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SOME PROPERTIES OF ALMOST CONTINUOUS
LINEAR RELATIONS

LUBICA HOLA, Bratislava
1. Introduction

Linear relations were studied by R. Arens [1] and A. Szaz and G. Szaz [2].
In [1], [2] algebraic properties of linear relations are given and in [3], [4] some
topological properties of linear relations.

In the present paper we deal with almost continuous linear relations. We
prove that under some hypotheses almost continuous graph-closed linear rela-
tions are continuous.

2. Some properties of almost continuous relations

All spaces considered in this part are topological spaces. If S is a relation
from X into Y (i.e. a set S « X x Y such that S(x) = {ye Y, (x, y)e S} # 0 for
all x € X), then for 4 = Y we denote S~ (4) = {x: S(x) " 4 # 0} and S*(A4) =
= {x: S(x) c 4}. 4

Definition 2.1. A relation S from X into Y is said to be upper semicon-
tinuous (lower semicontinuous) at a point x, if for any open set ¥ < Y such that

X, €ST(V) (xo€ S™(V)),
xo€Int S*(V) (x,€ Int S~ (V)

Definition 2.2. A relation S from X into Y is said to be upper almost
continuous (lower almost continuous) at a point x, if for any open set V' < Y
such that x,e S* (V) (x,€ S~ (V)), x,€ Int ST (V) (x, € Int S~(¥)). (Int E, and E
denote the interior and the closure of the set E respectively.)

Definition 2.3. A relation S from X into Y is said to be upper quasicon-
tinuous (lower quasicontinuous) at a point x, if for open set V such that
X €ST(V) (xoe S~ (V) xoeIntS*T(V) (x,€ Int S~ (V)).

If S is upper and lower semicontinuous at x, (upper and lower almost
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continuous at x,, upper and lower quasicontinuous at x,), then it is said to
continuous be at x, (almost continuous at x,, quasicontinuous at x,).

If S is upper semicontinuous (lower semicontinuous, upper almost con-
tinuous, lower almost continuous, upper quasicontinuous, lower quasicon-
tinuous) at any x € X, then it is said to be upper semicontinuous (lower semicon-
tinuous, upper almost continuous, lower almost continuous, upper quasicon-
tinuous, lower quasicontinuous).

Definition 2.4. Let X, Y be uniform spaces with fixed uniformities % and ¥~
respectively. A relation S from X into Y is said to be uniformly lower semicon-
tinuous (uniformly lower almost continuous) if for any C € ¥~ there exists U € %
such that S~ (V[y]) o U[x] (S~ (VD)) = U[x]) for any (x, y)eS. (V[y] =
={z: (y,2)eV}.)

Remark 2.5. It is evident that uniformly lower semicontinuity (uniformly
lower almost continuity) implies lower semicontinuity (lower almost continuity)
in uniform topologies.

Remark 2.6. In what follows the symbol S: X — Y denotes a relation from
Xinto Y.

Remark 2.7. It is obvious that if S is upper almost continuous (lower almost
continuous) at x,e X then for any open set U < Y such that x,e S*(U)
(xo€ S (U)) there exists an open set V' < X such that xe V and S*(U) (S~ (V))
is dense in V.

Proposition 2.8. Let S: X — Y. Let Y be a regular space. Let S be upper
quasicontinuous and lower almost continuous. Then S is lower semicontinuous.

Proof. Let x,e X. Suppose S not to be lower semicontinuous at Xo. Then
there exists an open set ¥ in Y such that X, €S (V) and x,¢IntS~ (V).

Therefore there exist a y e S(x,) n V and an open set }; in Y such that ye

€ Vi = Vi < V. Then x,e Int S~ (¥;) since S is lower almost continuous at X, and
Xo€ S (V). That implies the existence of a ze IntS~(¥]) for which ze X —
- S (V)=8*(Y— V)< S*(Y—V,). The upper continuity of S at z gives
that ze Int S*(Y — V). So we have S(IntS*(Y — %)) = Y — ¥, and that im-
plies IntS*(Y — ¥}) n S~(¥;) = 0. But, that is a contradiction since z e Int-
SHY—-P), zeIntS~(¥) and IntS*(Y — V) n S~ (V) = IntS*(Y — F) n
NS (V) =0.

