#3D
VAL 7

—/

Werk

Titel: Schrift

Ort: Mainz

Jahr: 1949

PURL: https://resolver.sub.uni-goettingen.de/purl?366382810_1944-49 | logb

Kontakt/Contact

Digizeitschriften e.V.
SUB Géttingen

Platz der Gottinger Sieben 1
37073 Gottingen

& info@digizeitschriften.de


http://www.digizeitschriften.de
mailto:info@digizeitschriften.de

UNIVERSITAS COMENIANA
ACTA MATHEMATICA UNIVERSITATIS COMENIANAE

XLVIII—XLIX — 1986

THE DECOMPOSITION OF AN INTERVAL OF NATURAL
NUMBERS INTO THREE STRONGLY SUM-FREE SETS

JULIUS BACIK, Nitra
Introduction

The set A of natural numbers is called strongly sum-free if an equation
x+y=z, xX#Yy (1)

has no solution in the set A. In this paper we summarize the results from [1] (the
Ph. D. thesis). According to [1] the longest interval [n, m] of natural numbers

[n,ml={n,n+1,n+2, .., m

divisible into three strongly sum-free sets is the interval [n, 14n + 7] for n = 2,
and the interval [1, 23] for » = 1. Hitherto known precise results are the follo-
wing:

In the paper [3] it is proved that [, 5n + 2] for n = 2 is the longest interval
divisible into two strongly sum-free sets. That is a solution of P. Turan’s
problem. For n = 1 it is the interval [1, 8].

If we omit from (1) the condition x # y, i.e. we look for decompositions into
sum-free sets, then [1, 13] is the longest interval divisible into three sum-free sets,
and [1, 44] is the longest interval divisible into four sum-free sets (see [4], [5]).
The length of these intervals is the so-called Schur function.

In the paper [3] a decomposition introduced is of the interval [n, 14n + 7]
into three strongly sum-free sets

Ay=[n,2njudn+3,5n+ 21U [10n + 7, 11n + 6] U[13n + 8, 14n+7]
By=[2n+1,4n+2]U(lln+ 7, 13n + 7]
Co=1[57+ 3, 10n + 6]
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If we add the number 14n + 8 into one of these sets, then this set does not hold
the property of the strongly sum-free set. The main result of the paper [1] is the
following theorem which says that every other decomposition of the interval
[n, 14n + 7] is differ from the decomposition of 4,, B,, C, only very slightly.
Theorem 1. Let 4, B, C be an arbitrary decomposition of an interval
[n, 14n 4+ 7] (n = 2) into three strongly sum-free sets with the signature where
ne A, and B includes the first number from [n, 14n + 7] which does not belong
to A (this will be presupposed in the following). Then it holds that
(i) Ao [n, 2njudn+ 3,52+ 21U[10n + 7, 11n + 6] U
u13n + 8, 14n + 7]
Bo2n+1,4n+2]u[lln+7,13n+ 7]
Co[5n+3,7n+31u[8n + 6, 10n + 6]
(i) (@) Tn+4€A and 8n + 4, 8n + SeC, or
(b) Tn+4eC,7n+ 5e A and 8n+ SeC, or
() Tn+4,Tn+ 5€C
(iii) All the rest numbers form the interval [7n + 4, 8n + 5] can be arbitrari-
ly placed into the sets 4 or C in any of the case (a), (b), (c).
It follows immediately from Theorem 1 that the number 14n + 8 cannot be
placed into any of the sets A, B, C by an arbitrary decomposition of the interval
[n, 14n + 7], because

14n +8=n+13n+8=2n+1+12n+7=6n+8n + 8
and because by an arbitrary decomposition it holds that
n 13n+8€A, 2n+1,12n+7€B, 6n, 8n + 8€C.

