

Werk

Titel: Verziertes Schreibgerät im deutschen Mittelalter

Untertitel: mit Tafeln I-IV

Autor: Kohlhaussen, Heinrich

Ort: Mainz Jahr: 1949

PURL: https://resolver.sub.uni-goettingen.de/purl?366382810_1944-49|log7

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

UNIVERSITAS COMENIANA ACTA MATHEMATICA UNIVERSITATIS COMENIANAE XLVIII—XLIX — 1986

SOME NEW CRITERIONS FOR SEQUENCES WHICH SATISFY DUFFIN-SCHAEFFER CONJECTURE, III

OTO STRAUCH, Bratislava

1. Introduction

Duffin and Schaeffer formulated [1, p. 255] the following conjecture (abbreviated as D.S.C. in what follows):

Let $\{q_i\}$ be a one-to-one infinite sequence of positive integers and f a nonnegative real function on reals. If the series

$$\sum \varphi(q_i)f(q_i)$$

(φ stands for Euler totient function) is divergent, then for almost all u and infinitely many i the diophantine inequality

$$\left| u - \frac{x}{q_i} \right| < f(q_i)$$

has an integral solution x coprime with q_i .

Perhaps the first natural step towards the proof of the D.S.C. is to find some special classes of $\{q_i\}$ and f which fulfil it. The next step can be done in two directions:

- (a) To seek functions f such that the D.S.C. holds for any sequence $\{q_i\}$. For instance, Erdös [2] proved that this is the case for $f(q) = 1/q^2$. Further similar results can be found in [3], [4]. Or,
- (b) to seek sequences $\{q_i\}$ which satisfy D.S.C. for arbitrary function f (zero values are allowed for f). Six such sequences are listed in the subsequent Examples 1—6. Their proofs are based on the criteria proved in [1], [5], [6], [7].

Example 1. The sequence $\{q^i\}$ satisfies D.S.C. for every function f.

This follows from a theorem of Duffin-Schaeffer [1, p. 250] and the fact that

$$\frac{\varphi(q^i)}{q^i} = \frac{\varphi(q)}{q} \ge c > 0$$

Example 2. The factorial sequence $\{i!\}$ satisfies D.S.C. for every function f. To prove this use Theorem 12 of [5] and the fact that $\{i!\}$ satisfies its assumption, for

$$\frac{\varphi(i!)}{\varphi((i+1)!)} \le \frac{1}{\varphi(i+1)} \le c < 1$$

Example 3. The sequence of Fermat numbers $\{2^{2^i} + 1\}$ satisfies D.S.C. for every function f.

This example follows from Theorem 7 of [6] and the fact that the Fermat numbers are coprime in pairs, as required in this theorem.

The next three examples are consequences of Theorem 6 of [7] which says that a sequence $\{q_i\}$ satisfies D.S.C. for every functions f if it has the following two properties

(i)
$$\sum_{i=1}^{\infty} \frac{\log^2 q_i}{q_i^{2\epsilon}} < +\infty$$

(ii)
$$d_{ij} \le (q_i q_j)^{\frac{1}{2} - \varepsilon} \quad \text{for } i \ne j$$

where $d_{ij} = (q_i, q_j)$ denotes the g.c.d. of q_i and q_j and ε is a fixed positive number.

Example 4. The Fibonacci sequence $\{F_i\}$, $F_{i+2} = F_{i+1} + F_i$, $F_1 = F_2 = 1$ satisfies D.S.C. for every function f.

This is a consequence of two following properties of Fibonacci numbers (see e.g. [8]):

(iii)
$$F_{i} = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^{i} - \left(\frac{1 - \sqrt{5}}{2} \right)^{i} \right) = \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^{i} (1 + \varepsilon_{i})$$

with $\varepsilon_i \to 0$,

$$(iv) (F_i, F_i) = F_{(i-i)}$$

Condition (i) is easy to verify for (iii). To see (ii) note that

$$(i, j) \leq \min\left(i, \frac{j}{2}\right)$$

for i < j. Then if $i \ge j/2$

$$\frac{j}{2} < (i+j)\left(\frac{1}{2} - \frac{1}{8}\right)$$

and consequently

(v)
$$(F_i, F_j) \le (F_i \cdot F_j)^{\frac{1}{2} - \frac{1}{8}}$$

using (iii), (iv). Similarly, if i < j/2 then

$$i < (i+j)\left(\frac{1}{2} - \frac{1}{8}\right)$$

and again (v).