Corollary 2.9. (See [6]) Let S: X — Y. Let Y be a regular space. Let S be
upper semicontinuous and lower almost continuous. Then S is lower semicon-
tinuous.

Corollary 2.10. Let f: X — Y be a single-valued function. Let Y be a regular
space. Let f be quasicontinous and almost continuous. Then f is continuous.

Remark 2.11. Proposition 2.8. is not valid if we omit the asumption of
regularity of Y.
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Example 2.12. Let X = [0, 1] with the usual topology @. Let Y = [0, 1]. Let

G = {A: Ac Y, Aelord=G— {l} ; Ge@}. % is a base of some topol-
n
ogy J on Y. Y with topology Z is not regular.

The identity from X into Y is quasicontinuous and almost continuous, but
is not continuous.

Proposition 2.13. Let S: X — Y. Let Y be a normal space. Let S be lower
quasicontinuous on X and upper almost continuous at x,. Let S(x,) be a closed
set in Y. Then S is upper semicontinuous at x,.

Proof. Suppose S not to be upper semicontinuous at x,. Then there exists
an open set V' such that x,e S* (V) and x,¢ Int S* (V). Since Y is a normal space
and S(x,) < V, there exists an open set V; in Y such that S(x,)) < ¥, < ¥, c V.
The upper almost continuity of S at x, and S(x,) = V; imply that x,e€ Int S* (V).
Since x,¢ Int S* (V) and S* (V) = S*(V), there exists a z € Int S~ (V) such that
z¢ST(V)=X—-S (Y—V). That implies that zeS (Y —F) since
S~ (Y — V) « S (Y — V). From the lower continuity of S at z we have z € Int -
S=(Y — ¥,). So we have proved that ze Int S*(¥,) n Int S~(Y — ¥,). But, that
is contradiction, because (IntS~ (Y —¥)nS* (V) <X —-S*(F)nS*(¥) <
c(X-S*Nn(P)=0. '

Remark 2.14. Proposition 2.13. remains valid if Y is regular and S(x,) is
compact.

Proposition 2.15. Let X, Y be uniform spaces. Let Y be a complete pseudo-
metric space. Let S: X - Y. Let G(S) = {(x, y): ye S(x)} be a closed set in
X x Y. Let S be uniformly lower almost continuous. Then S is uniformly lower
semicontinuous.

Proposition 2.15. is a consequence of Lema 6.36. in [8].

Corollary 2.16. Let X, Y be uniform spaces. Let Y be a complete pseudo-
metric space. Let S: X — Y be an almost continuous graph-closed relation. Let
S be uniformly lower almost continuous. Then S is continuous.

Proof. By Proposition 2.15. S is lower semicontinuous and by Proposition
2.13. S is upper semicontinuous, that is, S is continuous. (Y is normal. S(x) is
a closed set for any xe€ X. 6.A in [8].)

n=1

3. Almost continuous linear relations

Let X and Y be vector spaces over a field K (K = R or K = C).

Definition 3.1. A relation S from X into Y is said to be linear if S(x) +
+ S(y) € S(x + ) and AS(x) = S(Ax) for all x, ye X and A€ K.

Definition 3.2. A function f defined on the domain of a relation S is called
a selection for Sif f < S.
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Proposition 3.3. (See [2].) Let S: X — Y be a linear relation. Then S(0) =
={yeY: (0, y)e S} is a vector subspace of Y and S(x + y) = S(x) + S(»),
S(Ax) = AS(x) for all x, ye X and 0 # A€ K.