So the interval [n, 14n + 7] for n = 2 is the longest one.
Proof of Theorem 1. The complete proof is introduced in [1] and it consists
of approximately 200 pages. Here we introduce the main steps of the proof only.
Let 4, B, C be a decomposition of the interval [n, 14n + 7] into three
strongly sum-free sets. Let n = 3. Then
[n,2n—1]c A
If [n, 2n — 1] = A then 2ne A
If[n,2njc Athen[2n+ 1,4n— 1] < B
If [n,2n) = 4, [2n + 1, 4n — 1] < B then 4ne B
If[n,2njc A,[2n+ 1,4n] < Bthend4n + k¢Cfork=1,2,...,n—1
6. If [n,2n)]c A,[2n+ 1,4n]|< B, 4n+ k¢C (k=1, 2, ..., n— 1) then
4n+ l1eB
7. If [n, 2njc A, 2n+ 1, 4n+ 1] B, 4n+ k¢C (k=1,2, ..., n—1)
then 4n + 2€ B.
Consequence.
8. [4n+3,5n—1]c A

W B LD e
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9. If [n, 2n)u[4n +3,5n — 1] < A, [2n + 1, 4n + 2] < B then 5ne 4
10. If [n, 2nju4n+3,5n < A, [2n+ 1,4n+ 2] = Bthen Sn + 1€ 4
11. If [n, 2n]u[4n +3,5n+ 1] A, [2n+ 1,4n + 2] = Bthen 5Sn + 2€ 4
From this it follows that the decomposition of the interval [n, 7n + 2] into
A, B, C (n = 3) has to have the form
12. Ao n,2n]u4n+ 3, 5n + 2]
Bo[2n+1,4n+ 2]
Co[5n+3,7n+2]
For n = 2 it holds that
13. {2,3,4}c 4
14. {5,6,7} < B
15. If {2, 3,4} < A4, {5, 6, 7} < B then 8e B
16. If [2,4] < A4, [5, 8] < B then 9€ B
17. If [2,4] < A4, [5, 9] < B then 10€ B
18. If [2,4] < A4, [5, 10] < B then 11€ 4
19. If [2,4] = A4, 11€ A4, [5, 10] = B then 12€ 4
Then 12. holds also for n = 2. The following assertions hold for an arbitrary
2.
20. If 12. then 7n + 3eC
21. If 12.,, Tn + 3eCthen 8n + 3 + k¢Bfork=1,2, ...,2n—3
Consequence.
22. 8n+17,10n <= C
23. If 12., 22. then 8n + 6eC
24. 1f12.,22.,8n+ 6eC then 10n+ keCfork=1,2,3,4,5,6
25. If 12.,[8n + 6, 10n + 6] = C then 10n + 6 + k¢ Bfor k=1, 2, ..., n.
The assertions (i), (ii), (iii) from Theorem 1 follow as a consequence of the

preceding statements.

Proof of (i). Hence [5n + 3, Tn + 3] =« Cthen 10n + 6 + k¢ Cfork =1, 2,

..., n and then by 25. we have [10n + 7, 11n + 6] = A. Hence [n, 2n] U [10n + 7,
11n+ 6] < 4,[5n + 3, 7Tn + 3] = C then [11n + 7, 13n + 6] = B. From the fact
that 6n + 4, 7n + 3e C we obtain 13n+ 7€ A4 or 13n+ 7€ B. If 13n + 7€ A,
then

4n+7=n+U3n+T=3n+Uln+7)=6n+@Bn+7)

by that n, 13n + 7€ 4, 3n, 11n + 7€ B, 6n, 8n + 7€ C which is a contradiction,
therefore 13n + 7€ B. Hence

[5n+3,7n+3]u[8n+6,10n+ 7] = C,
[2n+1,4n+2]U[l1ln+ 7, 13n + 7] < B then
[13n+ 8, 14n + 7] < A.

25



Finally we have to find a decomposition of the interval [7n + 4, 8n + 5] into
the sets 4, B, C mentioned in (ii), (iii).