Example 5. The sequence $\{q^i - 1\}$ satisfies D.S.C. for every function f. The proof parallels that of Example 4 because (see p. 29 of [9])

$$(q^{i}-1, q^{j}-1)=q^{(i,j)}-1$$

Example 6. The sequence $\{q^i + 1\}$ satisfies D.S.C. for every function f. The proof, as in the previous example, follows from the fact that [10].

$$(q^{i}+1, q^{j}+1) = \begin{cases} q^{(i,j)}+1 & \text{if } a = \frac{i \cdot j}{(i,j)^{2}} \text{ is odd} \\ 2 & \text{if } a \text{ is even and } q \text{ is odd} \\ 1 & \text{if } a \text{ and } q \text{ are even} \end{cases}$$

This paper is a direct continuation of the previous paper [7] of this series. We shall modify a criterion previously proved in Theorem 2 of [7] from which we deduce further criteria for sequences $\{q_i\}$ of positive integers which satisfy the Duffin-Schaeffer conjecture for every nonnegative real function f such that the sequence $\{f(q_i)\}$ is nonincreasing. Our aim is to prove some criteria in direction (b). So for instance, it will follow from the subsequent considerations that if the sequence $\{q_i\}$ has the property that every of its permutation satisfies one of these criteria then we obtain a partial solution of the D.S.C. in the direction (b) mentioned above.

2. Technical preparation

Let

$$\{t_{ij}^{\lambda} = \left\{ \frac{x}{q_i} - \frac{y}{q_j} > 0; \ i \neq j \leq n, \ 0 < x < q_j, \ 0 < y < q_j, \ (x, q_j) = (y, q_j) = 1 \right\}$$
 (1)

i.e. the finite sequence $\{t_i\}$ consists of all the distances between rational numbers x/q_i , y/q_i , $i \neq j \leq n$, including repetitions.

In what follows c, c_1 , c_2 , ... will always denote absolute positive constants with the convention that the same symbol may take different values on different occasion.

We start with the following special case of Theorem 2 of [7].

Theorem 1. A sequence $\{q_i\}$ satisfies D.S.C. for every function f for which the sequence $\{f(q_i)\}$ is nonincreasing provided given a positive real number s, the inequality

$$\left(\sum_{l_i \leq t} 1\right)^s \leq ct \left(\sum_{i \leq n} \varphi(q_i)\right)^{s+1} \tag{2}$$

is true for every sufficiently large n and every t > 0.

The inequality (2) will be the ground of our considerations. Furthermore, the following estimate (see Theorem 3 of [6]) and the subsequent two lemmas will be of technical importance later on

$$\sum_{0 < \frac{X}{q_i} - \frac{Y}{q_i} \le t} 1 \le ct \varphi(q_i) \varphi(q_j) \frac{q_{ij}(tq_{ij}d_{ij})}{\varphi(q_{ij}(tq_{ij}d_{ij}))}$$
(3)

where

$$d_{ij} = (q_i, q_j), \ q_{ij} = q_i q_j / d_{ij}^2, \ q_{ij}(x) = \prod_{\substack{p \mid q_{ij} \\ p \ge x}} p$$
 (4)

with p running over the set of prime numbers.

Lemma 1. Suppose that for every t > 0 it is possible to split the sequence (1) into two sequences (not necessarily the same for different t) in such a way, that one of them satisfies (2) with $s = s_1$ and the other one with $s = s_2$ (here s_1 , s_2 are fixed and independet on t). Then $\{q_i\}$ satisfies D.S.C. for every such f for which the sequence $\{f(q_i)\}$ is nonincreasing.

