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Introduction

C-continuous functions were introduced in [3]. Many results which are
valid for the c-continuity of functions may be transferred to multifunctions.
Some of them can be strengthened. On the other hand, there is a close relation
between the c-continuity and a closed graph (see e.g. [8]), so some of the results
for the c-continuity may be applied to the multifunctions with closed graphs.
The above-mentioned questions are discussed in the present paper. The proofs
of some results are straightforward and some times are the same for multifun-
ctions as for functions. The results of this kind are stated without proofs. We
include also some results which may be easily proved using some known facts
(e.g. those contained in [5]). The assertions of the last type are included for the
sake of completness. Another remark should be made in this introduction.
Doubtlessly there are many parallel results for some types of the @-continuity,
O-closed graphs and similar generalizations (see e.g. [5] for these notions). We
do not follow this direction. We mean that this extension of the presented results
may be left either to the reader or, if necessary, to a separate study. The main
aim is to extend for multifunctions some known results about c-continuous
functions and to complete some of them. Besides of the cited papers, throughout
the paper there are of course many connections with the results on closed graphs
of single-valued functions. From among the papers of this kind let us mention

e.g. [1], [2], [6].

1. Upper and lower c-continuity

A multifunction is a mapping F: K —» #(Y), where X, Y are topological
spaces and 2(Y) the power set of Y. We write F: X — Y for shortness. F is said
to be upper (lower) c-continuous — in symbols u.c.c (l.c.c) at p € X provided that
for any open set ¥ such that Y — V is compact and F(p) = V (F(p) n V # 0)
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there exists a neighbourhood U of p such that F(x) = V (F(x) n V # 0) for any
xe U. Fis said to be u.c.c (l.c.c) if it is u.c.c (l.c.c) at any xe U.

In what follows we suppose F(x) # 0 for any x e X.

Remark 1. If a single-valued function /> X — Yis given, then it is considered
as a multifunction which associates {f(x)} to any xe€ X. Thus fis u.c.c (l.c.c)
exactly if it is c-continuous in the sense as introduced in [3].

Remark 2. The notions of the upper (lower) c-continuity of a multifunction
F: X — Y become the well-known notions of the upper (lower) semi-continuity
of a multifunction if we consider on Y the topology consisting of § and those
open sets, the complements of which are compact (compare [7] for the standard
definition of the lower and upper semi-continuity of a multifunction). We
denote by u.s.c (l.s.c) the upper (lower) semi-continuity. In what follows we use
for F*(A) = {x: F(x) € A}, F (A) = {x: F(x) n A # 0}, where A < Y. In case
of a single-valued function f: X — Y the set f*(4) = f~(A4) = f~'(A4), where

/~'(A) is the inverse image of A. Further we denote F(E) = ) F(x).

xeE

Proposition 1. A multifunction F: X - Y is u.c.c (l.c.c) if and only if F*(G)
(F~(G)) is open in X for any open G < Y such that Y — G is compact.

Remark 3. It follows from the above proposition that in the case of a
compact space Y the notion of u.c.c (l.c.c) coincides with that one of u.s.c (1.s.c).

Obviously the notion of u.c.c (i.c.c) is different from u.s.c (1.s.c). In fact their
coincidence gives a characterization of compact spaces.

Theorem 1. A space Y is compact if and only if the following holds. For any
topological space X and any multifunction F: X — Y we have: Fis u.c.c (l.c.c)
if and only if Fis u.s.c (1.s.c).