Proof of (ii), (iii). Hence [2n + 1,4n + 2] < Band by 21.8n + 3 + k¢ Bnot
even one number from the interval [7n + 4, 8n + 5] belongs to B, therefore
[7n + 4, 8n + 5] =« AU C. If we construct all additions x + y (x # y), where
x, y are from intervals [n, 2n)], [4n + 3, Sn+ 2], [10n + 7, 11n 4 6], [13n + 8,
14n + 7] included in A we get intervals [2n + 1, 4n — 1], [Sn + 3, Tn + 2],
[11n + 7, 12n + 6], etc., if we construct all subtractions x — y (x # 2y) we get
intervals [1, n — 1], 2n+ 2, 4n + 2], [Sn + 5, Tn + 3], [8n + 6, 10n + 4], etc.
Therefore not even one number of the interval [7n + 4, 8n + 5] belongs to these
intervals. If we get the whole interval [7n + 4, 8n + 5] into A, then the equation
(1) is solvable only in the form

8n+4=(n+4)+n, 8+5=(n+95+n

because the corresponding intervals which we get from additions of x + y
(x # y), wheree.g. ye[Tn + 4,8n + Slare [8n + 4, 10n + S5), [11n + 7,13n 4+ 7],
etc.; and intervals which we get from subtractions x — y (x # 2y) are [1, n + 1],
[2n + 2, 4n + 2], [5Sn + 3, Tn + 3].

If we get the whole interval [7n + 4, 8n + 5] into C, the equation (1) has no
solution in C, because in that way we get the sets 4,, B, C, from the introduc-
tion.

Entirely, using an arbitrary method we can divide the interval [7n + 6,
8n + 3] into the sets 4 and C.

In [1] we prove the assertions 1.—25. by use of a contradiction. This method
is extremely elementary. Let the sets 4, B, C be a decomposition of the interval
[n, 14n + 7] into three strongly sum-free sets. Let us take out suitable sets X < A4,
Y ¢ B, Z = C and let us construct a triad (X, Y, Z), from them. We can select
numbers x, y from one of the sets Y, X; Z, e.g. from X and we construct x + y
(ifx # y)orx — y(if x = y + n, x # 2y). Then x + y ¢ A, therefore x + ye Bor
x + yeC. If we add x + y into Y, we have a triad (X, ¥, Z),, if weadd x + y
into Z we have a triad (X, Y, Z),. By repeating the foregoing method we get
a tree

(Xa Ya Z)H <
KXY D= (¥ Y. 2z
(X, Y, 2), @

(Xa Y’ Z)Zl <
X, Y,2),< X, Y, Z), =

If we can find u, vto x, y,e.g.in Zsuchthat x + y=utv(u+vifu#v
oru—vifu=v+n, u+#2v), then x + y can be placed only in Y and we add -
it into this set without extending the index of a triad X, Y, Z.
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If the tree (2) ends by leaves (X, Y, Z),,,  for which there exists a number
n’ so that

"=x+y=s+t=u+tv (3)

where x, ye X, s, te Y, u,veZ (and x, y, s, t, u, v hold for the corresponding
inequalities) and n” < 14n + 7, then the supposed decomposition of A4, B, C can-
not exist.

The assertion is proved when we can construct a finite set of triads
(X, Y, Z), so that there exists a triad (X, Y, Z), to each decomposition A4, B,
C which does not fulfil the assertion so that X = 4, Y < B, Z < C, and so that
to (X, Y, Z), there exists a tree ending by leaves to which n’ < 14n + 7 exists such
that »’ fulfils (3).

