

Werk

Label: Article Jahr: 1987

PURL: https://resolver.sub.uni-goettingen.de/purl?312901348_50-51|log11

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

UNIVERSITAS COMENIANA ACTA MATHEMATICA UNIVERSITATIS COMENIANAE L—LI—1987

SOME PROPERTIES OF ALMOST CONTINUOUS LINEAR RELATIONS

L'UBICA HOLÁ, Bratislava

1. Introduction

Linear relations were studied by R. Arens [1] and A. Száz and G. Száz [2]. In [1], [2] algebraic properties of linear relations are given and in [3], [4] some topological properties of linear relations.

In the present paper we deal with almost continuous linear relations. We prove that under some hypotheses almost continuous graph-closed linear relations are continuous.

2. Some properties of almost continuous relations

All spaces considered in this part are topological spaces. If S is a relation from X into Y (i.e. a set $S \subset X \times Y$ such that $S(x) = \{y \in Y, (x, y) \in S\} \neq \emptyset$ for all $x \in X$), then for $A \subset Y$ we denote $S^-(A) = \{x : S(x) \cap A \neq \emptyset\}$ and $S^+(A) = \{x : S(x) \subset A\}$.

Definition 2.1. A relation S from X into Y is said to be upper semicontinuous (lower semicontinuous) at a point x_0 if for any open set $V \subset Y$ such that $x_0 \in S^+(V)$ $(x_0 \in S^-(V))$,

$$x_0 \in \text{Int } S^+(V) \ (x_0 \in \text{Int } S^-(V))$$

Definition 2.2. A relation S from X into Y is said to be upper almost continuous (lower almost continuous) at a point x_0 if for any open set $V \subset Y$ such that $x_0 \in S^+(V)$ ($x_0 \in S^-(V)$), $x_0 \in \operatorname{Int} \overline{S^+(V)}$ ($x_0 \in \operatorname{Int} \overline{S^-(V)}$). (Int E, and \overline{E} denote the interior and the closure of the set E respectively.)

Definition 2.3. A relation S from X into Y is said to be upper quasicontinuous (lower quasicontinuous) at a point x_0 if for open set V such that $x_0 \in S^+(V)$ $(x_0 \in S^-(V))$ $x_0 \in \overline{\operatorname{Int} S^+(V)}$ $(x_0 \in \overline{\operatorname{Int} S^-(V)})$.

If S is upper and lower semicontinuous at x_0 (upper and lower almost

continuous at x_0 , upper and lower quasicontinuous at x_0), then it is said to continuous be at x_0 (almost continuous at x_0 , quasicontinuous at x_0).

If S is upper semicontinuous (lower semicontinuous, upper almost continuous, lower almost continuous, upper quasicontinuous, lower quasicontinuous) at any $x \in X$, then it is said to be upper semicontinuous (lower semicontinuous, upper almost continuous, lower almost continuous, upper quasicontinuous, lower quasicontinuous).

Definition 2.4. Let X, Y be uniform spaces with fixed uniformities \mathcal{U} and \mathcal{V} respectively. A relation S from X into Y is said to be uniformly lower semicontinuous (uniformly lower almost continuous) if for any $C \in \mathcal{V}$ there exists $U \in \mathcal{U}$ such that $S^-(V[y]) \supset U[x]$ ($\overline{S^-(V[y])} \supset U[x]$) for any $(x, y) \in S$. $(V[y] = \{z: (y, z) \in V\}$.)

Remark 2.5. It is evident that uniformly lower semicontinuity (uniformly lower almost continuity) implies lower semicontinuity (lower almost continuity) in uniform topologies.

Remark 2.6. In what follows the symbol $S: X \to Y$ denotes a relation from X into Y.

Remark 2.7. It is obvious that if S is upper almost continuous (lower almost continuous) at $x_0 \in X$ then for any open set $U \subset Y$ such that $x_0 \in S^+(U)$ $(x_0 \in S^-(U))$ there exists an open set $V \subset X$ such that $x \in V$ and $S^+(U)$ $(S^-(U))$ is dense in V.

