R* and pe 2. Since H is dense in Y there is
Yo€HN Vp ¥l The functiouva'p is 0.u.%-s.c. at x, and therefore there is a set
.4" -

Ae ¥, such that
r
f»’o-p(x) <fyo-p(x0) + Z
for any x € 4.

Since p(y, y,) < i we have

5 vo.p(xo) < i and therefore fv@ H(x) < g

Thus we see that Vp ol 0 F(x) # 0 and therefore V, ,[y] N F(x) # 0 for any
2

xeA.
In the next theorem the notion of a locally boundedness is used.
Definition 6. A multifunction F: X — Y is said to be localy bounded at a

point x € X if there exists a neighbourhood U of x such that FWU)={JF()is
U

compact. F'is said to be locally bounded if it is locally bounded at any xe X.
Theorem 2. Let a multifunction F: X — Y be locally bounded at Xo€ X and
F(x,) be compact. Then F is u.#-s.c. at x, if and only if all functions fi, are
0..#-s.c. at x, for any p e 2 and for any finite set ] ¢ H, where A = Y.
Proof. Necessity. Let pe #, re R*, H= Y, I = H and I be finite. Since F
is u.#-s.c., there exists a set 4 € &, such that F(x) Ii |#(xo)] for any x e 4.
2

From the definition of f; , it follows that for any x € A there exists y, € F(x) such
that

min {p(y,y,): ye I} < f; ,(x) + g

Furthermore, we can find z e F(x,) satisfying p(z,, y,) < gand since
J1.,(xo) < min {p(y,2,): y € I} we obtain
J1p,(%0) Smin{p(y,y): yel} + p(y,,2) <f ,(x) +r.
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Sufficiency. Let pe 2, re R*. SinceF is locally bounded at X,, there exists
a neighbourhood U of x, such that F(U)=K is compact. Denote
M = K\ 'V, ,[F(x,)]. M is totally bounded, being a subset of the compact set K.

It means there are y,, ..., y,€ M such that M c U li ,[V»]. From the density
m=1 3

of H it follows that for any m = 1, ..., n there exists Vm€ Hsuchthaty, e Vp Dl
‘4

Thus M < () V ,[5,].

m=1 P3
Denote I = {y,, ..., 7,}. Since foranym =1, ..., n

J5p(X0) = Inf{p(7,,, ¥): y € F(x)} > %

holds, we have f; ,(x,) > % Since f; ,is 0.1.&-s.c. at x, thereis aset 4 € &, Such

that
Jip(0) > £, (%) — i > g

for any xe de.
Then f; ,(x) > % and that means Ii Lml D F(x)=0foranym=1, ..., n.
"2

¥, 1s a stronlgy local sieve. Hence a set 4= A N U belongs to ¥,, and
F(x) < K holds for any x € 4,. Thus

Fw < K\ 0 ¥, [5) = K\M = K\(K\ V,,,,[F(xo)l) < ¥, [F()]
m=1 P3

and the u.#-s.c. at x, is proved.

Note that if S v = U, We obtain already known theorems concerning the
semicontinuity. In case Y is a metric space such characterization is metioned
in [1].

The following examples show that the compactness and the locally boun-
dedness cannot be omitted in Theorem 2. In both examples X = Y = R; with
metric d(x, y) = |x — y|, S =U,and F: X - (Y, d).

Example 1. F(0) = (0, 1)

F(x) =<0, 1 + x), if x # 0.

Then f, (x) = max{y — x — 1, 0} for any y € Y. We can see tha: all f,.aare
even continuous. Therefore functions f; , are continuous for any finiteset / c Y,
too. But F is not u.s.c. at the point 0.
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Example 2. F(x) ={0},ifx £~ forn=1,2, ...
n
F(l) ={n},forn=1,2, ....
n

If I'={y, ..., y.}, then f; ,0)=min/=y, for a certain m, where

1 <m<n Denote z=max/I If x < ZL’ then f; (x) > y,. Thus all f,, are
z

o.l.s.c. at the point 0, but F is not u.s.c. at 0.

3. Points of discontinuity

Denote the set of all points at which a multifunction F is not u.#-s.c.,
1.#-s.c. by D3 F and Dg F respectively. Analogously a notation D} fand D f for
the function f is used.

