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SOME NEW CRITERIONS FOR SEQUENCES WHICH SATISFY
DUFFIN-SCHAEFFER CONJECTURE, II1

OTO STRAUCH, Bratislava
1. Introduction

Duftin and Schaeffer formulated [1, p. 255] the following conjecture (abbre-
viated as D.S.C. in what follows):

Let {g,} be a one-to-one infinite sequence of positive integers and f'a nonne-
gative real function on reals. If the series

X o(q)f(q)

(@ stands for Euler totient function) is divergent, then for almost all ¥ and
infinitely many / the diophantine inequality

g f’ < fig)
q;

has an integral solution x coprime with g,.

Perhaps the first natural step towards the proof of the D.S.C. is to find some
special classes of {g} and f which fulfil it. The next step can be done in two
directions:

(a) To seek functions f'such that the D.S.C. holds for any sequence {g,}. For

“instance, Erdos [2] proved that this is the case for f(q) = 1/¢°. Further similar
results can be found in [3], [4]. Or,

(b) to seek sequences {g,} which satisfy D.S.C. for arbitrary function f (zero
values are alloved for f). Six such sequences are listed in the subsequent Exam-
ples 1—6. Their proofs are based on the criteria proved in [1], [5], [6], [7]-

Example 1. The sequence {¢'} satisfies D.S.C. for every function f.

This follows from a theorem of Duffin-Schaeffer [1, p. 250] and the fact that
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Example 2. The factorial sequence {i!} satisfies D.S.C. for every function f.

To prove this use Theorem 12 of [5] and the fact that {i!} satisfies its
assumption, for

(i) < <c<l
e+ DY) eG+1)

Example 3. The sequence of Fermat numbers {2* + 1} satisfies D.S.C. for
every function f.

This example follows from Theorem 7 of [6] and the fact that the Fermat
numbers are coprime in pairs, as required in this theorem.

The next three examples are consequences of Theorem 6 of [7] which says
that a sequence {g,} satisfies D.S.C. for every functions f'if it has the following
two properties

o0 2
0 Y l—O—g—i< + 00
& g
1 .¢
(i) d; < (q4) fori#j

where d; = (g;, ) denotes the g.c.d. of g;and g;and ¢is a fixed positive number.
Example 4. The Fibonacci sequence {F}, F;,,,=F,, |+ F, F,=F,=1
satisfies D.S.C. for every function f.

This is a consequence of two following properties of Fibonacci numbers (see
e.g. [8]):

w (55955

with ¢ — 0,
@iv) (F, F) = F;

Condition (i) is easy to verify for (iii). To see (ii) note that

. i
(#, /) < min (1, 2)

Leana (i}

for i <j. Then if i = j/2
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and consequently

| —
oC | —

(V) (F, F) < (F;-F)

using (ii1), (iv). Similarly, if i < j/2 then

11
I<{U+jiz=—c
. e+ (2 8)
and again (v).
Example 5. The sequence {g' — 1} satisfies D.S.C. for every function f.
The proof parallels that of Example 4 because (see p. 29 of [9])
(f—1qg—-1)=¢" -1

Example 6. The sequence {¢' + 1} satisfies D.S.C. for every function f.
The proof. as in the previous example, follows from the fact that [10].

¢“"+1  ifa=—"Lisodd

( i + ]’ / + l) — . (i7 j)
d 7 2 if a 1s even and ¢ is odd
1 if a and g are even

This paper is a direct continuation of the previous paper [7] of this series.
We shall modify a criterion previously proved in Theorem 2 of [7] from which
we deduce further criteria for sequences {g,} of positive integers which satisfy the
Duffin-Schaeffer conjecture for every nonnegative real function f such that the
sequence {f(g,)} is nonincreasing. Our aim is to prove some criteria in direction
(b). So for instance, it will follow from the subsequent considerations that if the
sequence {g;} has the property that every of its permutation satisfies one of these
criteria then we obtain a partial solution of the D.S.C. in the direction (b)
mentioned above.