Proposition 2.8. Let $S: X \to Y$. Let Y be a regular space. Let S be upper quasicontinuous and lower almost continuous. Then S is lower semicontinuous.

Proof. Let $x_0 \in X$. Suppose S not to be lower semicontinuous at x_0 . Then there exists an open set V in Y such that $x_0 \in S^-(V)$ and $x_0 \notin \operatorname{Int} S^-(V)$. Therefore there exist a $y \in S(x_0) \cap V$ and an open set V_1 in Y such that $y \in V_1 \subset \bar{V_1} \subset V$. Then $x_0 \in \operatorname{Int} S^-(V_1)$ since S is lower almost continuous at x_0 and $x_0 \in S^-(V_1)$. That implies the existence of a $z \in \operatorname{Int} \overline{S^-(V_1)}$ for which $z \in X - S^-(V) = S^+(Y - V) \subset S^+(Y - \bar{V_1})$. The upper continuity of S at z gives that $z \in \operatorname{Int} S^+(Y - \bar{V_1})$. So we have $S(\operatorname{Int} S^+(Y - \bar{V_1})) \subset Y - \bar{V_1}$ and that implies $\operatorname{Int} S^+(Y - \bar{V_1}) \cap S^-(\bar{V_1}) = \emptyset$. But, that is a contradiction since $z \in \operatorname{Int} S^+(Y - \bar{V_1})$, $z \in \operatorname{Int} S^-(\bar{V_1})$ and $\operatorname{Int} S^+(Y - \bar{V_1}) \cap S^-(\bar{V_1}) = \emptyset$.

Corollary 2.9. (See [6]) Let $S: X \to Y$. Let Y be a regular space. Let S be upper semicontinuous and lower almost continuous. Then S is lower semicontinuous.

Corollary 2.10. Let $f: X \to Y$ be a single-valued function. Let Y be a regular space. Let f be quasicontinous and almost continuous. Then f is continuous.

Remark 2.11. Proposition 2.8. is not valid if we omit the assumption of regularity of Y.

Example 2.12. Let X = [0, 1] with the usual topology \mathcal{O} . Let Y = [0, 1]. Let $\mathcal{G} = \left\{ A : A \subset Y, A \in \mathcal{O} \text{ or } A = G - \left\{ \frac{1}{n} \right\}_{n=1}^{\infty}, G \in \mathcal{O} \right\}$. \mathcal{G} is a base of some topology \mathcal{F} on Y. Y with topology \mathcal{F} is not regular.

The identity from X into Y is quasicontinuous and almost continuous, but is not continuous.

Proposition 2.13. Let $S: X \to Y$. Let Y be a normal space. Let S be lower quasicontinuous on X and upper almost continuous at x_0 . Let $S(x_0)$ be a closed set in Y. Then S is upper semicontinuous at x_0 .

Proof. Suppose S not to be upper semicontinuous at x_0 . Then there exists an open set V such that $x_0 \in S^+(V)$ and $x_0 \notin \operatorname{Int} S^+(V)$. Since Y is a normal space and $S(x_0) \subset V$, there exists an open set V_1 in Y such that $S(x_0) \subset V_1 \subset \overline{V_1} \subset V$. The upper almost continuity of S at x_0 and $S(x_0) \subset V_1$ imply that $x_0 \in \operatorname{Int} \overline{S^+(V_1)}$. Since $x_0 \notin \operatorname{Int} S^+(V)$ and $S^+(V_1) \subset S^+(V)$, there exists a $z \in \operatorname{Int} \overline{S^-(V_1)}$ such that $z \notin S^+(V) = X - S^-(Y - V)$. That implies that $z \in S^-(Y - \overline{V_1})$ since $S^-(Y - V) \subset S^-(Y - \overline{V_1})$. From the lower continuity of S at z we have $z \in \operatorname{Int} S^-(Y - \overline{V_1})$. So we have proved that $z \in \operatorname{Int} S^+(\overline{V_1}) \cap \operatorname{Int} S^-(Y - \overline{V_1})$. But, that is contradiction, because $(\operatorname{Int} S^-(Y - V_1) \cap S^+(\overline{V_1})) \subset (X - S^+(\overline{V_1})) \cap S^+(V_1) \subset \subset (X - S^+(\overline{V_1})) \cap (\overline{V_1}) = \emptyset$.