With respect to the previous section we can see that

DyF=vu{Dyf, , yeH,pe P}
and when F is compact-valued and locally bounded, then
DiF = u{Dyf, ,: I c H, I finite, pe #}.

If the index & is omitted we obtain equalities concerning usual semicon-
tinuity. A multifunction F is said to be continuous at a point x if it is both upper
and lower semicontinuous at x. Thus the set of the points of discontinuity of F
is equal to D* Fu D~ F. The symbol DF(Df) for the set of the points of discon-
tinuity of a multifunction F (a function f) is used.

By the term of a monotone multifunction with domain R we understand an
increasing or decreasing multifunction in the following sense. If x, < x,, then
F(x,) = F(x,) or F(x;) > F(x,).

Proposition 1. Let Y be a second countable uniform space and F: R — Y be
monotone, compact-valued. Then the set DF is countable.

Proof. Suppose, for instance, F to be increasing Then F((x —1,
x+ 1)) € F(x + 1) for any x e R and since F(x + 1) is compact, F is locally
bounded.

According to our assumption there exists a countable set H dense in Y and
the set P is countable, too. Since

DF = v {Df;,: I c H, [ finite, pe 2},

the proof will be finished after observing that any set Df; , is countable.
From the definition of f; , it follows that if x, < x,, then
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J1.,(x1) = min {inf{p(y, z): ze F(x,))}: ye I} >
2 min {inf{p(y,2): ze F(xy)}: ye I} = f, ,(x,),

because F(x,) = F(x,). Thus Ji,» R — Ris a decreasing function and therefore
Df,, is countable.
The same result is given in [5] for Y being a metric space.

In the proof of the next result concerning the points of discontinuity the
following three lemmas are used. -

Lemma 1. Let f: X — R be order upper (lower) semiquasicontinuous on X
and order lower (upper) almost semicontinuous at a point x,€ X Then f'is order
lower (upper) semicontinuous at x,. ,

A simple proof of this lemma can be omitted.

Lemma 2. If /* X — R, then fis order upper (lower) almost semicontinuous
on X except for the set of the first category.

This lemma follows directly from [6].

Lemma 3. (Theorem 2.2. in [4]). If /> X — R. is o.u.q.c. (o.l.q.c.), then f'is
o.u.s.c. (0.l.s.c.) except for the set of the first categoryy.

Proposition 2. Let Y be a second countable space and F: X — ¥ be compact-
valued and locally bounded. If Fis u.q.c. (1.g.c.), then the set DF is of the first
category. '

Proof. For the same reason as in Proposition 1 we can take the sets A and
2 countable and therefore it is sufficient to show that Df; , is of the first category
for any finite set / = H and for any pe 2.

Suppose F to be u.q.c.. From Theorem 2 it follows that fip1s olg.c..
Combining Lemma 1 and Lemma 2 we obtain that D*f, , is of the first category.
According to Lemma 3 the set Df,,=D*f, ,uDf;,.

The proof for F being l.q.c. is analogous.

The theorems of this type, but with the assumption of the semicontinuity
of Finstead of the semiquasicontinuity, can be found in [5] for Y being a metric
space, and in [4], [6] for Y being a topological space.

4. Connection between continuity and S -continuity

In this section we suppose Y is a pseudometric space with a pseudometric
p, and local sieves &, satisfy the following condition formulated in [2].

Definition 7. We say the sieve &, has a selection property if for every
descending sequence 4, > 4,> ... o A,> ... of the sets belonging to &%, a
sequence {U,}r_, of neighbourhoods of x and a set A4 €%, exist such that
AnU,c A,

In Section 1 some examples of local sieves are introduced. All of them have
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selection property provided that X is a Hausdorff first countable topological
space.

It is obvious that in the case when Y is a pseudometric space Theorems 1
and 2 are valid. Moreover, we can omit the indices indicating the pseudometrics
from the system 2.

Proposition 3. Let X be a Hausdorff first countable topological space, a
multifunction F: X — Y be locally bounded, and u.#-s.c. at a point x,€ X and
F(x,) be compact. The there is a set 4 € &, such that the restriction F/4 is u.s.c.
at Xx,.