Proof. The hypothesis of Lemma 1 imply

$$\sum_{t_i \leq t} 1 \leq c \cdot \frac{1}{t} \left[\left(t \sum_{i \leq n} \varphi(q_i) \right)^{1 + \frac{1}{s_1}} + \left(t \sum_{i \leq n} \varphi(q_i) \right)^{1 + \frac{1}{s_2}} \right]$$
 (5)

for every t > 0. Suppose that $s_1 < s_2$. Then for $t \le 1 / \sum_{i \le n} \varphi(q_i)$ we have

$$\sum_{t_i \le t} 1 \le 2c \cdot \frac{1}{t} \left(t \sum_{i \le n} \varphi(q_i) \right)^{1 + \frac{1}{s_2}} \tag{6}$$

and for $t > 1 / \sum_{i \le n} \varphi(q_i)$ we have

$$\sum_{t_i \leq t} 1 \leq 2c \cdot \frac{1}{t} \left(t \sum_{i \leq n} \varphi(q_i) \right)^{1 + \frac{1}{s_1}} \tag{7}$$

Split now the sequence $\{t_i\}$ into two sequences $\{t_i\}^1$ and $\{t_i\}^2$ accordingly whether

 $t_i \le 1 \Big/ \sum_{i \le n} \varphi(q_i)$ or $t_i > 1 \Big/ \sum_{i \le n} \varphi(q_i)$. Then $\{t_i\}^1$ satisfies (6) for all t > 0 and $\{t_i\}^2$ satisfies (7) for all t > 0. If now Σ_0 is any sum over $\{t_i\}$, then let $\Sigma_0 = \Sigma_1 + \Sigma_2$ be its corresponding decomposition over $\{t_i\}^1$ and $\{t_i\}^2$. If $N(\Sigma_i)$ denotes the number of summands in the sum Σ_i , then it follows from [7, (9)], (6) and (7) that

$$N(\Sigma_i) \leq c_i \left(\sum_{i \leq n} \varphi(q_i)\right) (\Sigma_i)^{\frac{1}{1+s_i}}$$

for i = 1, 2. Without loss of generality we can suppose $\Sigma_0 \le 1^*$. Then since $s_1 < s_2$, the last inequality is also true for i = 0 provided $c_0 = 2\max\{c_1, c_2\}$ and $s_0 = s_2$. Theorem 2 of [5] finishes the proof.

Lemma 2. Let (see (4))

$$H(t) = t^{\beta} \frac{q_{ij}(tq_{ij}d_{ij})}{\varphi(q_{ii}(tq_{ii}d_{ii}))}$$

with $\beta > 0$. Then there exists a constant $c(\beta)$ not depending on q_{ij} and d_{ij} such that

$$H(t) \le c(\beta)H(t') \tag{8}$$

for every t < t'.

Proof. If $p_1 < p_2 < ... < p_r$ are the all prime divisors of q_{ij} , then the local maxima of H(t) are in points t_k determined by $t_k q_{ij} d_{ij} = p_k$, $1 \le k \le r$. If t and t' are such that $t = t_s < t_k = t'$, then

$$\frac{H(t)}{H(t')} = \frac{p_s}{p_s - 1} \cdot \frac{p_{s+1}}{p_{s+1} - 1} \cdot \frac{p_{k-1}}{p_{k-1} - 1} \left(\frac{p_s}{p_k}\right)^{\beta}$$

Owing to Mertens' theorem this expression can be majorized by

$$c \cdot \frac{\log p_{k-1}}{\log p_{k-1}} \left(\frac{p_s}{p_k} \right)^{\beta}$$

where in this case p_{k-1} , p_k and p_{s-1} , p_s are consecutive prime numbers. Using to the limit

$$\frac{\log p_i}{\log i} \to 1$$

we have (8). If $t = t_s < t' < t_{s+1}$, then $H(t) \le 2H(t')$ and the conclusion follows.

^{*}Owing to [5, Theorem 2] it is sufficient to consider only those members in $\{t_i\}$ which represent the distances between neighbouring rational numbers of the form x/q_i , $0 < x < q_i$, $(x, q_i) = 1$, $i \le n$.

3. Main results

We shall now derive our theorems. These are based on inequality (2). Given a positive integer n, suppose that to every ordered couple [i, j], $i \neq j \leq n$ a closed interval

$$I_{ij} = \langle t_{ij}, \, \bar{t}_{ij} \rangle$$

is given. Then divide the members t_i of (1) into two parts $\{t_i\}^1$, $\{t_i\}^2$. The first of them contains those positive members $\frac{x}{q_i} - \frac{y}{q_j}$ of (1) for which the given t does not belong to the coresponding I_{ij} whereas $\{t_i\}^2$ contains the remaining ones. It is clear that $\{t_i\}^1$, $\{t_i\}^2$ can depend on t. Suppose however, that the sequence $\{t_i\}^1$ satisfies (2) for every t > 0 with some fixed s. This is the case, for instance, if [6, Theorem 4]