Remark 2.14. Proposition 2.13. remains valid if Y is regular and $S(x_0)$ is compact.

Proposition 2.15. Let X, Y be uniform spaces. Let Y be a complete pseudometric space. Let $S: X \to Y$. Let $G(S) = \{(x, y): y \in S(x)\}$ be a closed set in $X \times Y$. Let S be uniformly lower almost continuous. Then S is uniformly lower semicontinuous.

Proposition 2.15. is a consequence of Lema 6.36. in [8].

Corollary 2.16. Let X, Y be uniform spaces. Let Y be a complete pseudometric space. Let $S: X \to Y$ be an almost continuous graph-closed relation. Let S be uniformly lower almost continuous. Then S is continuous.

Proof. By Proposition 2.15. S is lower semicontinuous and by Proposition 2.13. S is upper semicontinuous, that is, S is continuous. (Y is normal. S(x) is a closed set for any $x \in X$. 6.A in [8].)

3. Almost continuous linear relations

Let X and Y be vector spaces over a field K(K = R or K = C).

Definition 3.1. A relation S from X into Y is said to be linear if $S(x) + S(y) \subset S(x + y)$ and $\lambda S(x) \subset S(\lambda x)$ for all $x, y \in X$ and $\lambda \in K$.

Definition 3.2. A function f defined on the domain of a relation S is called a selection for S if $f \subset S$.

Proposition 3.3. (See [2].) Let $S: X \to Y$ be a linear relation. Then $S(0) = \{y \in Y: (0, y) \in S\}$ is a vector subspace of Y and S(x + y) = S(x) + S(y), $S(\lambda x) = \lambda S(x)$ for all $x, y \in X$ and $0 \neq \lambda \in K$.

Proposition 3.4. (See [2].) Let $S: X \to Y$ be a linear relation and f be a selection for S. Then S(x) = f(x) + S(0) for all $x \in X$. If $S(x) \cap S(y) \neq \emptyset$, then S(x) = S(y).

Proposition 3.5. (See [2].) Let $S: X \to Y$ be a linear relation. Then there exists a linear selection f for S.

In what follows X and Y are topological vector spaces.

Proposition 3.6. Let $S: X \to Y$ be a linear relation. Let $x_0 \in X$. Let S be upper almost continuous (lower almost continuous) at x_0 . Then S is upper almost continuous (lower almost continuous).

Proof. We prove the case of upper almost continuity, the other case being similar.

First we prove that S is upper almost continuous at 0. Let U be an open set such that $S(0) \subset U$. Let $y_0 \in S(x_0)$. Then $S(x_0) \subset y_0 + U$.

Upper almost continuity at x_0 implies that $x_0 \in \text{Int } \overline{S^+(y_0 + U)}$, i.e. Int $\overline{S^+(y_0 + U)} - x_0$ is an open neighbourhood of 0. We prove that $S^+(U + y_0) - x_0 \subset S^+(U)$.

Let $v \in S^+(U+y_0)-x_0$. Then $v=a-x_0$ and $S(a) \subset U+y_0$, i.e. $S(v)=S(a)-S(x_0)=S(a)-y_0+S(0)=S(a)-y_0\subset U+y_0-y_0=U$, also $v\in S^+(U)$. $S^+(U+y_0)-x_0\subset S^+(U)$ implies $Int(S^+(U+y_0)-x_0)\subset Int\overline{S^+(U)}$. Since $Int(S^+(U+y_0)-x_0)=Int\overline{S^+(U+y_0)}-x_0$, $Int\overline{S^+(U)}$ is a neighbourhood of 0. To prove that upper almost continuity at 0 implies upper almost continuity at point $x\in X$ is analogous.