Proof. The necessity is obvious (see Remark 3). Let us prove the sufficiency.
Suppose Y not to be compact. Then there exists a net {x,} in Y such that it has
not a convergent subnet in Y. Define X as follows: X = Y U {x,}, where x, is an
element which does not belong to Y. Let the topology on X consist of all open
sets in Y and, moreover, of those sets U = X for which X — U is closed and
compact in Y. Define the multifunction F: X — Y such that F(x) = x if x€ X,
x # xoand F(x,) = y, where y, is arbitrary chosen. Evidently Fis a single-valued
function. Hence u.c.c and l.c.c coincide with the notion of ¢-continuity. The
same is true for u.s.c and l.s.c. The last coincide in this case with the notion of
the continuity. Since X is a compact space, there exists a subnet of the net {x,}
converging to a point c e X. Evidently ¢ = x,. In the opposite case ¢ would be
a limit of some subnet of the net {x,} in the space Y. But F(x,) = x, does not
converge to F(x,) = y,. So F is not continuous at x,.

Now we prove that F is c-continuous. Obviously, it is c-continuous at any
x # x,. Let us prove the c-continuity at x,. Take any G open in Y and containing

52



¥o such that Y — G is compact. Then F*(G) = F(G) = F'(G) = G u {x,}. But
X —(Gu{xy}) = Y — Gis aclosed and compact set. Thus G U {x,} is open in X.
The c-continuity of F at x, is proved.

Proposition 2. Let for any compact set C = Y the set F~(C) (F*(C)) be
closed. Then Fis u.c.c (l.c.c).

Proof. Suppose F~(C) is closed for any compact C c Y. Take G open such
that Y — G is compact. Then F~(Y — G) is closed. But F*(G) =X — F~ (Y — G).
So F*(G) is open. Hence F is u.c.c. The proof for l.c.c is similar.

Remark 4. The converse of Proposition 2 is not true. A simple example with
single-valued function may be given (see [3]). Of course the converse of the
proposition is obviously true of spaces, in which compact sets are closed.
Moreover, the following characterization of such topological spaces may be
obtained. Denote # the collection of such topological spaces in which any
compact is closed. We have the following.

Theorem 2. A topological space Y belongs to 2 if and only if the following
is true. For any topological space X and any multifunction F: X — Y we have
Fis u.c.c (lc.c) if and only if F~(C) (F*(Q)) is closed for any compact C < Y.

Proof. The sufficiency follows immediately. To prove the necessity, suppose
that Y¢ 2. It is sufficient to find a singie-valued function f: X — Y such that f
is c-continuous but f~'(C) is not closed for some compact set C < Y. Take
X =Y and C such a compact set which is not closed.

Then the identity may be taken for the function f.

Remark 5. A different characterization of 2 was given in [4].

The following two propositions are immediate. The proofs are left to the
reader.

Proposition 3. If F: X — Yisu.c.c (l.c.c)and 4 < X, then F/4 isu.c.c (l.c.c).

Proposition 4. Let F: X — Y be u.s.c (I.s.c)and let G: Y — Z be u.c.c (l.c.c).
Then the composition G o F is u.c.c (l.c.c).

We say that a multifunction F: X — Y be bounded at the point p if there
exists a neighbourhood U of p and a compact set C < Y such that F(x) = C for
any xe U.

Proposition 5. Let Ye 2. Let F: X — Y be bounded at the point p. Then F
u.c.c (l.c.c) implies that Fis u.s.c (l.s.c) at p.

Proof. We give the proof for u.s.c. The proof for Ls.c is similar. Let p € X.
Let U be open containing p and C < Y such that F(x) = C for any xe U. Let
V be open such that F(p) = V, Take G = Vu (Y — C) and denote it (1). then G
isopen F(p) = G, Y — G is compact. So a neighbourhood W of p exists such that
F(x) = G forany xe W. Put H= W n U. Then F(x) < G n C for any x€ H.
Thus in view of (1), we have F(x) = V for any xe H. The u.s.c of F at p is
proved.
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Corollary 1. (See [3] for the single valued functions). If F; X — Y, where Y
is a Hausdorf space and F is u.c.c (l.c.c) and such that there is a compact set
C < Y containing all the values F(x), where x € X, then F is u.s.c (1.s.c).

