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Abstract. We shall study DCS with couples of equal moduli. For a (2,2)-DCS (see the definition
below), the moduli are determined by knowing which couples of moduli are equal. For a (2,2,2)-DCS
we have five different forms of moduli. A conjecture shall be made about the least number of moduli,
and some modulus of the form 2°3%p°, where a, b and ¢ are nonnegative intergers, and p is a prime
number greater than 3.

I. Introduction

A system of congruences
ag(modn) 0=<a<n j=12,..,k §))

wherek = 2and n) < n, < ... < n;is said to be a disjoint covering system (DCS)
if every interger belongs to exactly one congruence in (1).

Lemma 1. If (1) is a DCS, then

a) the equality

holds;

b) forevery i,j=1, 2, ..., k, we have (n;, n) > 1, where (x, y) denotes the
greater common divisor of numbers x and y.

Lemma 2. If (1) is DCS and z is a complex number, with |z| < /. Then the
equality

holds.



Lemma 3. (Porubsky) (see [2]). Let p, b,, b,, ..., b,, m be intergers with
25p=s50=bh <by<..<b,<m. Let

exp (—25 b.) + exp (2_7:1 bz) + ... +exp (2_7:1 bp) =0.
m m m

Let no partial sum of this sum vanish. Then

a) the congruence b, (mod m/p) contains exactly those integers which be-
long to the system

b, (mod m), b,(mod m), ..., b,(mod m)

if p=2,3and S;
b) the case p = 4 is impossible.
Theorem 1. (Davenport, Mirsky, Newman and Rado). If (1) is a DCS, then

nk,, =nk.

Definition. We say that a DCS is an (m,, m,, ..., m)-DCS if it has an mtuple
of equal moduli for each i = 1, 2, ..., ¢, with the remaining moduli being distinct,
such that the m-equal moduli are smaller than the m, , -equal moduli, for i = 1,
2, ..., t — 1. For instance a (2,3)-DCS has a couple and a 3-tuple of equal
moduli, such that

n|<n2<...<nj_|=n_’-<nj+l<...<n,\._2=nk_|=nk

with j < k — 2.
Theorem 2. (Stein) (see [3]). If (1) is a (2)-DCS, then

n=2 for i=1,2,..,k—1, n =21
Theorem 3. (Znam) (see [4]). If (1) is a (3)-DCS, then
m=2 for i=1,2,..,k=3, n_,=n_,=n,=3.2-"3
Theorem 4. (Porubsky) (see [2]). If (1) is a (4)-DCS, then

n,-=2i fOl‘ i=1,2, ...,k—4, nk_3=nk_2=nk_|=nk=2k_2

or
n,-=2i fOl’ i=1, 2, ..-,k_S,nk_4=3‘2k_5,
— st — — k—4
nk_3—nk_2—nk_|—nk—3'2 .

The following conjecture was made by Znam: in a (2,2)-DCS the moduli are
of the form

2°.3*, 0<b<1, a are nonnegative integers.



Further, Znam made the following question: in a (2,2,2)-DCS are the
moduli of the form

243", 0<b<2, a are nonnegative integers.

The problem is solved in the following theorems.

I1. The theorems

Theorem 5. Let (1) be a (2,2)-DCS such that
n, < nz < o0 B nk__(w+]) = nkaw <nk_(w_|) < vee < nk_] = nk. (2)
Then we have
m=2 for i=1,2,..,k—(w+2)

Mp _waty =My, =3.2670+D 3)

m=32"% for i=k—(w-1),...,k—-2

nk_l = nk = 3‘2’(—3.

Proof. By induction on k. The least k for a (2,2)-DCS is 4. Let (1) be
ag(modn) j=1,2,34 with n=n,<n,=n, “4)
By Lemma 1, a) we have

1 1 1
-t —=-—. 5
n, ny 2

By (4) and (5) n, < 4. By (5) n, > 2. Therefore n, = 3 and n, = 6. The moduli of
(4) fulfil (3) for k = 4 and w = 2. Assuming we have proved the theorem for
h < k, we shall prove it for k, considering two different cases.