Proposition 3.4. (See [2].) Let S: X — Y be a linear relation and f be a
selection for S. Then S(x) = f(x) + S(0) for all xe X. If S(x) n S(y) # 0, then
S(x) = S().

Proposition 3.5. (See [2].) Let S: X — Y be a linear relation. Then there
exists a linear selcetion f for S. :

In what follows X and Y are topological vector spaces.

Proposition 3.6. Let S: X — Y be a linear relation. Let x, € X. Let S be upper
almost continuous (lower almost continuous) at x,. Then S is upper almost
continuous (lower almost continuous).

Proof. We prove the case of upper almost continuity, the other case being
similar.

First we prove that S is upper almost continuous at 0. Let U be an open set
such that S(0) = U. Let y,e S(x,). Then S(xy) < y, + U.

Upper almost continuity at x, implies that x,eIntS*(y, + U), i.e.
Int S*(yo+ U) — x, is an open neighbourhood of 0. We prove that
ST + yy) — xp = ST(U).

Let veST(U+ y;) — X, Then v=a—x, and S(a) c U+ y,, ie. S()=
=S(a) — S(xo) = S(@) — yo + S(0) = S(a) — yo= U+ yy—yo=U, also veS™ (V).
ST(U+y))—x, < S*(U) implies Int(S*(U+y,)—x,) < IntST(U). Since
Int(S*(U + yy) — xo) = Int ST(U + yp) — X, Int S (V) is a neighbourhood of
0. To prove that upper almost continuity at 0 implies upper almost continuity
at point x € X is analogous.

Proposition 3.7. Let S: X — Y be a linear relation. Let S be upper almost
continuous. Then S is lower almost continuous.

Proof. By Proposition 3.6. it suffices to prove that S is lower almost
continuous at 0.

Let ¥V < Y be an open set such that S(0) n V' # 0. The set S(0) + V'is open
in Y and S0) < SO)+ V. (Let yeS(0). Let y,eS@O)n V. Then
¥y = — yo) + Vo where y,€ Vand y — y,€ S(0) — S(0) = S(0), i.e. ye S(0) +
+ V). ,

The upper almost continuity of S at 0 implies that 0 € Int S *(S(0) + V). For
each x of S*(S(0) + V) we have S(x) "V # 0, i.e. xe S~(V), since y — ae S(x) N
N Vif ye S(x), y = a + v, where ae S(0) and ve V. Thus we have proved that
S*(S5(0) + V) = S~ (V). This implies that 0 € Int S *(S(0) + V' < Int S~ (V) and
the lower amost continuity of Se0.

Now we prove theorems 3.8. and 3.11. These theorems are given in [10]
without the proof.
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Theorem 3.8. Let S: X — Y be a linear relation. Let X be a space of the
second category. The S is lower almost continuous.

Proof. Let 0, be a zero in X and 0, be a zero in Y. First we prove that
0, € Int §7(U) for any neighbourhood U of 0,. There exists a neighbourhood V
of 0, such that ¥+ V < U and AV < V for any A with |A]| £ 1.

Y= UnV e, X=8(Y)= U nS~ (V). Since X is a space of the second

category, Int S—(¥) # 0. Let ye IntS (V). Then IntS—(¥) — y is an open
neighbourhood of 0,.

Let ve S(»). Then ST W)=y S (V)—S ({v}) =« S (V—v). Since Vis
a neighbourhood of 0, there exists 4 > 0 such that ve AV. Hence S™(V —v) <
cS WV-ANccS A+ 1DV -=-PV)c S ((A+ 1HU) = (A + 1)S~(U).Since
IntS™ (V) — y=Int(S" (V) — y) and S(V) — y<(A+ 1S (U), 0,¢
€ Int(A + 1)S~(V), i.e. 0,€IntS ~(U). Now we prove that S is lower almost
continuous. By Proposition 3.6. it suffices to prove that.S is lower almost
continuous at 0,. Let G = Y be an open set such that S(0,) NG # 0. Let
¥0€S(0,) n G. G — y,is a neighbourhood of 0,. Hence 0, € Int S™(G — y,). Since
Y,€8(0,), S™(G — y,) = §7(G) and 0, € Int S~(G).