$$I_{ij} = \left\langle \frac{1}{q_{ij}d_{ij}}, \ \frac{\log q_{ij}}{q_{ij}d_{ij}} \right\rangle$$

and $s = 1^*$. Then Lemma 1 shows that it is enough to verify (2) only for the subsequence $\{t_{ij}\}^2$. To do this we use (3). We have then

$$\begin{split} &\sum_{\substack{t_i \leq t \\ t_i \in \{t_i\}^2}} 1 \leq \sum_{\substack{i \neq j \leq n \\ t \in I_{ij}}} ct^{1-\beta} \varphi(q_i) \varphi(q_j) t^{\beta} \frac{q_{ij}(tq_{ij}d_{ij})}{\varphi(q_{ij}(tq_{ij}d_{ij}))} \leq \\ &\leq \sum_{\substack{i \neq j \leq n \\ t \in I_{ij}}} c(\beta) t^{1-\beta} \varphi(q_i) \varphi(q_j) \bar{t}_{ij}^{\beta} \frac{q_{ij}(\bar{t}_{ij}q_{ij}d_{ij})}{\varphi(q_{ij}(\bar{t}_{ij}q_{ij}d_{ij}))} \end{split}$$

Here we used the Lemma 2 and the fact that $t \le \tilde{t}_{ij}$. We proved in Lemma 1 of [6] that

$$\frac{q_{ij}(\log q_{ij})}{\varphi(q_{ij}(\log q_{ij}))} \le c$$

and from it we obtain for arbitrary \bar{t}_{ij} with $\bar{t}_{ij} \leq \log q_{ij}/q_{ij}d_{ij}$ that

$$\sum_{\substack{l_i \leq t \\ l_i \in \{l_i\}^2}} 1 \leq c t^{1-\beta} \sum_{\substack{i \neq j \leq n \\ t \in l_{ij}}} \varphi(q_i) \varphi(q_j) \left(\frac{\log q_{ij}}{q_{ij}} \right)^{\beta}$$

For arbitrary η with $0 < \eta < 1$ Holder's inequality yields

$$\sum (\varphi(q_i)\varphi(q_j))^{1-\eta}(\varphi(q_i)\varphi(q_j))^{\eta} \left(\frac{\log q_{ij}}{q_{ii}d_{ii}}\right)^{\beta} \leq$$

^{*}Owing to (23) of [5] we can give into $\{t_i\}^1$ also all members $\frac{x}{q_i} - \frac{y}{q_j}$ of (1) for which $f(q_{ij})/q_{ij} \ge c > 0$ where c is a choose constant.

$$\leq (\Sigma \varphi(q_{i}))^{2(1-\eta)} \cdot \left[\sum \varphi(q_{i}) \varphi(q_{j}) \left(\frac{\log q_{ij}}{q_{ij}} \right)^{\eta} \right]^{\eta} \leq
\leq (\Sigma \varphi(q_{i}))^{2(1-\eta)} \cdot \left[\sum \frac{1}{q_{ii}^{\beta-1-\delta}} \frac{1}{d_{ii}^{\beta-2}} \right]^{\eta} \tag{9}$$

where in the last inequality we made use of the following facts

$$q_i q_j = q_{ij} d_{ij}^2, \quad \frac{\varphi(q_i)}{q_i} \frac{\varphi(q_j)}{q_j} \leq 1, \quad \left(\frac{\log q_{ij}}{q_{ij}}\right)^{\frac{\beta}{\eta}} \leq c \frac{1}{q_{ij}^{\beta - \delta}}$$

Here $\delta > 0$ is arbitrarily small. Thus we have prepared the ground for basic result.

Theorem 2. Let s, β , η , δ be positive constants with

$$0 < \beta \le 1, \quad 0 < \eta < 1$$
 (10)

and δ arbitrary small. Let for every sufficiently large n and every t > 0 we have

$$\sum \frac{1}{q_{ij}^{\eta}} \frac{1}{d_{ij}^{\eta}} \leq ct^{\frac{\beta}{\eta} - \frac{s-1}{\eta s}} \cdot \left(\sum_{i \leq n} \varphi(q_i)\right)^{2 - \frac{s-1}{\eta s}}$$
(11)

where the sum runs over the all distinct couples $[q_{ij}, d_{ij}]$ with $i \neq j \leq n$ and

$$\frac{1}{q_{ij}d_{ij}} \le t < \frac{1}{q_{ij}^{1-\delta}d_{ij}} \tag{12}$$

Then the sequence $\{q_i\}$ satisfies D.S.C. for every function f with the property that the sequence $\{f(q_i)\}$ is nonincreasing.