A. Let w = 3. By Lemma 2 we have

1 a L) T — 2 Ak~ | Z"k
it S ALV A S ) ©)
l—z 1" 1-2" 1 —z%2 1 2%

Let z tend to exp (2_711) , with |z] < 1, in (6). Then, analogously to the proof of
ny
Theorem 1 in [4], we obtain

exp <2—-—m a_ 1) + exp (2—m- ak) =0.
ny ny

Suppose g, _, < @;, by Lemma 3 we obtain from (2) a DCS



a(modn) j=1,2,..,k—2

(7
o)

With ey 1y = M _ 3
w 2 3 implies n,_y < n _, in (7), then by Theorem 1

And then we have obtained a (2,2)-DCS with k& — 1 moduli. By induction
hypothesis the moduli fulfil (3). Then making the change n, = 2n, _,, the moduli
of (2) also fulfil (3).

B. Let w = 2. Then (2) becomes

nl<n2<...<nk_4<nk_3=nk_2<nk_|=nk. (8)
i) Suppose %<n,‘_2 and%#nj forany j=1, 2, ..., k — 4. Then (7) is

a (2)-DCS. By Theorem 2 % =2 for some i=1, 2, ..., k—3, then
n, =2"*' < n, _, which is a contradiction to (8).

ii) Suppose % <n,_,and %= n;for some j =1, 2, ..., k — 4. Then (7) is

a (2,2)-DCS with k — 1 moduli. By induction hypothesis % = 3.2~ for some
j=1,2, ..., k—4; then n, =3-2, n,_,=3-2""* which contradicts (8).
From i), ii) and the fact that % > n, _, contradicts Theorem 1, we have

%= n,_,. Then (7) is a (3)-DCS. By Theorem 3 the moduli are

n=2 for i=1,2, .., k—4, nk_3=nk_2=%=3-2"“.

Therefore the moduli of (2) fulfil (3) which proves the theorem.

Example of a (2,2)-DCS
0 (mod 2)
1 (mod 4)
3; 7 (mod 12)
11 (mod 24)
23; 47 (mod 48).
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The moduli are of the form (3) for k =7 and w = 3.
Theorem 6. Let (1) be a (2,3)-DCS such that

n, <n2< . sie <nk__(w+”=nk_w<nk_(w_|)< veis <nk__2=nk_| =nk. (9)
Then we have one of the following cases:

n=2 for i=12 .., k—(w+2)

nk—(w+l)=nk—w=3-2"_("*2) (10)
n=3.2-2 for i=k—(w—-1,k—w-=2),...,.k—3

My =M_,=n,=32.2k"5;

n=2 for i=1,2,..,k—6

nk_5=3'2k_6 (11)
M_g=M_3=3-27°

Me_y=n_=n =326

=2 for i=1,2,..,k—35

nk_4=nk_3=2k_3 (12)

- = — k—4
nk_z—nk_l—nk—3'2 .

Proof. We shall consider two different cases.
A. Let w > 4. In an analogous way to the one we have used to prove

%5 = n,_, for w = 3 in Theorem § part A, we now can prove % =N _;.
Suppose @, _, < a,_, < a, then by Lemma 3 we obtain from (9) a DCS

ag(modn) j=1,2,..,k-3
( "k) (13)
a,_, mod ?

which is a (2,2)-DCS with £ — 2 moduli. By Theorem 5 the moduli of (13) are
of the form (3). Therefore, after some changes the moduli of (9) fulfil (10).
B. Let w = 3. Then (9) becomes