Proof. Let r € R*. From the property of infimum for any x and y there exists
a point z, , € F(x) such that

psz,) <fu(x) + % :

Since F is u.#-s.c. at x,, there exists a set 4 €&, such that F(x)
< V,[F(x,)] for any x € A. It means Z, , € F(x,) exists such that
£ i

r
p(zx. v é\ r) <-.
' ' 2

Then
PO, 2,,) <pW, z.)) + pCy s 20)) <f(X) +7
and
Sixo) <pB,2c,) < fi(x) +r
for any ye Y and x€ 4.

. . 1 . ;
Taking successivelly r = —, where n =1, 2, ..., we obtain a descending
n

sequence {4,};°_, of sets from &, such that

1,00 > £,(x0) — %

for any ye Y and x€ 4.
Since &, has a selection property there exist a set 4 € .V,o and a sequence
{U}r_, of neighbourhoods of x, such that A n U, = A,. Therefore A n U, =

cAnA,c A nf;'((fy(xo) - %, oo)) for all yeY. Since AnU,e¥,,

Anf;‘((fy(xo)-—%, oo))e&’xo for all yeY. Thus we have that (f/
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[A) ' (f,(x0) — 1, 0)) € &, forall ye Y and all re R*. Therefore f,/4 is 0.1.s.c.
at x,. If a set I < Yis finite, then the function f;/4 is o.l.s.c. at x,, too. Using
Theorem 2 we obtain that F/A4 is u.s.c. at x,,.

The paper [8] deals with a restriction of this type for a quasicontinuous
multifunction. There are several examples introduced in [8] to show that an
analogous result for the lower semiquasicontinuity is impossible to obtain even
under very restrictive conditions. But a certain result can be obtained for the so
called Hausdorff lower semicontinuity denoted by H.ls.c..

Definition 8. A multifunction F: X — Y is said to be Hausdorff lower
& -semicontinuous H.1.%-s.c. at a point x, € X if for any r e R* there exists a set
Ae ¥, such that F(xo) = V][F(x)] forany x € 4.

Proposition 4. Let X be a Hausdorff first countable topological space and
F: X > Y be H1.¥-s.c. at x,. Then there exists a set A€ &, such that F/4 is

H.ls.c. at x,.

Proof. For any ye Y and n positive integer there exists a point z, € F(x,)
such that

0 2,) <S5 + L.
2n

Denote 4, = {x€ X: F(x) n V,[F(x,)] # 0}. Then for any ye Y and xe A4, we
2n

can find a point z, ,€ F(x) such that
p(zyp 2,,) < L
P o
Thus
1
f;,(X) < P()’, zx.y) <f;'(x0) + ;

holds for any xe 4, and ye Y.
Since F is H1.¥-s.c. at x,, we have 4,€ &, . As shown in the previous

proposition there are A€ &, and {U,};_,, U,e %, such that An U, c 4,.
Thus we have f,(x) < f,(x) +l for any xeAn U, and ye Y. Then
n
f,(xo) =0 for any ye F(x,) and therefore there exists y,e F(x) such that
1
PO, y) < -.
n

Hence F(x,) = W[F(x)] for any xe A n U, and F/A4 is H.ls.c. at x,.
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5. Sequences of multifunctions

In this section we suppose again Y to be a uniform space and we shall study
some properties of the sequences of multifunctions with values in Y. The symbol
N is used to denote the set of all natural numbers.

We shall deal with the following two types of convergence.

Definition 9. A sequence {F,}_ , of multifunctions is called convergent to the
multifunction F if for any pe 2, re R* and x € X there exists n,e N such that
F(x) < V, [F(x)]and F(x) = V, ,[F(x)] for any ne N, n > n,. We denote this by
E - F.

Definition 10. A sequence {F} _, of multifunctions is called uniformly
convergent to the multifunction Fif for any p € 2 and re R* there exists nye N
such that F(x) < V, [F(x)] and F(x) < V, [F(x)] for any xe X and neN,
n > n,. We denote this by F, 3 F.

The definitions are a natural generalization of a convergence when Y is a
metric space and the Hausdorff distance is considered. The Definition 10 agrees
with the definition of the uniform convergence introduced in another form in [9].

Remark that notations f, — f and f, =3 f will be used also for functions to
denote the pointwise convergence and the uniform convergence respectively.