Proposition 3.7. Let $S: X \to Y$ be a linear relation. Let S be upper almost continuous. Then S is lower almost continuous.

Proof. By Proposition 3.6. it suffices to prove that S is lower almost continuous at 0.

Let $V \subset Y$ be an open set such that $S(0) \cap V \neq \emptyset$. The set S(0) + V is open in Y and $S(0) \subset S(0) + V$. (Let $y \in S(0)$. Let $y_0 \in S(0) \cap V$. Then $y = (y - y_0) + y_0$, where $y_0 \in V$ and $y - y_0 \in S(0) - S(0) \subset S(0)$, i.e. $y \in S(0) + V$.

The upper almost continuity of S at 0 implies that $0 \in \operatorname{Int} \overline{S^+(S(0) + V)}$. For each x of $S^+(S(0) + V)$ we have $S(x) \cap V \neq \emptyset$, i.e. $x \in S^-(V)$, since $y - a \in S(x) \cap V = 0$ if $y \in S(x)$, y = a + v, where $a \in S(0)$ and $v \in V$. Thus we have proved that $S^+(S(0) + V) \subset S^-(V)$. This implies that $0 \in \operatorname{Int} \overline{S^+(S(0) + V)} \subset \operatorname{Int} \overline{S^-(V)}$ and the lower amost continuity of $S \in 0$.

Now we prove theorems 3.8. and 3.11. These theorems are given in [10] without the proof.

Theorem 3.8. Let $S: X \to Y$ be a linear relation. Let X be a space of the second category. The S is lower almost continuous.

Proof. Let 0_y be a zero in X and 0_x be a zero in Y. First we prove that $0_x \in \operatorname{Int} \overline{S^-(U)}$ for any neighbourhood U of 0_y . There exists a neighbourhood V of 0_y such that $V + V \subset U$ and $\lambda V \subset V$ for any λ with $|\lambda| \le 1$.

 $Y = \bigcup_{n=1}^{\infty} nV$, i.e., $X = S^{-}(Y) = \bigcup_{n=1}^{\infty} nS^{-}(V)$. Since X is a space of the second category, $\operatorname{Int} \overline{S^{-}(V)} \neq \emptyset$. Let $y \in \operatorname{Int} \overline{S^{-}(V)}$. Then $\operatorname{Int} \overline{S^{-}(V)} - y$ is an open neighbourhood of 0_{x} .

Let $v \in S(y)$. Then $S^-(V) - y \subset S^-(V) - S^-(\{v\}) \subset S^-(V-v)$. Since V is a neighbourhood of 0_y , there exists $\lambda > 0$ such that $v \in \lambda V$. Hence $S^-(V-v) \subset S^-(V-\lambda V) \subset S^-((\lambda+1)(V-V)) \subset S^-((\lambda+1)U) \subset (\lambda+1)S^-(U)$. Since Int $\overline{S^-(V)} - y = \operatorname{Int}(\overline{S^-(V)} - y)$ and $S^-(V) - y \subset (\lambda+1)S^-(U)$, $0_x \in Int(\lambda+1)S^-(U)$, i.e. $0_x \in IntS^-(U)$. Now we prove that S is lower almost continuous. By Proposition 3.6. it suffices to prove that S is lower almost continuous at 0_x . Let $G \subset Y$ be an open set such that $S(0_x) \cap G \neq \emptyset$. Let $Y_0 \in S(0_x) \cap G$. $Y_0 \in S(0_x) \cap G$. Hence $Y_0 \in S(0_x)$ is a neighbourhood of $Y_0 \in S(0_x)$. Since $Y_0 \in S(0_x)$, $Y_0 \in S(0_x)$, $Y_0 \in S(0_x)$ and $Y_0 \in S(0_x)$. Since $Y_0 \in S(0_x)$, $Y_0 \in S(0_x)$, $Y_0 \in S(0_x)$ and $Y_0 \in S(0_x)$.