<M< ...<W_g=N0_3<N_,="N_,=n. (14)
We shall study different cases: ,
i) If % = n, _,, then we can modify (14) into a (3)-DCS. By Theorem 3 and
changing n, for 3n, _, we have obtain the moduli of (14) in the form of (10).
11



i) If n,_5 < % < n, _4 then we have a (2)-DCS. By Theorem 2 and after

some changes we obtain the moduli of (14) in the form of (12).
iii) If % = n, _s, then we can obtain a (2,2)-DCS with £ — 2 moduli, from

(14). By Theorem 6 and after some changes we obtain the moduli of (14) in the
form of (11).
iv) We now shall prove that i), ii), and iii) are the only possible cases. First,

%> n, _, is impossible because of Theorem 1. Suppose -’;—"< n,_s and % is
different from all the smaller moduli, then we have a (2)-DCS. By Theorem 2 we

have n, _s=2"* n_,=mn_,=2¥"3and %= 2' for some t < k — 4. Then

_ _ n
n, < 2'*? < 2¥-3 which is a contradiction to (14). Now suppose ?" <n,_,and

%*-: n, for some j=1, 2, ..., k — 6. Then we have a (2,2)-DCS with k — 2

moduli, by Theorem 5

nj=ﬂ=3-2j“ forsome j=1,2,..,k—6 and
3

Me_g=n,_3=3-2"5 then n,<3-2+'<3.2k"5=p,_,
This is a contradiction to (14), which finishes the proof of our theorem.

Examples of (2,3)-DCS.
Form (10) fork =7 and w = 4
0 (mod 2)
3; 5 (mod 6)
‘ 7 (mod 12)
1; 13; 25 (mod 36).
Form (11) for k =7
0 (mod 2)
5 (mod 6)

1; 7 (mod 12)
3;9; 15 (mod 18).

12



Form (12) fork =6

0 (mod 2)
3; 7 (mod 8)
1;5;9 (mod 12).
Theorem 7. Let (1) be a (3,2)-DCS such that
n, < n2 <.. < nk_(w+2) = nk_(w+|) = nk_w < nk__(w_ 1) < e < nk_l = nk. (15)
Then we have one of the following cases:
n=2 for i=1,2, ..., k—(wW+3)

e — k — (w
P wrd) = M guyry= My, =2"0+D

n,=2-" for i=k—-w—-1,k—(w=2), ....k=2 (9
ne_y=n =22 l
n=2 for i=12 ., k—(w+4
My _goyy=3-2670%9
nk—(w+2)=nk—(w+l)=nk—w=3'2k—(w+3) (17)
n=3.2"3 for i=k—-(w—1),k—(w—2), ..., k—2
My =m=3-274
n=2 for i=1,2,..,.k—(w+)5)
nk—(w+4)=3'2k_(w+5);nk—(w+3)=3°2k_(w+4)
nk—(n-+2)=nk—(w+l)=nk—w=32'2k—(u‘+5) (18)
n=32"% for i=k—-(w=1,k—(w=2), ..., k-2
B =N, = 3.2=3;
n=2 for i=12, ..., k—w+4)
nk_(w+3)=2k—(w+2)
nk—(w+2)=nk—(w+|)=nk—w=3'2k_(w+3) (19)
n=2-2 for i=k—-(w—-1),k—(w=2),...,k—2
nk_]=nk=2k—3.
Proof. By induction on k. The least k for a (3,2)-DCS is 5. Let (1) be
a(modn) j=1,2,3,45 with n =n,=n;<n,=n;. (20)
By Lemma 1, a). We have '
1‘{-£=l. (21)
ny ns
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By (20) and (21) we have 3 < n; < ns and ny < 5. Therefore n; = 4 and n; = 8.
Then the moduli of (20) fulfil (16) for £k =5 and w = 2. Assuming we have
proved the theorem for 4 < k we shall prove it for k. As above, we consider two
different cases.