In a concrete record of a tree we sign every vertex in the form

(i,4,...) X; X'|n’
Y: Y
VAN A
where X, Y’, Z’ designate the sets of numbers constructed by addition or
subtraction of numbers from X, Y, Z, and which we can exactly place. If the
corresponding vertex is a leaf of a tree, then we add to it the number #’ fulfilling
(3), separated by a strong line.
We underline one number in X, Y, Z which is not placed exactly in the
previous step and which is competent for a bifurcation of a tree.
For example.
Proof of 15. Every decomposition of the interval [2, 35] into three strongly

sum-free sets 4, B, C for which [2, 4] < 4, [5, 7] < B and 8 ¢ B includes one of
two following triads

({2, 3,4}, {5, 6, 7}, {8})s, ({2, 3,4, 8, {5, 6,7} 0

In the first case the tree (2) has the verteces:

0) 2,3,4 1 2,3,4,11 (2 2,3,4 (11) 2, 3, 4,11, 21
5,6,7 56,7 56,7 5,6,7
8 8; 13 8,11 8,13
(12) 2, 3,4, 11; 27, 28|32 (21) 2,3,4,19 (22) 2,3,4
5,6,7,21; 23,29 5, 6,7 56,7, 19
8, 13; 15, 14, 17 8, 11 8, 11
(111) 2, 3,4, 11, 21|15 (112) 2, 3, 4, 11, 21; 30|32
5,6,7,18; 10 5,6,7; 10, 25, 9, 26, 27
8, 13; 24,23 8,13, 18; 17, 19, 15
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(211) 2, 3, 4,19; 10, 20|23 (212) 2, 3, 4, 19; 28|32

3 6, 7, 15; 29 5,6,7;23,9
8, 11;22, 21,9, 14 8, 11, 15; 17, 16
(221) 2,3,4, 24 (222) 2, 3, 4; 13, 14, 23, 22|21
5,6,7,19 5,6,7,19; 16, 17, 18
8, 11; 26 8, 11, 24; 10, 9, 12
(2211) 2,3, 4, 24; 15|17 (2212) 2, 3, 4, 24; 14, 13, 32|34
5, 6,719, 22; 20 5,6,7,19; 10, 27
8, 11, 26; 27, 28 8, 11, 26, 22; 12, 16, 17, 21
In the second case
0) 2,3,4,8 (1) 2,3,4,8,23 2) 2,3,4,8
S, 6,7 56,7 5,6,7,23
0; 11, 12 11, 12 11, 12
(11) 2, 3,4, 8, 23|26 (12) 2, 3,4, 8, 23|10
5,6,7,20 5,6,7; 31,15
11, 12; 15 11, 12, 20; 26, 25, 21
(21) 2, 3, 4, 8, 18; 28, 19, 13|25 (22) 2,3,4,8;29,30,17|10
5,6,7,23; 14, 27, 10, 20 5,6,7,24; 15
11, 12; 16, 30, 22,24, 9 11, 12, 18; 28, 13, 21

For all »” found it holds that n” < 35. Then there cannot exist a decomposi-
tion of the interval [2, 35] into three strongly sum-free sets 4, B, C, so that {2,
3,4 c A,{5 6,7 = Band 8¢B.

The longest proof from all assertions 13.—19. has the assertion 13.

Proof of 13. From every decomposition 4, B, C, of the interval [2, 35] for
which {2, 3, 4} ¢ A we choose one of the following four triads (X, Y, Z),

({2’ 3}’ {4}7 ¢)0s ({2, 4}a {3}’ 0)09
({2}’ {3a 4}’ 0)0’ ({2}’ {3}3 {4})0

To reduce the number of bifurcations we choose also some other numbers
from the interval [2, 35], e.g. 8, 9, into the sets X, Y, Z. For (X, Y, Z), we get
the following 36 possibilities:

({2, 3, 8, 9}, {4}, 9)o, (12, 3, 8}, {4, 9}, B, ({2, 3, 8}, {4}, {90, (12, 3, 9}, {4, 8}, D),
({2’ 3}’ {4a 8’ 9}: 0)0’ ({2’ 3}3 {4’ 8}, {9})09 ({2’ 3’ 9}’ {4}’ {8})09 ({29 3}’ {47 9}’ {8})0,
({2, 3}, {4}, {8, 9o, ({2, 4, 8, 9}, {3}, D), ({2, 4, 8}, {3, 9}, O)o, ({2, 4, 8}, {3}, {9,
({2, 4,9}, {3, 8}, 9), ({2, 4}, {3, 8, 9}, 0), ({2, 4}, {3, 8}, {90, ({2, 4, 9}, {3}, (8],
({2, 4}, {3, 9}, {8}))o, ({2, 4}, {3}, {8,910, ({2, 8, 9}, {3, 4}, D)o, ({2, 8}, {3, 4, 9}, O)y, -
({2, 8}, {3, 4}, {90, ({2, 93, {3, 4, 8}, D)o, ({2}, {3, 4, 8, 9}, D)o, ({2}, {3, 4, 8}, {9)os
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({25 9}- {3’ 4}’ {8})0’ ({2}’ {3’ 4’ 9}’ {8})0s ({2}’ {3’ 4}’ {8’ 9})Os ({2, 8’ 9}: {3}’ {4})Oq
({2, 8}, {3, 9}, {4D)o, ({2, 8}, {3}, {4, 9Dy, ({2, 9}, {3, 8}, {4}, ({2}, {3, 8, 9}, {4})o,
({2} 3, 8}, {4, 9o, (12, 9}, {3}, {4, 8, ({2}, {3, 9}, {4, 8, ({2}, {3}, {4, 8, )y

The 36 trees constructed to separate (X, Y, Z), are introduced in
[1, Supplement No. 3]. They are ended by about 250 leaves. In every leaf there
isn” < 35. Then for every decomposition A4, B, C, of the interval [2, 35] into three
strongly sum-free sets {2, 3, 4} = 4 holds.

The longest proof from all assertions 1.—25. has the assertion 1.

Proof of 1. Let n = 3.

n2n—1]1= | {nn+k 2n—k

1<skg?
=72

If 4, B, C is a decomposition of an interval [n, 14n + 7] for which [n, 2n — 1] ¢
¢ A, then among the 4 following triads (X, Y, Z), there always exists a triad
such that X« 4, Y < B, Z < C for some k;

({n}’ {n + k}9 {27’[ - k})m ({n}’ {n + k’ an = k}9 0)0’
({n’ 2n — k}5 {n + k}’ 0)0’ ({’19 n+ k}v {2n - k}9 Q)O

To reduce the number of bifurcations in trees we arbitrarily add numbers
2n and 4n to every triad (X, Y, Z),. Again we get 36 possibilities for (X, Y, Z),,
and they are as follows:

({n, 4n}, {n + k, 2n — k}, {2n}),, ({n}, {n + k, 2n — k, 4n}, {2n}),, ({n}, {n + k,
2n — k}, {2n, 4n}),, ({n, 2n, 4n}, {n+ k}, {2n — k}),, ({n, 2n}, {n + k, 4n},
{2n — kYo, ({n, 2n}, {n + k}, {2n — k, 4n}),, ({n, 4n}, {n + k}, 2n — k, 2n}),, ({n},
{n + k, 4n}, {2n — k, 2n}),, ({n}, {n + k}, {2n — k, 2n, 4n}),, ({n, n + k, 2n, 4n},
{2n - k}’ 0)0’ ({n’ n+ ka 2"}’ {211 - k, 4n}’ Q)O’ ({ns n+ k’ 2n}9 {2n - k}’ {4n})0a ({n,
n+ k,4n}, {2n — k, 2n}, 0),, ({n, n + k}, {2n — k, 2n, 4n}, 0),, ({n, n + k}, 2n — k,
2n}, {4n}),, ({n, n + k, 4n}, {2n — k}, {2n}),, ({n, n + k}, {2n — k, 4n}, {2n}),, ({n,
n+ kY, {2n =k}, {2n, 4n}),, ({n, 2n — k, 2n, 4n}, {n + k}, 0),, ({n, 2n — k, 2n},
{n + k, 4n}, 0), ({n, 2n — k, 4n}, {n + k}, {4n}),, ({n, 2n — k, 4n}, {n + k, 2n}, 0),,
({n, 2n — k}, {n + k, 2n, 4n}, 0),, ({n, 2n — k}, {n + k, 2n}, {4n}),, ({n, 2n — k, 4n},
{n + k}, {2n}),, (n, 2n — k}, {n + k, 4n}, {2n}),, ({n, 2n — k}, {n + k}, {2n, 4n}),, ({n,
2n,4n}, {n + k, 2n — k}, )y, ({n, 2n}, {n + k, 2n — k, 4n}, 0),, ({n, 4n}, {n + k, 2n},
{2n — k}),, ({n}, {n + k, 2n, 4n}, 2n — k}),, ({n}, {n + k, 2n}, {2n — k, 4n}),, ({n,
2n}, {n + k, 2n — k}, {4n})y, ({n, 4n}, {n + k, 2r — 2n} 0)o, {n}, {n + k,2n — k,
2n, 4n}, 0),, ({n}, {n + k, 2n — k, 2n}, {4n}),.