Remark 3.9. The assumption on X is essential.

Example 2.10. Let C = C[0, 1] denote the set of all real-valued continuous functions f on the interval [0, 1] and define $\varrho(f, g) = \sup_{0 \le x \le 1} |f(x) - g(x)|$. The space is a complete metric space.

Next consider the same set C, but take for metric function $\sigma(f, g) = \int_0^1 |f(x) - g(x)| dx$. The space (C, σ) is of first category in itself.

Let $X = (C, \sigma)$ and $Y = (C, \varrho)$. Let I be the identity from X onto Y. Then I is linear relation, but I is not almost continuous.

(Let $U = \{f \in Y : \varrho(f, 0) < 1\}$. For any neighbourhood V of 0 in X there exists a nonempty open set $G \subset V$ such that $G \cap I^{-}(U) = \emptyset$. Let V be a neighbourhood of 0 in X. There exists $\varepsilon > 0$ such that $\{f \in X : \sigma(f, 0) < \varepsilon\} \subset V$. Let

$$g(x) = \frac{2}{-\frac{8}{\varepsilon}x + 4 \text{ on } \left[\frac{\varepsilon}{4}, \frac{\varepsilon}{2}\right]}$$

$$0 \qquad \text{on } \left[\frac{\varepsilon}{2}, 1\right].$$

If
$$|f| < 1$$
 then $\int_0^1 |g(x) - f(x)| \, \mathrm{d}x \ge \int_0^{\varepsilon/4} |g(x) - f(x)| \, \mathrm{d}x \ge \int_0^{\varepsilon/4} (|g(x)| - f(x)) \, \mathrm{d}x$

 $-|f(x)| dx = \int_0^{\varepsilon/4} |g(x)| dx - \int_0^{\varepsilon/4} |f(x)| dx > 2. \frac{\varepsilon}{4} - \frac{\varepsilon}{4} = \frac{\varepsilon}{4}.$ Hence no element of the $\frac{\varepsilon}{4}$ —neighbourhood of g in X belongs to $I^-(U)$.

Theorem 3.11. Let $S: X \to Y$ be a linear relation. Let X and Y be locally convex spaces. Let X be a barrelled space ([7]). The S is lower almost continuous.

Proof. It suffices to prove that $0_x \in \operatorname{Int} \overline{S^-(U)}$ for any neighbourhood U of 0_y . Let U be a neighbourhood of 0_y . There exists a base \mathscr{U} of absolutely convex absorbing neighbouhroods of 0_y . Hence there exists $V \in \mathscr{U}$ such that $V \subset U$. Linearity of S implies that $S^-(V)$ is an absolutely convex absorbing set. Hence $\overline{S^-(V)}$ is closed absolutely convex absorbing set in X. X is a barrelled space, i.e. $\overline{S^-(V)}$ is a neighbourhood of 0_x . So $0_x \in \operatorname{Int} \overline{S^-(V)} \subset \operatorname{Int} \overline{S^-(U)}$.

Theorem 3.12. Let $S: X \to Y$ be a linear relation. Let Y be a normed vector space. Let S(0) be a closed set in Y and $S(0) \neq \{0\}$. Then S is upper almost continuous if and only if the set $\{x \in X: S(x) = S(0)\}$ is dense in X.

Proof. Let the set $\{x \in X : S(x) = S(0)\}$ be dense in X. We prove that S is upper almost continuous. It suffices to prove that S is upper almost continuous at 0.

Let V be an open set in Y such that $S(0) \subset V$. Since $\{x \in X : S(x) = S(0)\} \subset S^+(V)$ and $X = \{x \in X : S(x) = S(0)\}$, $X \subset S^+(V)$, i.e. S is upper almost continuous at 0.