A. Let w = 3 then, analogously to A of Theorem 5 we obtain % =N _»

Then we have a (3,2)-DCS with k£ — 1 moduli. By induction hypothesis the
moduli are of one of the forms (16) through (19). Changing n, for 2n, _, we find
- that the moduli of (15) are of the required form.

B. Let w = 2. Then (15) becomes

n|<n2<...<nk_4=nk_3=nk_2<nk_‘=nk. (22)

We shall study different cases:

i) If % = n, _,, then we can obtain a (4)-DCS. By Theorem 4 and after
some changes, the moduli of (22) are of the form (16) or (17).

i) If% =n;forsome j =1, 2, ..., k — 5, then we can obtain a (2,3)-DCS,
from (22). By Theorem 6 the moduli of (22) are of the form (10), (11) or (12).

a) If they are of the form (10),'then we have: 5125= 3.-2-! for some j =

=1,2,..,k—5andn,_,=3*2""5 Thenn, = 3-2 < n, _,, which is a contra-
diction to (22).

b) If they are of the form (11), then we have: % =3.2¥"% and
n, _, = 32.2""7. Then the moduli of (22) are of the form (18) for w = 2.

c) If they are of the form (12) then we have: 225=nk_5=2"“ and

n, _, = 3-2"% Then the moduli of (22) are of the form (19) for w = 2.
iii) Ifi'zﬁ <n,_,and % #n foranyj=1,2, ..., k — 5 we have a (3)-DCS.

By Theorem 3, 22’5 =2 forsomei=1,2, ..., k—4, and n,_, =3-2*"* Then
n, < n; _,, which contradicts (22).

With 1), ii), iii) and the fact that % > n, _, contradicts Theorem 1, we have

finished the proof of the theorem.
14



Examples of a (3,2)-DCS.
Form (16) fork =6 and w =2

0 (mod 2)
1;3; 5 (mod 8)
7; 15 (mod 16).

Form (17) fork =6 and w = 2

0 (mod 3)
1;2;5 (mod 6)
4; 10 (mod 12).

Form (18) fork =8 and w = 2

0 (mod 2)

1 (mod 6)
5 (mod 12)
3;9; 15 (mod 18)
11; 23 (mod 24).

Form (19) for k =6 and w = 2

1 (mod 4)
0;2; 4 (mod 6)
3; 7 (mod 8).

Theorem 8. Let (1) be a (2,2,2)-DCS, such that

n| < n2 < ... <nk_w_(_.+])= nk_w_: <I1k_w_(:_” L g

(23)
...<nk_(w+|)=nk__w<nk_(n._])<...<nk_|=nk.

Then we have one of the following cases:
n=2 for i=12 ...,.k—w—(z2+2)
My ooty = Mo = 322676+
n=32"2 for i=k—-w—0c—-1),k—w—(2-2), ... k—(w+2)

2. k= (044 24)
Mty = Moy =32

n=3.2"% for i=k—(w—1,k—w-=2), ..., k=2
nk_l =nk= 32'2k—5;

z=2 and
n=2 for i=12,...,k—(w+5)

k—(w+S5
nk—(w+4)=3'2 o)

15



16

— — k—(w+4)
M ey =My =327

Mo 1) = My = 3225~ 6 +9)

n=3.2"% for i=k—(w—-1,k—w=2), ...
Ry .y =y = 32,256

z=2 and

m=2 for i=1,2, .., k—(w+4)

M a3 = Mgy =202

My geyty ="My, =3:28"0+3

n=3.2"3 for i=k—(w—1),k—w=2),...
Wy =, =324

z=2 and

m=2 for i=1,2, .., k—(w+6)

— k—(w+6)
nk-(n'+5) - 3'2

_— k—(w+5)
M oy = 3227~

i — 2,9k =(w+6)
nk—(u'+3)—nk—(w+2)—3 .2 '

nk—(w+|)=nk_w=3,2k—(w+4)

m=322"% for i=k—(w—1),k—(w=2), ..
My =m =327, A

z=2 and |

m=2 for i=1,2,..,k—Ww+5)

Pe vty = 2k —(w+3)
nk-—(u'+3)=nk_(“.+2)=3.2k—~(n-+4) )

— — Yk —=(v+2)
nk—(u'+]) =N = 2

n=32"% for i=k—(w—=1,k—(w=2), ...