The proof follows almost immediately from (9) using Theorem 1 if we note that the number of couples [i, j], $i \neq j$ for which the pairs $[q_{ij}, d_{ij}]$ are equal does not excend $2^{v(q_{ij})}$ (where $v(q_{ij})$ denotes the number of distinct prime divisors of q_{ij}) and the embody this factor into the constant δ in $1/q_{ij}^{\beta}$.

Having established this general theorem we shall now derive a variety of consequences.

A. Suppose first that

$$\frac{\beta}{\eta} = \frac{s-1}{\eta s} = 1 + \delta$$

Then (11) becomes

$$\sum_{i \neq j \leq n} d_{ij}^{1-\delta} \leq c \left(\sum_{i \leq n} \varphi(q_i) \right)^{1-\delta}$$
 (13)

Holder's inequality with exponents $2/(1 - \delta)$, $2/(1 + \delta)$ shous that the inequality (13) is true if for every $i \neq j$ we have

$$d_{ij} \le c \frac{\sqrt{\varphi(q_i)\varphi(q_j)}}{(i \cdot j)^{\frac{1+\delta+\varepsilon}{2(1-\delta)}}}$$
(14)

where ε , δ are arbitrarily small positive constants. This gives.

Theorem 3. Let the sequence $\{q_i\}$ be ordered according to increasing magnitude and let the corresponding sequence $\{d_{ij}\}$ satisfies (14) for some positive ε and δ . Then $\{q_i\}$ (and trivially also any rearrangement of $\{q_i\}$) satisfies D.S.C. for every function f.

B. If we take

$$\frac{\beta}{\eta} = \frac{s-1}{\eta s}, \quad 2 > \frac{s-1}{\eta s} > 1 + \delta$$

then (11) becomes the form

$$\sum \frac{d_{ij}^{2-\frac{\beta}{\eta}}}{q_{ii}^{\beta}} \le c \left(\sum_{i \le n} \varphi(q_i)\right)^{2-\frac{\beta}{\eta}} \tag{15}$$

If we further impose that for every $i \neq j$

$$d_{ij} \le cq_{ij}^{\alpha} \tag{16}$$

with α determined by

$$2 - \frac{\beta}{\eta} = \frac{1 - \delta}{1 + \alpha}$$

then the left hand side of (15) can be estimated by cn^2 . Since

$$\varphi(q_i) \ge c \, \frac{q_i}{\log \log \, q_i}$$

we obtain from (15)

$$n \le c \left(\sum_{i \le n} \frac{q_i}{\log \log q_i} \right)^{\frac{1-\delta}{2(1+\alpha)}} \tag{17}$$

The function $x/\log \log x$ is increasing for sufficiently large x. Therefore the right hand side of (17) will be minimal if $\{q_i\}$ is ordered according to the magnitude.

Finally note, that the equality $q_{ij} = q_i q_j / d_{ij}^2$ implies the equivalence of (16) with

$$d_{ij} \le c(q_i q_j)^{\frac{1}{2} - \frac{1}{4\alpha + 2}} \tag{18}$$

Thus we arrived at the following result.

Theorem 4. Let the sequence $\{q_i\}$ be ordered according to increasing magnitude and satisfies (17). If the corresponding sequence $\{d_{ij}\}$ satisfies (16) or (18) (with α an arbitrary positive constant) then $\{q_i\}$ satisfies D.S.C. for arbitrary function f.