Let S be upper almost continuous. We prove that the set $\{x \in X : S(x) = S(0)\}$ is dense in X.

First we prove that there exists an open set $V \subset Y$ such that $S(0) \subset V$ and $(y + S(0)) \cap (Y - V) \neq \emptyset$ for any $y \notin S(0)$.

Put $V = \bigcup_{u \in S(O)} B(u, e^{-\|u\|^2})$, where $B(x, r) = \{y \in Y : \|x - y\| < r\} (\|x\| \text{ denotes the norm of } x \text{ in } Y)$. V is an open set in Y and $S(0) \subset V$.

Let $x \notin S(0)$. Denote $a = \inf_{u \in S(0)} ||x - u||$.

If $a \ge 1$, then $x \notin V$ and so $(x + S(0)) \cap (Y - V) \ne \emptyset$.

Let a < 1. Take $u \in S(0)$ such that $||u|| > \sqrt{-\ln a + 1 + ||x||}$.

Hence $||u+x|| \ge ||u|| - ||x|| > \sqrt{-\ln a} + 1$. We prove that $u+x \notin V$. Suppose the contrary. Then there exists $v \in S(0)$ such that $u+x \in B(v, e^{-||v||^2})$,

i.e. $||u + x - v| < e^{-||v||^2}$. Since $(v - u) \in S(0)$ $||u + x - v|| \ge a$. Hence $a < e^{-||v||^2}$, i.e. $||v|| < \sqrt{-\ln a}$.

Then $||u+x|| = ||u+x-v+v|| \le ||u+x-v|| + ||v|| < e^{-||v||^2} + \sqrt{-\ln a} < < 1 + \sqrt{-\ln a}$, contrary to the hypothesis. Take the set V. Then $\{x \in X: S(x) = S(0)\} = S^+(V)$. Let $x_0 \in S^+(V)$ and let $S(x_0) = S(0)$. Then

 $S(x_0) \cap S(0) = \emptyset$ and there exists a $y_0 \in S(x_0) - S(0)$. Since $y_0 \notin S(0)$, then $S(x_0) - V = (y_0 + S(0)) \cap (Y - V) \neq \emptyset$. So we have $x_0 \in S^+(V)$. $S^+(V)$ is the vector subspace of X. Upper almost continuity of S at 0 implies that $0 \in \operatorname{Int} \overline{S^+(V)}$. Since $\overline{S^+(V)}$ is a vector subspace of X, $\operatorname{Int} \overline{S^+(V)}$ is also a vector subspace of X. For each $x \in X$ there exists $\lambda > 0$ such that $x \in \lambda$ $\operatorname{Int} \overline{S^+(V)} = Int \overline{S^+(V)}$. Thereofere $X = \operatorname{Int} \overline{S^+(V)} = \overline{\{x \in X : S(x) = S(0)\}}$.

Remark 3.13. The assumption that Y is a normed vector space may not be omitted.

Example 3.14. Consider the set B = B[a, b] of all real-valued bounded functions f on the interval [a, b], and define $p_1(f) = \sup_{a \le x \le b} |f(x)|$. It is evident that (B, p_1) is a normed vector space. Next consider the set L = L[a, b] of Lebesgue-integrable functions on [a, b], and define $p_2(f) = \int_a^b |f(t)| dt$. Then p_2 is semi-norm, but p_2 is not a norm.

Let $X = \{f: [a, b] \to R, f \text{ being } a \text{ bounded Lebesgue-integrable function}\}$ be a subspace of (B, p_1) and let $Y = (L, p_2)$.

Define $S: X \to Y$ as follows: S(x) = x + C, where $C = \left\{ f \in Y: \int_a^b |f(t)| \, \mathrm{d}t = 0 \right\}$. It is easy to verify that S(0) = C is a closed set in Y and S is an upper semicontinuous linear relation, i.e. S is upper almost continuous. (Let V be an open set in Y such that $S(0) \subset V$. There exists $\varepsilon > 0$ such that $S(0) \subset V$.

$$\langle \varepsilon \rangle \subset V$$
. Then $\left\{ f \in X : p_1(f) < \frac{\varepsilon}{b-a} \right\} \subset S^+(V)$.) But $\{ x \in X : S(x) = S(0) = 0 \} = C = \{ x \in X : x \in C \}$ is not dense in X .