The 36 trees constructed to separate (X, Y, Z), are introduced in
[1, Supplement No. 2]. They are ended by about 600 leaves. In every leaf it holds
that n” < 14n 4 7 for the number »’, which fulfils (3). Then for every decomposi-

29



tion 4, B, C of an interval [n, 14n + 7] into three strongly sum-free sets it holds
that [n, 2n — 1] < A.

In a construction of trees we have to care about x = an + bk, y = en + dk
in a construction of x + y so that we have an + bk # en + dk, and in x — y we
have an + bk # 2(en + dk) for all k, 1 < k < n/2. Especially, we always use
n+k+#2n—k, e n#2k. If nis even we inspect the position of (3/2)n in
a decomposition A4, B, C separately. Further, we always use b,d = 0, +1. As an
example we introduce a tree beginning with ({n}, {n + k, 2n — k, 4n}, {2n}),.

0) n (1) m,2n+k
n+k,2n—k, 4n n+k,2n—k,4n
2n 2n

2) n (1) n,2n+ k, Sn + k
n+k,2n—k, 4n n+k,2n—k, 4n
2n, 2n + k 2n

(12) n,2n+ k; Tn+ k, 3n|8n + k
n+k,2n—k,4n;:3n+ k, 10n+ k, 4n + k
2n, Sn + k; S5n, 6n + k

Q1) n,4n+ k; 3n|3n+ k 22) n
n+k,2n—k, 4n; Tn+ k n+k,2n—k,4n, 4n + k
2n,2n + k; Sn + k 2n, 2n + k

(111) n,2n + k, Sn + k; Sn, 8n|9n
n+k,2n—k,4n, 6n+k: Tn+ k
2n; 3n, 10n + k, 6n

(112) n,2n + k, Sn + k; 8n + k, 8n
n+k,2n—k,4n;4n+ k, On+ k
2n, 6n + k; 3n, 6n

(221) n, 6n (222) n; 8n+ k
n+k,2n—k,4n, 4n + k n+k,2n—k,4n, 4n + k
2n, 2n + k 2n, 2n + k, 6n

(1121) n,2n + k, 5n + k, 8n + k, 8n|9n
n+k,2n—k,4n,4n + k,9n + k, Tn + k
2n, 6n + k, 3n, 6n

(1122) n,2n+ k, Sn + k, 8n + k, 8n|13n + k
n+k,2n—k,4n, 4n + k, On + k
2n, 6n + k, 3n, 6n, Tn + k
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(2211) n, 6n, 5n + k (2212) n, 6n

n+k,2n—k, 4n, 4n + k n+k,2n—k, 4n, 4n + k
2n, 2n + k 2n, 2n+ k, Sn + k

(2221) n, 8n + k
n+k,2n—k,4n, 4n + k, 9n + k
2n, 2n + k, 6n

(2222) n, 8n + k, 1ln+ k, 9n|12n + k
n+k,2n—=k,4n,4n+ k; 7Tn + k, 8n
2n, 2n + k, 6n, 9n + k; 3n