Proposition 6. Let X be a locally compact space and Y a Hausdorff space.
Let F: X — Y be a u.c.c (l.c.c) multifunction such that F(c) is a compact set for
any compact C < X. Then Fis u.s.c (l.s.c).

Proof. Let x € X. Taking an open neighbourhood V of x such that V is
compact we have that F(¥) is compact. So F is bounded at x and the results
follow from Proposition 5.

2. Points of continuity of upper (lower) c-continuous multifunctions

Proposition 7. Let Y be a Hausdorff space. Let F: X — Y be u.c.c and such that
for any x € X, F(x) possesses a compact neighbourhood. Then the set of all x for
which F is not u.s.c is closed.

Proof. Let A be the set of all those x for which Fis u.s.c. Let x, € A. Denote
W compact neighbourhood of F(x,). From the u.s.c at x, there is an open
neighbourhood V of x, such that for any x € V we have F(x) = W. Hence (by
Proposition 5) Fis u.s.c at any Xe V. Thus V = 4 and 4 is open.

The following example shows that Proposition 7 is not true if we substitute
u.c.c by l.c.c.

Example 1. Let X = €0, 1) with the topology induced by the family 4 of
all half open intervals <a, b) considered as a base. Let Y be the set af all real
numbers with the usual topology. Define the multifunction F: X — Y as follows:

F(0) = F(1) = {~ 1}
F{-l-} ={0, —1}ifn=2, 3, ... and
n

1
F(x)={——
) {x —1/n+1
for all positive integers.

2 —1} ifxe(l/n+1, 1/n)

Evidently, Fis l.c.c and for any x € X, Fi (x) possesses a compact neighbour-
hood. The multifunction F is not l.s.c at any point x = 1/n, where n > 2 is an
11 1 . . . .
integer and the set {E’ 3, ey = ...}IS not closed. The verification is immediate.
n

Corollary 2. Let Y be a Hausdorff locally compact space. Let F: X — Y be
u.c.c compact-valued multifunction. Then the set of points at which F is not
u.s.c is closed.

Corollary 3. Let f: X — Y be a single-valued, c-continuous function into a
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locally compact Hausdorff space. Then the set of all discontinuity points of fis
closed.
Theorem 3. Let X be a Baire space and Y a Hausdorff space such that

Y= U C,, where C, (n =1, 2, ...) are compact sets. Let F: X —» Y be a l.c.c

n=1
multifunction such that for any x e X there is C, (n = n(x)) with the property
F(x) < C,. Then the set of all those points for which F is not l.s.c is nowhere
dense in X.

Proof. Let U — X be any nonempty open set. U, as a subspace of X, is a
Baire space. Due to Proposition 3. F/U = F, is l.c.c. The set F*(C,) is closed for
n=1,2, ... hence F;*(C,) is closed. It follows from the assumption F(x) = C,

which is valid for any x € U and suitable n = n(x) that | ) £*(C,) = U. Since U

n=|
is a Baire space we have (F*(C,))" # & for some n. (4° denotes the interior of
A). Put V = (E*(C,))’. We have F,(x) = C, for any x € V. Hence from Proposi-
tion 5 it follows that F| is l.s.c on V. The theorem is proved.

Corollary 4. Let X, Y be as in Theorem 3. Let f: X — Y be a single-valued,
c-continuous function. Then the set of all discontuinuity points is nowhere dense
in X. -

Remark 6. The above corollary was proved in a more special form in [3] (see
also [1]).

Remark 7. Theorem 3 is not true if we substitute l.c.c by u.c.c not changing
the remaining assumption.

Example 2. Let X = <0, 1) with the usual topology. Let Y be the set of all
positive integers with the discrete topology. The X is a Baire space and Y a
Hausdorff space. Define the multifunction F: X — Y as follows:

F(0) = F(x) = {1} if x is irrational

F(x)={l1, q} if x=2is any rational number written in the usual form.