Corollary 3.15. Let $S: X \to Y$ be a linear relation. Let Y be a normed vector space. Let S(0) be a closed set in Y and $S(0) \neq \{0\}$. Then S is upper semicontinuous if and only if S(x) = S(0) for every $x \in X$.

Corollary 3.16. Let $S: X \to Y$ be a linear relation. Let Y be a normed vector space and $S(0) \neq \{0\}$. Let $G(S) = \{(x, y): y \in S(x)\}$ be a closed set in $X \times Y$. If S is upper almost continuous, then S is upper semicontinuous.

Proof. Put $L = \{x \in X : S(x) = S(0)\}$. L is a closed set in X, since G(S) is a closed set in $X \times Y$. The upper almost continuity of S and Theorem 3.12 imply that L is dense in X. Hence L = X.

Proposition 3.17. Let $S: X \to Y$ be a linear relation. Let $f: X \to Y$ be an almost continuous selection for S. Then S is lower almost continuous.

Proof. It suffices to prove that S is lower almost continuous at 0. Let U be an open set in Y such that $S(0) \cap U \neq \emptyset$. By Proposition 3.4 S(x) = f(x) + S(0) for every $x \in X$. There exists $v \in S(0)$ such that $(f(0) + v) \in U$. Almost continuity of f implies that $0 \in \text{Int } \overline{f^{-1}(U-v)}$. It holds $f^{-1}(U-v) \subset S^{-1}(U)$ since for each $x \in f^{-1}(U-V)$ we have $f(x) + v \in (f(x) + S(0)) \cap U = S(x) \cap U$. So $0 \in \text{Int } \overline{f^{-1}(U-v)}$

 $\overline{S^-(U)}$ and S is lower almost continuous at 0. By Proposition 3.6 S is lower almost continuous.

Remark 3.18. Let $S: X \to Y$ be a linear relation. Let S fulfil the assumptions of Proposition 3.17. Then S need not be upper almost continuous. $S: R^2 \to R^2$, S(x, y) = (x, y) + S(0, 0), where $S(0, 0) = \{(x, 0), x \in R\}$. f(x, y) = (x, y) is a continuous selection for S but S is not upper almost continuous.

Proposition 3.19. Let $S: X \to Y$ be a linear relation. If S is lower semicontinuous (lower almost continuous), then S is uniformly lower semicontinuous (uniformly lower almost continuous) by the natural uniformities on X and Y.

Proof. We prove the case of lower semicontinuity, the other case being similar. Let \mathscr{U} be the uniformity in X and \mathscr{V} the uniformity in Y, S lower semicontinuous and $V \in \mathscr{V}$. There exists an open set $G \subset Y$ such that $0 \in G$, $G = -G = \{-y : y \in G\}$ and $\{(x, y) : (x - y) \in G\} \subset V$. Hence $G \subset V[0]$. The lower semicontinuity of S at 0 implies that $0 \in Int S^-(G) = Int S^-(G) = -Int S^-(G)$. Let $U = \{(x, y) : x - y \in Int S^-(G)\}$. Then $U[0] \subset S^-(V[0])$ since for each $x \in U[0] = Int S^-(G)$ there exists a $t \in S(x) \cap G \subset S(x) \cap V[0]$. Hence $U[x] \subset S^-(V[y])$ for any $(x, y) \in S$. Let $(x, y) \in S$. Then $V[y] \supset G[y] = G + y$ and $U[x] = Int S^-(G) + x$. For each $v \in U[x]$ we have: v = h + x, where $h \in Int S^-(G)$ and S(v) = S(h) + S(x). Then $h \in S^-(G)$ implies the existence of $u \in S(h) \cap G$ and $u + y \in (S(h) + S(x)) \cap (G + y) = S(v) \cap (G + y)$. Therefore $v \in S^-(G + y) \cap S^-(V[y])$. Thus S is uniformly lower semicontinuous.