2. Technical preparation
Let
{t,}={£—l>0: i#j<n0<x<q,0<y<g,(xq)=0,9) = 1} (D
\q; g
i.e. the finite sequence {t,} consists of all the distances between rational numbers
x/q,, ¥/q, i # j £ n, including repetitions.

In what follows c, ¢, ¢, ... will always denote absolute positive copstants
with the convention that the same symbol may take different values on different
occasion.

We start with the following special case of Theorem 2 of [7].
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Theorem 1. A sequence {g,} satisfies D.S.C. for every function f for which
the sequence {f(g,)} is nonincreasing provided given a positive real number s, the
inequality

K s+ 1
(Z 1> = ct(Z ¢(qi)) @
is true for every sufficiently large » and every 7 > 0.

The inequality (2) will be the ground of our considerations. Furthermore,
the following estimate (see Theorem 3 of [6]) and the subsequent two lemmas
will be of technical importance later on

(19,4
Y 1< crp(g)olg) —Ll9) 3)
0< (; _ :; < (/’(q,'/(’qqdy'))
where
d; = (g, q)), q; = qlqj/d{%’ q(x) = H P 4)
P,

rex
with p running over the set of prime numbers.

Lemma 1. Suppose that for every ¢ > 0 it is possible to split the sequence (1)
into two sequences (not necessarily the same for different ¢) in such a way, that
one of them satisfies (2) with s = 5, and the other one with s = s, (here $y, §, are
fixed and independet on 7). Then {g,} satisfies D.S.C. for every such f for which
the sequence {f(g,)} is nonincreasing.

Proof. The hypothesis of Lemma | imply

+vI I+l
: =

) léc-l[(tgp(q,))l “+<IZ¢(q,~)) ] 5)

i<t t i<n

for every ¢+ > 0. Suppose that s, < s,. Then for ¢ < l/z ¢(q;) we have

Iign
14

Y12t (, ) cv(q,-)> " (6)

i<t t i<n

and for ¢ > 1 / Y. o(g;) we have

ign

Y12 (’ 2 (P(qi)) | (7)

st t\ isn
Split now the sequence {#} into two sequences {r}' and {r,) accordingly whether
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LS l/ Y o(g) or t;> 1/ Y. 9(g). Then {r}' satisfies (6) for all 7 > 0 and {¢,°

salisﬁes:(7) for all £ > 0. If now L, is any sum over {t}, then let £, = X, + X, be
its corresponding decomposition over {¢}' and {z,}. If N(Z) denotes the number
of summands in the sum X, then it follows from [7, (9)], (6) and (7) that

. .
NEZ) = Ci(_z (P(q,-)) )
for i =1, 2. Without loss of generality we can suppose X, < 1*. Then since
8, < 55, the last inequality is also true for i = 0 provided ¢y = 2max {¢,, ¢,} and
So = 5. Theorem 2 of [5] finishes the proof.

Lemma 2. Let (see (4))

H(t) = t* qig(tqlzdig)
ﬁo(qf/(fql',d(;))

with B> 0. Then there exists a constant ¢(f) not depending on g; and d,; such
that
H(t) = c(B)H(1') (8)

for every r < t’.

Proof. If p, < p, < ... < p, are the all prime divisors of q,» then the local
maxima of H(t) are in points f, determined by hd; =p, 1 <k <r.1frand 1/
are such that r =1, <1, = ¢/, then

HO _ p Poor P (&)”
H([/) px_lps+l—lpk——l_] pk

Owing to Mertens’ theorem this expression can be majorized by
C_IOg Pi -1 (&)ﬁ
lOg ps -1 pk

where in this case p, _,, p, and p, _,, p, are consecutive prime numbers. Using to
the limit

log pi =y 1
log i

we have (8). If t = ¢+, < t" < 1, |, then H(t) < 2H(¢") and the conclusion follows.