One more notation is useful. Denote

p(2) = py, 2)
and

p(z) =min{p(z): yel} = min{p(y, z2): ze I}.

Thus p,: Y — Ry and p,;: Y — Ry are uniformly continuous functions on Y for
any pe % and any ye Y or any finite / = Y.

With the help of this notation we can define for anyne N,pe 2, ye Y and
finite I < Y.

Jryp(X) = inf {p(2): z € F(x)},
/rll.l‘p(x) =inf {p,(2): ze F(x)}.

The next lemma is given without the proof since a similar result is proved
for the case when Y is a metric space in [7] and the proof for Y being a uniform
space conatins only technical differences.

Lemma 4. Let G: X—> Y, g: Y—> R and G,3G, g,3 g, where g is a
uniformly continuous function on Y. If m,(x) = inf{g,(y): yeG,(x)} and
m(x) = inf{g(y): y € G(x)}, then m, 3 m.

This lemma has a straighforward application.

Proposition 5a. Let {£,}_, be a sequence of 1.%-s.c. multifunctions and let
F, 3 F. Then the multifunction Fis 1. #-s.c..
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Proof. If we set G, = F,, G=F, g,=g=p,,m,=f,,,and m=f, , then
the assumptions of the previous lemma are clearly satisfied. Thus £, , , 3 f, , for
any ye Y and pe 2. Since f, , , are o.u.#-s.c. functions, it is sufficient to prove
that the order &-semicontinuity is preserved under a uniform convergence and
then to observe that Fis 1.#-s.c., when all f, , are o.u.#-s.c..

We shall not do it, because it is very similar to the proof of the fact that a
uniform convergence preserves a continuity.

An analogous proposition for the upper &-semicontinuity is given without
proof.

Proposition 5b. Let {F}_, be a sequence of u.%-s.c. multifunctions and let
FE, 3 F. Then F is u.¥-s.c., provided that F is locally bounded and compact-
valued.

Some results of this type, but only for semicontinuity, are given in [7] and
[9].

We conclude this paper with two Dini’s theorems for multifunctions. Since
these theorems are again dual in a certain way, we shall prove one of them in
detail and the second one will be only formulated. Before introducing the
theorem, we give some lemmas in order to make the proof of it more intelligible.

Lemma Sa. If a multifunction Fis u.s.c. at a point x, € X, then for any p € 2
and re R* there exists a neighbourhood U of x, such that

SypX) > S, p(x0) — 1

for any xe U and ye Y.

Proof. In the proof of Proposition 3 we obtained even more general result
for a u.#-s.c. multifunction and for Y being a pseudometric space. But it is
obvious that the same result is true for any p e 2.

Lemma 5b. If a multifunction is 1.s.c. at a point x,, then for any pe 2 and
re R* there exists a neighbourhood U of x, such that

Jer%) < S p(X0) + 1

forany xe U and ye Y.
Lemma 6. If F, - F, then for any x€ X, pe 2 and r € R* there exists nje N
such that

Joyo(X) < Sy, p(x) + 1

for any ye Yand ne N, n > n,.
Proof. Let xe X, re R* and p € 2. From the definition of f, , for any ye Y
there exists a point z, € F(x) such that

r(y.z) <f, ,(x) + g
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Since F, — F, there exists nye N such that F(x) c V,, [E(x)] for any n > n,. It
"2

means z, , € F,(x) exists such that
¥
r(z, z,,) < 5

Then for any ye Y and n > n, we obtain

PO, z,,) <[y, (x) +r.
Since £, , ,(x) < p(y, z, ), the inequality

Jor (%) <y p(X) + 1

is valid for any ye Y and n > n,.

Since the proof of the following lema differs from the proof of the classical
Dini’s theorem for functions only in technical details, we omit it for the sake of
shortness.