Remark 3.9. The assumption on X is essential.

Example 2.10. Let C = C [0, 1] denote the set of all real-valued continuous

functions f on the interval [0, 1] and define ¢ (f, g) = . :1:;5) ] f(x) — g(x)]. The

space is a complete metric space.
}\Iext consider the same set C, but take for metric function o(f, g) =

= J |f(x) — g(x)| dx. The space (C, o) is of first category in itself.
0

Let X = (C, o) and Y = (C, o). Let I be the identity from X onto Y. Then
I is linear relation, but 7 is not almost continuous.

(Let U={feY: of, 0) < 1}. For any neighbourhood V of 0 in X there
exists a nonempty open set G = V such that G n /= (U) = 0. Let V be a neigh-
bourhood of 0 in X. There exists £ > 0 such that {fe X: o(f, 0) < & < V. Let

2 on 0,5]
/ L 4
gx)=— —§x+4on f,f:l
N £ [ 4 2
0 on g, 1].

1 &/4 /4
If |fl<1 then Jlg(X)—f(x)ldsz lg(x) — f(¥)ldx 2 | (gl =
0
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£

€/4 £/4
— f)ldx = j lg(x)ldx — f foldx>2.£- ¢
0 0 4 4

£
= Z Hence no element of

the Z — neighbourhood of g in X belongs to /7 (0)).

Theorem 3.11. Let S: X — Y be a linear relation. Let X and Y be locally
convex spaces. Let X be a barrelled space ([7]). The S is lower almost con-
tinuous.

Proof. It suffices to prove that 0, € Int S~ (U) for any neighbourhood U of
0,. Let U be a neighbourhood of 0,. There exists a base % of absolutely convex
absorbing neighbouhroods of 0,. Hence there exists Ve % such that V < U.
Linearity of S implies that S (V) is an absolutely convex absorbing set. Hence
S (V) is closed absoltely convex absorbing set in X. X is a barrelled space, i.e.
S=(V) is a neighbourhood of 0. So 0, € IntS (V) < Int S (V).

Theorem 3.12. Let S: X’ — Y be a linear relation. Let Y be a normed vector
space. Let S(0) be a closed set in Y and S(0) # {0}. Then S is upper almost
continuous if and only if the set {x e X: S(x) = S(0)} is dense in X.

Proof. Let the set {x € X: §(x) = S(0)} be dense in X. We prove that S is
upper almost continuous. It sufices to prove that S is upper almost continuous
at 0. ¢

Let V be an open set in Y such that S(0) < V. Since {xe X: S(x) =
=S0) = S*(V) and X ={xeX: S(x) =S0)}, X =« S*(V), i.e. S is upper
almost continuous at 0.

Let S be upper almost continuous. We prove that the set {xe X: S(x) =
= S§(0)} is dense in X.

First we prove that there exists an open set V' < Y such that S(0) < ¥ and
O+ S8(0)) n (Y — V) # 0 for any y¢ S(0).

Put V= () B, e "), where B(x, r) = {ye Y: |x — y|| < r}(| x| de-

ue S(O
notes the norm c()f2 xin Y). Vis an open set in Y and S(0) < V.

Let x¢ S(0). Denote a = inf |x —u|.
ue S(0)

If a> 1, then x¢ V and so (x + S(0)) n (Y — V) # 0.

Let a < 1. Take u€ S(0) such that ||u]| >/ —Ina+ 1+ || x].

Hence ||u + x|| 2 ||u]l — | x|| > </ —Ina + 1. We prove that u + x¢ V. Suppose
the contrary. Then there exists v € S(0) such that u + x € B(v, e "I"),

ie |lu+x—v| <e " Since(v — u)e SO) |lu + x — v|| = a. Hence a < e~ """,
ie. |v] <+/—Ina.