(22111) n, 6n, Sn + k, 8n + k| 1ln + k
n+k,2n—k,4n, 4n + k; Sn, Tn
2n, 2n + k: 3n,9n + k

(22112) n, 6n, Sn + k; 10n + k, 3n|13n + k
n+k,2n—k,4n, 4n + k; 6n+ k, 7n
2n, 2n+ k, 8n + k; Sn, 11n + k

(22121) n, 6n, Tn + k; 3n|10n + k
n+k,2n—k,4n, 4n + k: 6n + k
2n,2n + k, Sn+ k: 8n + k

(22122) n, 6n; 3n, 3n + k|6n + k
n+k,2n—k,4n, 4n + k, Tn + k; 7n, 5n
2n,2n+ k, Sn+ k; 9n, 3n — k

(22211) n, 8n + k, 5n; 8n|9n
n+k,2n—k,4n,4n + k, 9+ k: Tn + k
2n,2n+ k, 6n, 13n 4+ k, 3n

(22212) n, 8n + k; 11n, 3n|8n
n+k,2n—k,4n, 4n + k, 9n + k
2n, 2n + k, 6n, S_n

For n =1 as by a decomposition into two strongly sum-free sets, also by
a decomposition into three strongly sum-free sets the interval [1, 14.1 + 7] is not
the longest one, but the interval [1, 23] is the longest one. One of decompositions
is for example

A, =11, 2, 4,8, 11,22}
By=1{3,5,6,7. 19, 21, 23}
Cy=1{9, 10, 12, 13, 14, 15, 16, 17, 18, 20).
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All other decompositions differ from 4,, B, C, only slightly, the account of
which is given in the following Theorem 2.

Theorem 2. Let A, B, C be a decomposition of the interval [1, 23] into three
strongly sum-free sets and let 1€ 4 and let B include the first number not
belonging into A. Then

A>o{l,2, 4,8, 11,22}
B> {3,5,6,7,19, 21, 23}
(' >{9,10,12, 13, 14, 15, 18, 20}
and
16, 17¢e C or 16€A4,17¢C or 17e€A4, 16€eC.

From Theorem 2 it immediately follows that the interval [1,23] is the longest
one. as alwayi 2.22€ 4. 3, 21€B. 10, 14e C holds and

24=2+422=34+21=10+ 14.

Proof of Theorem 2. The complete proof is included in [1, Chapter 1]*. We
present here only its separate steps. Let 4, B, C be an arbitrary decomposition
of the interval [1,23] into three strongly sum-free sets. Then

1. {1,2}c A4
Consequence:
3eB
} = A, 3e Bthen4e 4
} = A, 3e B then 5e B
' < A4, {3, 5} = B then 6e B
} = A,{3.5, 6} c Bthen 7e B
7. 1f {1, 2,4} = 4, {3, 5, 6. 7} < B then 8¢ 4.
Consequence:
8. {9,10. 12} = C
9. If{1,2.4,8 < 4.{3,5.6,7} =B, {9, 10, 12} = C then 11€ 4.
Consequence:
10. 13eC
L If{1,2, 4,8, 11} = 4, {3,5,6, 7} = B, {9, 10, 12, 13} = C then 14€C.
12. 1f{1,2,4,8, 11} < 4,{3,5,6,7} = B, {9, 10,12, 13, 14} = Cthen 15€C.
So numbers from the interval [1, 15] are unambiguously decomposed into
the sets 4, B, C in the form
13. Ao {1,2, 4. 8. 11}
B> 13, 5 6,7

Co{9, 10, 12, 13, 14, 18

TIPSR
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* see also [2].



14. 1f 13. then 16¢ B, 17¢ B.

[S. If 13. then numbers 16, 17 cannot belong to 4 simultaneously.

16. 1f 13. then

A>{l,2,4,8, 11,22}
B =1{3,.5,6,7 19, 21, 23}
Co{9, 10,12, 13, 14, 15, 18, 20}

Consequence:

17. 16. 17eC or 16€ 4, 17eCor 17€ 4, 16eC.