Obviously Y may be written as | ) C, where {C,};°_, is an increasing sequence
n=1

of finite and hence compact sets. Evidently for any x € X the set F(x) = {1, g} is

a subset of suitable C,. The multifunction F is u.c.c and not u.s.c at any x,€ X.

Theorem 4. Let X be a Baire space, Y a Hausdorff space such that

Y = () C,, where C, are compact sets. Let F: X — ¥ be a u.c.c multifunction
n=1
such that F(F~(C,)) < C,forn =1, 2, .... Then the set of all those points at
which F is not u.s.c is nowhere dense in X.
Proof. It follows from the assumption that F~(C,) = F*(C,) forn =1, 2,
... . Hence the sets F*(C,) and F~(C,) are closed. The rest of the proof goes in
a similar way as the proof of Theorem 3.

55



Remark 8. Many of the foregoing theorems can be proved in such formula-
tion that the assumption on Y to be Hausdorff is substituted by the assumption
that the Y belongs to £ (see Remark 4).

3. Connections with known results and further remarks

The results are deeply connected with the results of some other autors.
Many results are formally the same as those published in [5] where usualy
instead of the asumption that a multifunction F: X — Y is u.c.c the author uses
the assumption that F is with a subclosed graph. The resemblence will be not
surprising if one takes into consideration that there is a deep connection bet-
ween the upper-c-continuity and the closed graph of a multifunction. In this
connection we mention the following two theorems proved in [8].

Theorem A. Let X be a topological space, Y a Hausdorff and locally
compact topological space. If F: X — Y is a closed-valued upper-c-continuous
multifunction, then the graph of F is closed.

Theorem B. Let X, Y be topological spaces. Let F: X — Y be a multifun-
ction with a subclosed graph. Then F is u.c.c.

It should be noted that Theorem B follows also from Theorem 3.15. of [5]
and Proposition 2.

Now from Theorem B it is evident that we can obtain from our results some
of the results of [5] substituting the assumption that F has a subclosed graph by
the assumption that Fis u.c.c. Beside of the results which have been introduced,
some others may be obtained for u.c.c functions. As an example we mention the
following, which is in fact identical with Theorem 3. 16 of [5].

Theorem 5. Let X be a Baire space. Let Y be a Hausdorff space which is a

o0
conntable union of compact sets (Y = |J C,, where C, are compact). Let
n=1

{F},.r be a family of a u.c.c multifunction from X to Y. Let for any x € X there
is n(x) such that F,(x) n C,, # 0 for any re T. Then there exists an integer m
and a nonempty open set V such that F,(x) n C,, # 0 foreach xe Vand te T.

To conclude the remarks let us again mention the paper [3]. Some of the
results of [3] has been generalized and transferred to multifunctions. It should
be mentioned that in [3] there are also results (for single-valued functions)
concerning functions defined on saturated spaces.

Recall that a space X is saturated if for any x € X the intersection of all the
neighbourhoods of x is a neighbourhood of x. We give here some results
concerning the u.c.c continuity of multifunctions defined on such spaces.

Proposition 8. Let X be a saturated space and Y a Tj-space. Let F: X - Y
be u.c.c. Then Fis u.s.c.
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Proof. Let x,e X be such that F is not u.s.c at x,. Hence there is an open
set ¥V such that F(x,) = V and in any neighbourhood of x, there is a point z such
that F(z) n (Y — V) # 0. Denote U the intersection of all neighbourhoods of
the point x,. Then there is z, € U with the property F(z,) n (Y — V) # 0. Take
yeF(z)) n (Y — V). The set Y — {y} is an open set with a compact complement.
Since F(x,) = Y — {y} and Fis u.c.c at x,, there exists a G of x, such that for any
xe G we have F(x) € Y — {y}. It is a contradiction because U € G so z, € G and
F(z) & Y —{}.