Then |u+x|=llu+x—v+v|L|lu+x—v|+|v]<e "+ /—Ina<
<1+ +/—Ina, contrary to the hypothesis. Take the set V. Then {xe X:
S(x) =S0)}=S*(V). Let x,eS*(V¥) and let S(x))=S(0). Then
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S(xy) N S(0) =0 and there exists a y,e€ S(x,) — S(0). Since y,¢S(0), then
S(x)) = V =0+ S0) n (Y —V)#0. So we have x,e S*(V).) S*(V) is the
vector subspace of X. Upper almost continuity of S at 0 implies that
0 e Int ST(V). Since S¥(V) is a vector subspace of X, Int S¥(V) is also a vector
subspace of X. For each x € X there exists A > 0 such that xe A Int S*(V) =
= Int ST (V). Thereofere X = Int ST(V) = {xe X: S(x) = S(0}.

Remark 3.13. The assumption that Y is a normed vector space may not be
omitted.

Example 3.14. Consider the set B = B[a, b] of all real-valued bounded
functions f on the interval [a, b], and define p,(f) = sup, < <, [f(x)|. It is evident
that (B, p,) is a normed vector space. Next consider the sgt L = L[a, b] of

Lebesgue-integrable functions on [a, b], and define p,(f) = | |f(¢)|dt. Then p,

is semi-norm, but p, is not a norm.
Let X = {f: [a, b] = R, f being a bounded Lebesgue-integrable function} be a
subspace of (B, p,) and let Y = (L, p,).

{'b
Define S: X — Y as follows: S(x) = x + C, where C = {/e ¥: J 1f(0)lde = 0}-

It is easy to verify that S(0) = C is a closed set in Y and S is an upper
semicontinuous linear relation, i.e. S is upper almost continuous. (Let ¥ be an
open set in Y such that S(0) < V. There exists € > 0 such that {fe Y: p,(f) <

< &g c V. Then {/EX: p.(f)<b'8
—a

= C} ={xe X: xe C} is not dense in X.

Corollary 3.15. Let S: X — Y be a linear relation. Let Y be a normed vector
space. Let S(0) be a closed set in Y and S(0) # {0}. Then S is upper semicon-
tinuous if and only if S(x) = S(0) for every x€ X.

Corollary 3.16. Let S: X — Y be a linear relation. Let Y be a normed vector
space and S(0) # {0}. Let G(S) = {(x, y): y€S(x)} be a closed set in X x Y. If §
is upper almost continuous, then S is upper semicontinuous.

Proof. Put L = {xe X: S(x) = S(0)}. L is a closed set in X, since G(S) is a
closed set in X x Y. The upper almost continuity of S and Theorem 3.12 imply
that L is dense in X. Hence L = X.

Proposition 3.17. Let S: X — Y be a linear relation. Let f: X — Y be an
almost continuous selection for S. Then S is lower almost continuous.

Proof. It suffices to prove that S is lower almost continuous at 0. Let U be
an open set in Y such that S(0) n U # 0. By Proposition 3.4 S(x) = f(x) + S(0)
for every x € X. There exists v € S(0) such that (f(0) + v) e U. Almost continuity
of fimplies that 0 € Int f~(U — v). It holds f~'(U — v) = S~(U) since for each
xef (U - V) we have f(x) + ve(f(x) + S©0)) n U= S(x)n U. So 0elnt-
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S~(U) and S is lower almost continuous at 0. By Proposition 3.6 S is lower
almost continuous.

Remark 3.18. Let S: X — Y be a linear relation. Let S fulfil the assumptions
of Proposition 3.17. Then S need not be upper almost continuous. S: R*> —» R?,
S(x, y) = (x, y) + S(0, 0), where S(0, 0) = {(x, 0), xe R}. f(x, y) =(x, y) is a
continuous selection for S but S is not upper almost continuous.