* Owing to [S, Theorem 2] it is sufficient to consider only those members in {z;} which represent
the distances between neighbouring rational numbers of the form X/q,0<x<g,(x,q)=1,i<n.
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3. Main results

We shall now derive our theorems. These are based on inequality (2). Given

a positive integer n, suppose that to every ordered couple [i,/],i # j < naclosed
interval

I =<ty 1
is given. Then divide the members 7, of (1) into two parts {t}', {r}>. The first of

them contains those positive members = — Y of (1) for which the given r does
9. g,

not belong to the coresponding I, whereas {1,}* contains the remaining ones. It

is clear that {r}', {r}’ can depend on ¢. Suppose however, that the sequence {z,}'

satisfies (2) for every ¢ > 0 with some fixed s. This is the case, for instance. if

[6, Theorem 4]
I;= <L log g, q">
q.4d d

i 4

and s = I*. Then Lemma | shows that it is enough to verify (2) only for the

subsequence {r,}*. To do this we use (3). We have then

iy t idi'
LIS Y o tetgegt 4
ti ‘;;1 ieign (P(qu(’qudii))
i€ (i~ €lij ~
_ = (t.g.d.

< T P Potq)etq)ry i)

it (P(qij(tyqi/d.j))
Here we used the Lemma 2 and the fact that 1 < 7,. We proved in Lemma 1 of
[6] that

~H
SIA

qlz(l()g ql'g) <
@(g;(log g;))

and from it we obtain for arbitrary 1, with 7, < log ¢,/q,d, that

ij=

4 log ¢,\*
Y 12 Y w(qi)fp(q,)(ﬂi)

<t i#jsn qi}dij
tie {1i}2 teljj

For arbitrary n with 0 < n < 1 Holder’s inequality yields
' _ log g,)’
Z((o(qi)(P(qj))l r’(‘P(‘Ii)(”(qj))"(Td—l) =

7

*Owing to (23) of [5] we can give into {t}' also all members X _Lof (1) for which
fg;)/q; = ¢ > 0 where ¢ is a choose constant. 9 9
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B
1 Ak
< Ep(g)" " [z 0(@)9(q) (M) } <

9y
2l — ) 1 1| 9
<Ee@) | Y ©)
B_1_s B_,
q9; dj
where in the last inequality we made use of the following facts
B
2 i i log qi‘ " . l
gq,= agdy, L AD < <—i> =i
qi q; qij g -6
i

Here 6 > 0 is arbitrarily small. Thus we have prepared the ground for basic
result. '
Theorem 2. Let s, 5, 1, 4 be positive constants with

0<pB=sl, 0<n<l (10)

and ¢ arbitrary small. Let for every sufficiently large » and every ¢ > 0 we have

s=1

1 l B_s=1 ns
% 4 )

where the sum runs over the all distinct couples [g;, d;] with i # j < n and

LI
1-6

9.4 qij d‘j

aat7) [

(12)

Then the sequence {g,} satisfies D.S.C. for every function f with the property that
the sequence {f(g,)} is nonincreasing.

The proof follows almost immediately from (9) using Theorem 1 if we note
that the number of couples [i, /], i # j for which the pairs [g,, d,] are equal does
not excend 2% (where v(g,) denotes the number of distinct prime divisors of q;)

B_,_
and the embody this factor into the constant § in 1/g] e

Having established this general theorem we shall now derive a variety of

consequences.

A. Suppose first that
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Then (11) becomes

1-46
) d,,'.--6§c(z q,(q,.)) (13)
i#j<n I=n

Holder's inequality with exponents 2/(1 — 6), 2/(1 + 6) shous that the inequali-
ty (13) is true if for every i # j we have

d <c¢ ?(q)9(q)

v= 1+0+¢
DT

where ¢, d are arbitrarily small positive constants. This gives.

Theorem 3. Let the sequence {g,} be ordered according to increasing magni-
tude and let the corresponding sequence {d,} satisfies (14) for some positive £ and
0. Then {¢;} (and trivially also any rearrangement of {g,}) satisfies D.S.C. for
every function f.