The assertion 1. has again the longest proof from all the assertions 1.—16.,
and it is of the following structure:

If A, B, Cis a decomposition of the interval [1, 23] for which {1, 2} ¢ A4, then
XcA, YcB, ZcC for a triad (X, Y, Z),= ({1}, {2}, 0),. To reduce the
number of bifurcations we add the triad of numbers 3, 4, 6 to the triad
(X, Y, Z), using all possible ways. We get 27 possibilities of (X, Y, Z),. The 27
trees constructed from them are introduced in [1, Supplement No. 1]. They
contain about 150 leaves and each of them ends with »” < 23. Therefore, {1,
2} = A for every decomposition A, B, C of the interval [1, 23] into three strongly
sum-free sets.

At the end we present several conjectures.

Let [n, f(n, k)] be longest interval of integers decomposable into k strongly
sum-free sets. Using the above f(1, 2) =8, f(n, 2) =57+ 2, (1, 3) =23,
f(n, 3) = 14n + 7.

Conjecture 1. f(1, 4) = 66.

One of the decompositions of the interval [1, 66] into four strongly sum-free
sets A,, By, Cy, D, is

A, =1{1,2,4,8, 11,25, 50, 63}
B,=1{3,5,6,7,19, 21, 23, 51, 52, 53, 64, 65, 66
Cy = {9, 10} U[12, 18] U {20} U [54, 62]

D, = {24} U [26, 49].

Conjecture 2. f(n, 4) = 41n + 21 for n = 2.
One of the decompositions of the interval [n, 41n + 21] into four strongly
sum-free sets is

Ay=[n,2nlu4n+ 3, 5n + 2Ju[10n + 7, 11n + 6] L
Ull3n+ 8, 14n + 7] U [28n + 17, 29n + 16] L
U3ln+ 18, 32n + 171U [37n + 21, 38n + 20] U
U [40n + 22, 41n + 21]

By=[2n+1,4n+2)u[lln+ 7, 13n 4+ T]uU
U297 4+ 1, 31n + 171U [38n + 21, 40n + 21]
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Cy=1[57+ 3, 10n + 6] U[32n + 18, 37n + 20]
D, = [14n + 8, 28n + 16]

Conjecture 3.

k—1
fin, k)=k —1+ @ "+ Dn+ Y 227" f(n, 5) + 1)
s=1

while
f(n, 1) = 2n.
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94901 Nitra

SUHRN

ROZKLAD CELOCISELNEHO INTERVALU NA TRI OSTRO
SUMOVO-RIEDKE MNOZINY

Julius Bacik, Nitra
V tejto praci su zhrnuté vysledky z autorovej kandidatskej dizertacnej prace [1]. podla ktorej
najdlhsi celo¢iselny interval
[n, N]={n,n+ 1, ..., N}

ktory sa da rozlozit na tri mnoziny tak, Ze ani v jednej nie je riesitelna rovnica x + y = z. x # y. pre
n 2 2sarovna [n, 14n + 7] a pre n = | sa rovna [1, 23].
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PE3IOME

PA3BMEHUE LEJIOYUCJIIEHHOI'O MPOMEXYTKA HA TPU MHOXECTBA,
HE COIOEPXAUNME CYMMbI CBOUX YJIEHOB

KOnmnyc Bauuk, Hutpa

B pabore usnaraioTcs pesynbTaThl KaHAMAATCKOM AMCCEpTalMK aBTopa [1], B KoTOpO#t KOKa-
3aHO, YTO LEJOYHCICHHbIH IPOMEXYTOK

[0, Nl={n,n+1, ..., N}

MaKCHMaJIbHOH [IMHBI, KOTOPBIi pa3yiaraeTcs Ha TPH TAKME MHOXCTBA, YTO HM B OJHOM U3 HHX
YPaBHCHHE X + y = z, X # y HE HMEET PEIUEHHs Ul n 2= 2, paBeH [n, 14n + 7] u qis n = | pasen
[1, 23].
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