Lemma 7. Let X be a compact topological space and the functions, , , and
/.., satisfy the following conditions:

(i) Vxoe XVpePVre R*Yne N3IU, €U, VxeUVyeY:
f;r.y.p(x) <./;1.y.p(x0) + r,
(ii) Vx,e YVpe PVre R* V,e%.:VxeU,VyeY:
f,;'.p(x) >f;'.p(x0) -r,
(i) Vpe 2VyeY: f, ., = fi,

and, moreover,

Vx € Xvn eN: .f;v.y.p(x) an + I.y.p(x) ny.p(x) ’
(iv) Vxe XVpe PVre R* Inje N: Yn > ny\Vye Y: f, , (x) <fo,(x)+r.
Then Vpe #Vre R*Inye N:Vn > ny¥ye YVxe X: f, . (x) <f, (x) +r.

Proposition 6a. Let X be a compact topological space. Let {F}*_, be a
sequence of 1.s.c. multifunctions and let a multifunction F be u.s.c.. Let F, - F
and F(x) c F,, ,(x) = F(x) for any x€ X. Then F,3 F.

Proof. Since F, are l.s.c. according to Lemma 5b, we obtain that the
condition (i) in Lemma 7 is satisfied. Lemma 5a and the u.s.c. of Fimply (ii) in
Lemma 7. The condition (iii) follows from the fact that multifunctions F,
converge to F from below. With an application of Lemma 6 we obtain (iv) in
Lemma 7. Thus the conclusion of Lemma 7 is also valid.

Let now F, B F. It means there are p e 2 and r € R* such that foranyne N
there exist k, > n, x,€ X and y, € F(x,) satisfying
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Ex)nV,,l=0.
But then

f;(,,._r,,,p(xn) >r and f;'",p(xn) = 0’

which is contraict to Lemma 7 and the proof is finished.

Proposition 6b. Let X be a compact topological space. Let {F}’>_, be a
sequence of u.s.c. multifunctions and let a multifunction F be l.s.c. and comact-
valued. Let F, —» F and F(x) o E, ,(x) © F(x) for any xe€ X. Then F, 3 F.

Similar Dini-type theorems can be found in [5] for Y being a metric space.
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SUHRN
O URCITEJ CHARAKTERIZACII ZOVSEOBECNENEJ SPOJITOSTI MULTIFUNKCI{
Ondrej Nather, Bratislava
V praci sa podla vzoru [2] zavadza pojem zovieobecnenej polospojitosti pre multifunkcie a ta

sa charakterizuje pomocou zovieobecnenej polospojitosti realnych funkcii patriacich do ur¢itého
systému priradeného k danej multifunkcii.
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Pomocou tejto charakterizicie sa dokazuji tvrdenia o bodoch nespojitosti monotonnych aj
polokvazispojitych multifunkcii. Dalej sa skima vztah medzi polospojiostou a zovieobecnenou
polospojitostou. Dokazané sii niektoré vysledky tykajice sa postupnosti multifunkcii, ako naprik-
lad Diniho veta pre multifunkcie.

PE3IOME

OB OMPEJEJEHHON XAPAKTEPU3ALIMM OBOBLIEHHOMW HEMPEBbIBHOCTU
MHOIO3HAYHBIX OTOBPAXEHUN

Onppeit Hatop, Bpatucnasa

B crathe BBOAMTCA N0 06pasity [2] nonsTHe 060611EHHOH NONYHENPEPLIBHOCTH 11 MHOTO3-
Ha4HBIX OTOGpaXeHHH U OHO XapaKTEpH3yeTCA NMPH MOMOILM 06061UEHHOI NOyHENPEPLIBHOCTH
peanbHbIX QYHKUMIA NPUHAANEXKAIUMX K CHCTEME COOTBETCTBYIOLUEH 3TOH MYNbTH(YHKIMH.

W3nonb3ys 3Ty xapakTepu3auuio, J0Ka3bIBAIOTCH YTBEPXKEHHS O TOYKAX pa3pbiBa 15 MOH-
OTOHHBIX H JUIA MOJyKBa3HHENPEPLIBHBIX MHOIO3HAYHBLIX OTOOpaXkeHHi. [JJanblie U3yyaeTcs OT-
HOLIEHHE MEXY MOJIYHENPEPBLIBHOCTLIO M 06061eHHOH nosnyHenpepsiBHOCTBIO. [TonyyaroTcs
Pe3y/IbTaThl, KaCalOLIHECH TOC/IEAOBATENBHOCTEH, Kak Hanpumep Teopema [IMHM A1S MHOro3-
HaYHBIX OTOGpaXeHHii.
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