B. If we take

(14)

L l, 2> 145
n ns ns
then (11) becomes the form
»_ B ng
d; " "
Z—“—-—éc’(Z o(q) (15)
—-1-4 isn
q;
If we further impose that for every i # j
d, < oqt (16)
with a determined by
_B_1-5
n l+a

then the left hand side of (15) can be estimated by cn’. Since

qi

plg) 2 ¢ —————
loglog g;

we obtain from (15)

1-4

21 + a)
n< c( y ———‘1—> (17)
i<n loglog g;

The function x/loglog x is increasing for sufficiently large x. Therefore the right -
hand side of (17) will be minimal if {g;} is ordered according to the magnitude.
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Finally note, that the equality ¢, = q4,/d; implies the equivalence of (16) with

d; < c(qq) **° (18)

Thus we arrived at the following result.

Theorem 4. Let the sequence {g;} be ordered according to increasing magni-
tude and satisfies (17). If the corresponding sequence {d;} satisfies (16) or (18)
(with @ an arbitrary positive constant) then {g, satisfies D.S.C. for arbitrary
function f.

C. For the next theorem let f, n be such that

B

=>2
n

Further suppose that the sequence {d,} is sufficiently sparse in the sense that the
inequality

1 c
y ;S (19)
dijz A i #j -2 £,
dij are distinct .7 A"

qij = constant 7

is true for every 4 > 0. Then the left hand side of (11) can be summed in
following manner

g . |
y 1 1 - ¥ 1 5y R < c o
g— 1-9 g— 2 qij are distinct §~ 1 -0 dj2> l./qu'-l s =32 gij are distinct ql_!l'_ g
% 4 U A
If we take
s—1
2=
ns
then (11) is certainly true if the series
1
(20)

qij are distinct qllj_ 2

is convergent for some § > 0.
The summation condition in (19) can be dropped. Namely, it is sufficient to
require only this complex of conditions:

d; 2 A, d;are distinct, i #

9i _ const. = €ys 9 — const. = ¢, with (¢}, ¢;) =1 (21)
i i
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To see this note, that using sums over (21) we are able to estimate the left hand
side sum of (19) in such a way that we multiply this sum by 2°“? and then
embody this factor into the constant & in 1/g;;~ °. This leads to the following
result.

Theorem 5. Let the sequence {d,} be satisfying (19) for some constants f3, 1,
0<pB=1,0<n<1 and for every 4 > 0*, where the dash means that the
summation is over (21). Let the series (20), which is made from the sequence {g,},
be convergent for some 6 > 0. Then the sequence {g;} satisfies D.S.C. for every
function f.

Note that in the summations (19) and (20) the condition i, j < n does not
occur.
D. Let B, n, 8, & be positive constants such that

B _s5_6>0
n
and

1 c
2 = (22)
B - B
qij 2 A -1-4 —-1-6-9
qij are distinct q.”, n
dij = constant Y

is true for every A > 0. Then the left hand side of (11) can be summed in
following manner

1 1 1 1
2 e 2 =
'I_I—d n—2 i#j<n ”—Zq,/gl/d,'ﬂ ”—1—5
A . dij are distinct are distinct g/
% 4 ¥ dh U
Boivs=vw
. | =606 4n
e Y 4 t

i#j<n
djj are distinct

Then (11) becomes

Pt "
X 4 e <el Y olg) (23)

i#j<n isn
djj are distinct

The constants s, 7, 8, 8’ from exponents in (23) can be well choice only in a form
s—1

ns

22

>21+6+6

*and for every ¢,, ¢-. The constant ¢ from (19) is independent on ¢, c,.
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thus " < 1. The inequality (23) we can transform in
1

U: — X\ XV — X0
i C< ) = F(x)
1%

where

. —1
U=Y o), V= Y &% x=1+6+8 x="
i<n i#j<n ns

dj; are distinct

The function F(x) is nondecreasing or nonincreasing on the interval (x,, 2) if it
is true or not true a following inequality

log V

l1—06—06 2=
log U

From it follows that the best possible choice of the constants s, 1, 8, & are
following two cases

s—l=l+5+5’ or k.
ns ns

Using the first case then (23) becomes

=2

> d;i*“”éc(Z w(q,)) o (24)

i#j<n i<n
djj are distinct

Using the second case then (23) becomes

Y @)t =c (25)
i#j<n
djj are distinct
Further suppose that | — § — & > 0 and distinct values of the sequence {d} are
sufficiently sparse in the sense that the inequality

dy "% =ZcA' 7070 (26)
dj S A i #]
djj are distinct

is true for every 4 > 0. By (12) d, < 1/t, thus (25) is valid. This leads to the
following result.