C. For the next theorem let β , η be such that

$$\frac{\beta}{\eta} > 2$$

Further suppose that the sequence $\{d_{ij}\}$ is sufficiently sparse in the sense that the inequality

$$\sum_{\substack{dij \ge A, i \ne j \\ dij \text{ are distinct} \\ gij = \text{constant}}} \frac{1}{\ell_{j}^{\beta} - 2} \le \frac{c}{\ell_{j}^{\beta} - 2}$$

$$(19)$$

is true for every A > 0. Then the left hand side of (11) can be summed in following manner

$$\sum \frac{1}{q_{ij}^{\eta}} \frac{1}{d_{ij}^{\eta}} = \sum_{\substack{q_{ij} \text{ are distinct} \\ q_{ij}^{\eta}}} \frac{1}{q_{ij}^{\eta}} \sum_{\substack{d_{ij} \ge 1/q_{ij}t \\ q_{ij}^{\eta} = \text{constant} \\ q_{ij}^{\eta} = \text{constant}}} \frac{1}{d_{ij}^{\theta}} \le \sum_{\substack{q_{ij} \text{ are distinct} \\ q_{ij}^{\eta} = \text{constant} \\ q_{ij}^{\eta} = \text{constant}}} \frac{1}{d_{ij}^{\theta}} \le \sum_{\substack{q_{ij} \text{ are distinct} \\ \eta_{ij}^{\eta} = \text{constant} \\ \eta_{ij}^{\eta}$$

If we take

$$2 = \frac{s-1}{\eta s}$$

then (11) is certainly true if the series

$$\sum_{q_{ij} \text{ are distinct }} \frac{1}{q_{ij}^{1-\delta}} \tag{20}$$

is convergent for some $\delta > 0$.

The summation condition in (19) can be dropped. Namely, it is sufficient to require only this complex of conditions:

$$d_{ij} \ge A$$
, d_{ij} are distinct, $i \ne j$,

$$\frac{q_i}{d_{ij}} = \text{const.} = c_1, \quad \frac{q_j}{d_{ij}} = \text{const.} = c_2 \quad \text{with } (c_1, c_2) = 1$$
 (21)

To see this note, that using sums over (21) we are able to estimate the left hand side sum of (19) in such a way that we multiply this sum by $2^{v(q_{ij})}$ and then embody this factor into the constant δ in $1/q_{ij}^{1-\delta}$. This leads to the following result.

Theorem 5. Let the sequence $\{d_{ij}\}$ be satisfying (19) for some constants β , η , $0 < \beta \le 1$, $0 < \eta < 1$ and for every $A > 0^*$, where the dash means that the summation is over (21). Let the series (20), which is made from the sequence $\{q_{ij}\}$, be convergent for some $\delta > 0$. Then the sequence $\{q_{ij}\}$ satisfies D.S.C. for every function f.

Note that in the summations (19) and (20) the condition $i, j \le n$ does not occur.

D. Let β , η , δ , δ' be positive constants such that

$$\frac{\beta}{n} - 1 - \delta - \delta' > 0$$

and

$$\sum_{\substack{q_{ij} \ge A \\ q_{ij} \text{ are distinct } \\ d_{ij} = \text{ constant } q_{ij}^{\mu}} \frac{1}{A^{\eta}} \le \frac{c}{A^{\eta}}$$
(22)

is true for every A > 0. Then the left hand side of (11) can be summed in following manner

$$\sum \frac{1}{q_{ij}^{\eta}} \frac{1}{d_{ij}^{\eta}} = \sum_{\substack{i \neq j \leq n \\ d_{ij} \text{ are distinct } \\ d_{ij} \text{ are distinct } }} \frac{1}{d^{\eta}} \sum_{\substack{q_{ij} \geq 1/d_{ij}t \\ q_{ij} \text{ are distinct } \\ d_{ij} = \text{ constant } }} \frac{1}{\ell^{\beta-1-\delta}} \leq \sum_{\substack{i \neq j \leq n \\ d_{ij} \text{ are distinct } \\ d_{ij} \text{ are distinct } }} d^{1-\delta-\delta}_{ij} \cdot t^{\beta-1-\delta-\delta}$$

Then (11) becomes

$$\sum_{\substack{i \neq j \leq n \\ d_{ij} \text{ are distinct}}} d_{ij}^{1-\delta-\delta'} \cdot t^{\frac{s-1}{\eta s}-1-\delta-\delta'} \leq c \left(\sum_{i \leq n} \varphi(q_i)\right)^{2-\frac{s-1}{\eta s}}$$
(23)

The constants s, η , δ , δ' from exponents in (23) can be well choice only in a form

$$2 \ge \frac{s-1}{ns} \ge 1 + \delta + \delta'$$

^{*} and for every c_1 , c_2 . The constant c from (19) is independent on c_1 , c_2 .