Theorem 3.20. Let $S: X \to Y$ be a linear relation. Let Y be a complete vector pseudo-metric space. Let $G(S) = \{(x, y): y \in S(x)\}$ be a closed set in $X \times Y$. Let S be lower almost continuous. Then S is uniformly lower semicontinuous.

Proof. By Proposition 3.19. S is uniformly lower almost continuous and by Proposition 2.15. S is uniformly lower semicontinuous. Theorem 3.20 can be also obtained as a consequence of a more general assertion in paper [4], [9].

Theorem 3.21. Let $S: X \to Y$ be a linear relation. Let Y be a complete vector pseudometric space. Let $G(S) = \{(x, y): y \in S(x)\}$ be a closed set in $X \times Y$. Let S be almost continuous. Then S is continuous.

Proof. By Proposition 3.19. S is uniformly lower almost continuous and by Corollary 2.16. S is continuous.

Remark 3.21. It is sufficient to suppose in 3.21 that S is upper almost continuous. (See Proposition 3.7.).

REFERENCE

- 1. Arens, R.: Operational calculus of linear relations, Pacific J. Math. 11 (1961), 9-23.
- 2. Száz, A.—Száz, G.: Linear relations, Publicationes Mathematicae 27 (1980).
- 3. Holá, L.—Kupka, I.: Linear relations existence of continuous linear selection, theorems about an open mapping and a closed graph, Acta Mathematica U.C to appear.

- 4. Wilhelm, M.: Criteria of openness for relations, Fundamenta Mathematicae CXIV. 3 (1981), 219—228.
- 5. Long, P. E.—Mc Gehee, E. E. Jr.: Properties of almost continuous functions, Proc. Amer. Math. Soc. 24 (1970), 175—180.
- Kenderov, P.: Mnogoznačnyje otobraženija i svojstva podobnyje nepreryvnosti, Uspechi Mat. Nauk 35 (1980), 194—196.
- 7. Robertson, A.—Robertson, V.: Topologičeskije vektornye prostranstva, Moskva 1967.
- 8. Kelley, J. L.: General topology, New York 1957.
- 9. Pták, V.: On the closed graph theorem, Čechoslov. mat. žurnal, 9, 1959, 523-527.
- Wilhelm, M.: Nearly lower semicontinuity and its applications, Proceedings of the Fifth Prague Topological Symposium 1981, 692—698.

Received: 5. 2. 1985

Author's address:
Lubica Holá
Katedra teórie pravdebodobnosti
a matematickej štatistiky MFF UK
Mlynská dolina
842 15 Bratislava

SÚHRN

NEJAKÉ VLASTNOSTI SKORO SPOJITÝCH LINEÁRNYCH RELÁCIÍ

Ľubica Holá, Bratislava

Práca sa zaoberá skoro spojitosťou lineárnych relácií. Študuje sa zhora skoro spojitosť a zdola skoro spojitosť lineárnych relácií. Je daná charakterizácia zhora skoro spojitých lineárnych relácií pre istý typ priestorov. Zhora skoro spojitá lineárna relácia s uzavretým grafom je za istých predpokladov spojitá.

РЕЗЮМЕ

НЕКОТОРЫЕ СВОЙСТВА ПОЧТИ НЕПРЕРЫВНЫХ ЛИНЕЙНЫХ ОТНОШЕНИЙ

Люба Гола, Братислава

Эта статья занимается почти непрерывностью линейных отношений, Здесь изучается почти непрерывность сверху и снизу. В статье дана характеристика сверху почти непрерывных линейных отношений для некоторых пространств. В некоторых пространствах сверху почти непрерывное линейное отношение со замкнутым графиком непрерывное.