Proposition 3.19. Let S: X — Y be a linear relation. If S is lower semicon-
tinuous (lower almost continuous), then S is uniformly lower semicontinuous
(uniformly lower almost continuous) by the natural uniformities on X and Y.

Proof. We prove the case of lower semicontinuity, the other case being
similar. Let  be the uniformity in X and ¥~ the uniformity in Y, S lower
semicontinuous and ¥V € ¥". There exists an open set G < Y such that 0e G,
G=—-G={—y:yeG}and {(x, y): (x —y)eG} = V. Hence G = V[0]. The
lower semicontinuity of S at 0 implies that 0 e IntS(G) = IntS (- G) =
= — IntS(G). Let U = {(x, y):x — y € Int S (G)}. Then U[0] = S~ (V[0]) since
for each x € U[0] = Int S ~(G) there exists a 1€ S(x) N G = S(x) n V[0]. Hence
Ulx] =« S~ (V]y)) for any (x, y)e S. Let (x, y)€S. Then V[y] oGyl =G+ y
and U[x] = IntS~(G) + x. For each ve U[x] we have: v=h+ x, where
helIntS~(G) and S(v) = S(h) + S(x). Then he S~ (G) implies the existence of
ueSh)n G and u + ye(S(h) + S(x)) n (G + y) = S(v) n (G + y). Therefore
veS(G + y) n S~ (V[y]). Thus S is uniformly lower semicontinuous.

Theorem 3.20. Let S: X — Y be a linear relation. Let Y be a complete vector
pseudo-metric space. Let G(S) = {(x, y): y € S(x)} be a closed set in X x Y. Let
S be lower almost continuous. Then S is uniformly lower semicontinuous.

Proof. By Proposition 3.19. S is uniformly lower almost continuous and by
Proposition 2.15. S is uniformly lower semicontinuous. Theorem 3.20 can be
also obtained as a consequence of a more general assertion in paper [4], [9].

Theorem 3.21. Let S: X — Y be a linear relation. Let Y be a complete vector
pseudometric space. Let G(S) = {(x, y): y € S(x)} be a closed set in X x Y. Let
S be almost continuous. Then S is continuous.

Proof. By Proposition 3.19. § is uniformly lower almost continuous and by
Corollary 2.16. S is continuous.

Remark 3.21. It is sufficient to suppose in 3.21 that S is upper almost
continuous. (See Proposition 3.7.).
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SUHRN

NEJAKE VLASTNOSTI SKORO SPOJITYCH LINEARNYCH RELACI{

Lubica Hola, Bratislava
Préca sa zaobera skoro spojitostou linearnych relacii. Studuje sa zhora skoro spojitost a zdola
skoro spojitost linearnych relacii. Je dana charakterizacia zhora skoro spojitych linearnych relacii
pre isty typ priestorov. Zhora skoro spojita linearna, relacia s uzavretym grafom je za istych
predpokladov spojita.
PE3FOME
HEKOTOPBIE CBOVICTBA INOUTU HEMPEPLIBHBIX JIMHENHBIX OTHOIEHUMN
JIro6a N'ona, BpaTucnasa
OTa cTaThs 3aHMMAETCA MOYTH HENMPEPHIBHOCTHIO JIMHEHHBIX OTHOLUEHHH, 3aech H3ydaeTcs
MOYTH HENpPEPHIBHOCTL CBEPXY M CHHM3y. B cTaThe NaHa XapaKTEPHCTHKA CBEPXY MOYTH He-

NPEPBIBHBIX JIKHEHHBIX OTHOILEHHH U1 HEKOTOPHIX MPOCTPAHCTB. B HEKOTOPBIX MPOCTPAaHCTBax
CBEpPXY NMOYTH HENMpPEPHIBHOE JIHHEHHOE OTHOILEHHE CO 3aMKHYTHIM rpaHKOM HeENpepHIBHOE.
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