thus $\delta' < 1$. The inequality (23) we can transform in

$$t \le c \left(\frac{U^{2-x}}{V}\right)^{\frac{1}{x-x_0}} = F(x)$$

where

$$U = \sum_{i \le n} \varphi(q_i), \quad V = \sum_{\substack{i \ne j \le n \\ \text{distinct}}} d_{ij}^{1-\delta-\delta'}, \quad x_0 = 1+\delta+\delta', \quad x = \frac{s-1}{\eta s}$$

The function F(x) is nondecreasing or nonincreasing on the interval $(x_0, 2)$ if it is true or not true a following inequality

$$1 - \delta - \delta' \ge \frac{\log V}{\log U}$$

From it follows that the best possible choice of the constants s, η , δ , δ' are following two cases

$$\frac{s-1}{\eta s} = 1 + \delta + \delta'$$
 or $\frac{s-1}{\eta s} = 2$

Using the first case then (23) becomes

$$\sum_{\substack{i \neq j \leq n \\ di \text{ are distinct}}} d_{ij}^{1-\delta-\delta'} \leq c \left(\sum_{i \leq n} \varphi(q_i)\right)^{1-\delta-\delta'}$$
(24)

Using the second case then (23) becomes

$$\sum_{\substack{i \neq j \leq n \\ d_{ij} \text{ are distinct}}} (d_{ij}t)^{1-\delta-\delta'} \leq c \tag{25}$$

Further suppose that $1 - \delta - \delta' > 0$ and distinct values of the sequence $\{d_{ij}\}$ are sufficiently sparse in the sense that the inequality

$$\sum_{\substack{d_{ij} \le A, i \ne j \\ d_{i} \text{ are distinct}}} d_{ij}^{1-\delta-\delta'} \le cA^{1-\delta-\delta'} \tag{26}$$

is true for every A > 0. By (12) $d_{ij} \le 1/t$, thus (25) is valid. This leads to the following result.

Theorem 6. Let the sequence $\{q_{ij}\}$ be satisfying (22) for some constants β , η , δ . δ' , $0 < \beta \le 1$, $0 < \eta < 1$, $\delta > 0$, $\delta' > 0$, $1 - \delta - \delta' > 0$ and for every A > 0. Let the sequence $\{d_{ij}\}$ be satisfying (26) for every A > 0. Then the sequence $\{q_i\}$ satisfies D.S.C. for every function f.

Owing to Theorem 5 as the last step we prove two following theorems. **Theorem 7.** Let the sequence $\{q_i\}$ be satisfying

$$\frac{q_i}{q_{i+1}} \le c < 1$$

for every *i* i.e. is lacunary. Then the sequence of squares $\{q_i^2\}$ satisfies D.S.C. for every function f.

Proof. The corresponding sequence $\{q_{ij}\}$, $\{d_{ij}\}$ for the sequence of squares $\{q_i^2\}$ are $\{q_{ij}^2\}$, $\{d_{ij}^2\}$. Thus the series (20) is convergent e.g. for $\delta = 1/4$.

To see (19) let the sequence $\{d_{ii}^2\}$ for which

$$\frac{q_i^2}{d_{ii}^2} = \text{const.} = c_1^2, \quad \frac{q_I^2}{d_{ii}^2} = \text{const.} = c_2^2$$

be ordered according to increasing magnitude

$$d_{i(1)j(1)}^2 < d_{i(2)j(2)}^2 < \dots$$

From it

$$\frac{d_{i(k)j(k)}^2}{d_{i(k+1)i(k+1)}^2} = \frac{q_{i(k)}^2/c_1^2}{q_{i(k+1)}^2/c_1^2} \le c^2 < 1$$

i.e. the sequence $\{d_{i(k)j(k)}^2\}$ is also lacunary and thus satisfies (19) for every $\beta/\eta > 2$. Therefore the assumptions of Theorem 5 are valid.

Theorem 8. If the corresponding sequence $\{d_{ij}\}$ of $\{q_i\}$ have only finite distinct members for $i \neq j$, then the sequence $\{q_i\}$ satisfies D.S.C. for every function f.

Proof. The assertion (19) is valid automatically.