Theorem 6. Let the sequence {g,} be satisfying (22) for some constants j, 7,
0.6.0<B=£1,0<n<1,6>0,8>0,1— 06— > 0and for every 4 > 0.
Let the sequence {d,} be satisfying (26) for every A > 0. Then the sequence {g,}
satisfies D.S.C. for every function f.
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Owing to Theorem 5 as the last step we prove two following theorems.
Theorem 7. Let the sequence {¢,} be satisfying

i <c<l

qii1

for every i i.e. is lacunary. Then the sequence of squares {¢;} satisfies D.S.C. for
every function f. '

Proof. The corresponding sequence {g,}, {d,} for the sequence of squares %
are {q;}. {d;}. Thus the series (20) is convergent e.g. for 6 = 1/4.

To see (19) let the sequence {d;} for which

q’

4i — const. = ¢, 4L = const. = ¢

d; d;

be ordered according to increasing magnitude
2 2
dininy < digya) < ---
From it
2 2 2
A snle 5
ikik) ‘I.(k)/ | : <<l

2] bl
A < | pe
d:(k+ itk + 1) itk + 1)/ C1

i.e. the sequence {d,,s} is also lacunary and thus satisfies (19) for every f/n > 2.
Therefore the assumptions of Theorem 5 are valid.

Theorem 8. If the corresponding sequence {d;;} of {g;} have only finite distinct
members for i # j, then the sequence {g;} satisfies D.S.C. for every function f.

Proof. The assertion (19) is valid automatically.

Owing to a footnote on p. 42, it is sufficient to consider only those
members in the series (20) for which {g;} having the sufficiently large number of
distinct prime divisors. Put

gi=—L— (i#))
max d;
J

Then the series (20) is majorized by

£t

s

and this series is convergent if the members ¢; having at least two distinct prime
divisors, because the members ¢/ are coprime.
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SUHRN

NIEKTORE NOVE KRITERIA PRE POSTUPNOSTI,
KTORE SPLNAJU DUFFIN-SCHAEFFEROVU HYPOTEZU, I1I

Oto Strauch, Bratislava

V praci je okrem iného ukazené, e ak {F};~ | je postupnost Fibonacciho ¢isel, f je Tubovolna
nezaporna funkcia (méze nadobudat aj nulové hodnoty), ¢ je Eulerova funkcia a

Y fIF)e(F) = + o0

i=1

potom skoro pre vSetky @ ma nerovnost

a—i{ < f(F)

i

celociselné riesenie x pre nekonecne vela i tak, Ze x, F, si nesudelitelné. Tu ista vlastnost ma
i postupnost tvorcov {¢7}/~, pre ktorli g;/q;,, , S c < .
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PE3IOME

HEKOTOPBIE HOBBIE NMPU3HAKHU ISl TTOCJIEAOBATEJILHOCTEN,
YAOBJIETBOPAIOWMNX TUITOTE3E NAPPUH-IIADDEPA, 111

Oro lllTpayx, BpaTucnasa

B paboTe Mexay NPOYMM NOKA3aHO, 4TO eciu {F}/Z , — MOCen0BaTeNbHOCTH uncen pudo-
naéi, f — mobas HeoTpuuaTenbHas GyHKUMA (OHA MOXET MPHHUMATL M HYJIEBBIE 3HAUCHHS),
© — dyHkuus Ditnepa u

x
Y AAF)(F) = + o0
i=1

TO IOJIA MOYTH BCEX @ HEPABEHCTBO

a-il < f(F)
F,

HMMEET LIEJIOYHCIIEHHO PELleHHE X 118 GECKOHEYHO MHOTHX | TaKOE€, YTO X, F; — B3aMMHO NPOCTHIE.
TakuM e CBOHCTBOM 0o6nafaeT U NOC/eN0BATENbHOCThL KBAAPATOB (g2}~ | KI€ ¢;/qi, S ¢ < 1.
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