Collorary 5. Let X be a saturated space and Y a 7-space. Then any
single-valued function f: X — Y is continuous if and only if it c-continuous.

Proposition 9. Let X be a saturated space and f: X — Y a single-valued
function which is closed-valued. Then f is continuous if and only if it is c-
continuous.

Proof. Analogical to that of Proposition 8.

Proposition 10. Let X be a saturated space, Y a locally compact regular
space. Let F: X — Y be a u.c.c closed-valued multifunction. Then F is u.s.c.

Proof. Let x, € X and let F be not u.s.c at x,. Then there exists an open set
V such that F(x,) = V and in any neighbourhood of x, there is a point z with
F(z)n (Y — V) # 0. Let U be the intersection of all neighbourhoods of x,.
There is z, € U such that F(z,) n (Y — V) # 0. Take ye F(z,) n (Y — V). Since
F(x,) is a closed set and y ¢ F(x,), there exists an open set W, y € W such that W
is a compact set and W < Y — F(x,). So F(x,) = Y — W. Since F is u.c.c at x,
there exists an open set G with x, € G and for any x€ G F(x) = Y — W. This is
a contradiction, since z, € G and F(z,) n W # 0.

Corollary 6 (see [3]). Let X be a saturated space, Y a locally compact regular
space. Let f: X — Y be a single-valued c-continuous function. Then f is con-
tinuous.

Remark 9. Propositions 8, 9 and 10 are not valid if we substitute the
assumption u.c.c by l.c.c.

Example 3. Let X = {a, b} with the anti-discrete topology. Let Y = R with
the usual topology. Define F: X — Y such that F(a) =<1, o) and F(b) =
= (1, ©) U {0}. Then Fis l.c.c, X is saturated, Y locally compact regular and
T, - F is closed-valued, but F is not l.s.c at b.

But the following assertion is true.

Proposition 11. Let X be a saturated space. Let Ye 2, F: X — Y l.c.c, and
" let for any x € X there is a compact set C, such that F(x) = C,. Then Fis ls.c.

Proof. Let x, € X be a point such that Fis not l.s.c at x,. Hence an open set
V exists such that F(x,) N ¥V # 0 and in any neighbourhood of x, there is a point
z with F(z) n ¥V = 0. So in the intersection U of all neighbourhoods of x, one
can find a point x such that F(x) = Y — V. Take the compact set C, such that
F(x) c C,. We have F(x) c C,— V and C,— V is a compact set. The set

57



Y

—(C,— V)isopenand F(x,) n (Y — (C, — V)) # 0@ usingl.c.c at x, we obtain

an open set G containing x, such that for any z € G there is F(z) n (Y — (C, —

V)) # 0. It is a contradiction because xe€ G and F(x) <« C,— V.
Remark 8. According to the previous remark the assumption concerning

the existence of C, for x € X is essential.
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SUHRN
POZNAMKY K ¢-SPOJITYM MULTIFUNKCIAM
L. HOLA — VLADIMIR BALAZ — TIBOR NEUBRUNN, Bratislava

Charakterizuji sa niektoré topologické priestory pomocou c-spojitych multifunkcii. Udava sa

. Struktira mnozin bodov spojitosti c-spojitych multifunkcii.
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PE3FOME
3AMEYAHUA K C-HENPEPBIBHBIM OTOBPAXEHHUAM
JIIOBULIA T'OJIA — BJIAAUMMUP BAJIAX — TUBOP HOMBPYH, Bpatucnasa
B paboTe xapakTepu3ylOTCs HEKOTOpbIE TOMOJOTHYECKHE NMPOCTPAHCTBA MPH TMOMOLIM

MHOTO3HAYHBIX C-HETIPEPBIBHBIX OTOOpakeHWH. BBOOMTCH Takke XapakTepu3alUsi MHOXECTBA
TOYEK HENpPEPbIBHOCTH TAKMX OTOODPaXKEHHIA.
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