Owing to a footnote on p. 42, it is sufficient to consider only those members in the series (20) for which $\{q_{ij}\}$ having the sufficiently large number of distinct prime divisors. Put

$$q_i' = \frac{q_i}{\max_i d_{ij}} \quad (i \neq j)$$

Then the series (20) is majorized by

$$\left(\sum \frac{1}{q_i^{\prime 1-\delta}}\right)^2$$

and this series is convergent if the members q'_i having at least two distinct prime divisors, because the members q'_i are coprime.

REFERENCES

- [1] Duffin, R. J.—Schaeffer, A. C.: Khintchine's problem in metric diophantine approximation. Duke Math. J., 8, (1941), 243—255.
- [2] Erdös, P.: On the distribution of the convergents of almost all real numbers. J. Number Theory, 2, (1970), 424—441.
- [3] Vaaler, J. D.: On the metric theory of diophantine approximation. Pacif. J. Math., 76, (1978), no. 2, 527—539.
- [4] Vilčinskii, V. T.: Rational approximations to almost all real numbers (Russian). Vesci Akad. Navuk BSSR, Ser. Fiz.-Mat. Navuk, no. 6, (1979). 20—24, 139.
- [5] Strauch, O.: Duffin-Schaeffer conjecture and some new types of real sequences, Acta Math. Univ. Comenian., 40—41, (1982), 233—265.
- [6] Strauch, O.: Some new criterions for sequences which satisfy Duffin-Schaeffer conjecture, I. Acta Math. Univ. Comenian., 42—43, (1983), 87—95.
- [7] Strauch, O.: Some new criterions for sequences which satisfy Duffin-Schaeffer conjecture, II. Acta Math. Univ. Comenian., 44—45, (1984), 55—65.
- [8] Vorobjev, N. N.: Fibonacci numbers, Blisdell Publishing Co., New York-London, 1961.
- [9] Sierpinski, W.: Elementary theory of numbers, PWN, Warszawa, 1964.
- [10] Problem E 2378. [1972, 906; 1973, 1059], Amer. Math. Monthly.

Author's address:
Oto Strauch
Matematický ústav SAV
Obrancov mieru 49
Bratislava
814 73

SÚHRN

NIEKTORÉ NOVÉ KRITÉRIÁ PRE POSTUPNOSTI, KTORÉ SPĹŇAJÚ DUFFIN-SCHAEFFEROVU HYPOTÉZU, III

Oto Strauch, Bratislava

V práci je okrem iného ukázené, že ak $\{F_i\}_{i=1}^{\infty}$ je postupnosť Fibonacciho čísel, f je ľubovoľná nezáporná funkcia (môže nadobúdať aj nulové hodnoty), φ je Eulerova funkcia a

$$\sum_{i=1}^{\infty} f(F_i) \varphi(F_i) = +\infty$$

potom skoro pre všetky a má nerovnosť

$$\left| \alpha - \frac{x}{F_i} \right| < f(F_i)$$

celočíselné riešenie x pre nekonečne veľa i tak, že x, F_i sú nesúdeliteľné. Tú istú vlastnosť má i postupnosť štvorcov $\{q_i^2\}_{i=1}^x$ pre ktorú $q_i/q_{i+1} \le c < 1$.

Received: 23. 1. 1984

РЕЗЮМЕ

НЕКОТОРЫЕ НОВЫЕ ПРИЗНАКИ ДЛЯ ПОСЛЕДОВАТЕЛЬНОСТЕЙ, УДОВЛЕТВОРЯЮЩИХ ГИПОТЕЗЕ ДАФФИН-ШАФФЕРА, III

Ото Штраух, Братислава

В работе между прочим показано, что если $\{F_{\beta}\}_{i=1}^{\infty}$ — последовательность чисел фибопаčі, f — любая неотрицательная функция (она может принимать и нулевые значения), φ — функция Эйлера и

$$\sum_{i=1}^{\infty} f(F_i) \varphi(F_i) = +\infty$$

то для почти всех α неравенство

$$\left|\alpha - \frac{x}{F_i}\right| < f(F_i)$$

имеет целочисленно решение x для бесконечно многих i такое, что x, F_i — взаимно простые. Таким же свойством обладает и последовательность квадратов $\{q_i^2\}_{i=1}^\infty$ кде $q_i/q_{i+1} \le c < 1$.