= — k—35
nk_l—nk—3‘2 .

(25)
k=2

(26)
k=2

@7)
k=2

(28)
k=2

Proof. By induction on k. The least & for a (2,2,2)-DCS is 6. Let (23) be

a(modn) j=1,2,..,6
n]=n2<n3=n4<n5=n6.
By Lemma 1, a) we have
1 1 1

1
—+—t+—=-
n, n, ng 2

with (29)

(30)



By (29) and (30) we have
2<n,<n,<ng. @31

By (30), (31) and Lemma 1, b) we have 2 < n, < 5.

a) Let n, = 3, then we have L] + 1 = %by (31), then 6 < n, < n,. Therefore

n, < 12. By Lemma 1, b) we have (n,, n,) > 1, then n, = 9, and then n, = 18. So
the moduli of (29) fulfil (24), for k=6, w =2 and z = 2.

b) Letn, = 4, then wehavel+ 1 = i S04 < n, < ngand then n, < 8. By
Lemma 1, b) we have (n,, n,) > 1. Then n, = 6 and n, = 12. So the meduli of (29)
fulfil (26) for k = 6 and w = 2.

Assuming we have proved the theorem for h < k we shall prove it for k. As
above, we consider two different cases.

A. Let w = 3. Analogously to A of Theorem 5 we can prove thatzz'£ =N _,.

Then we have a (2,2,2)-DCS with k£ — 1 moduli. By induction hypothesis the
moduli are of the required form. Changing », for 2n, _, we have that the moduli
of (23) are of one of the forms (24) through (28).

B. Let w = 2. Then (23) becomes

n, <n2 & <nk_2_(:+|)=nk_2__: <nk_2_(:_l) = e (33)
e <nk_3 = nk_2<nk_| =nk.
We shall study different cases:
. n .
i) Let 3" = n, _,, then we obtain (from (33)) a (2,3)-DCS
nl < nz < ... <nk_2_*(__.+|)= nk_z_z<nk_2_(:_l) < ... (34)
ny

< nk_3 = nk___2 = —.
By Theorem 6 the moduli of (34) must be of one of the following forms:

a) Form (10), then we have

n=2 fori=1,2,..,.k—2—-(z2+2)
- 3.2k—2—(:+2)

e 3 c+1)y=M—2-:
n,-=3-2"‘2 fori=k—-2—-cz—-1),k—2—-(z-2),...k—4
n .

_k=nk_3=nk_2=32‘2k_6.

2
17



Then the moduli of (33) are of the form (24) for w = 2.
b) Form (11); then z must be equal to 2 and

n=2 fori=1,2, .. k-1
nk_6=3'2k_7

_ — 2.9k—6
M s=M_q=3-2

ny 2 k-7
—=nk_3=nk_2=3'2 .

2
Hence the moduli of (33) are of the form (25) for w = 2.
¢) Form (12). Then z = 2 and

n=2 fori=1,2,..,k—6
W_s=m _4=2"7"4

ﬂ =03 =N 3= 3'2k_5.
Hence the moduli of (33) are of the form (26) for w = 2.
i) Let% =n, _,__, then we can obtain (from (33)) a (3,2)-DCS with k£ — 1

moduli

n,
n‘ <n2< 0 <nk_2_(:+])=nk_z_:=—2_“\ilk__2_(:_|)< o ¥
(35)

...<nk_3=:nk_z.

By Theorem 7 the moduli of (35) must be of one of the following forms:
a) Form (16). Then we have

ny k—2-:
3=nk—2—:=nk—2—(:+l)=2 and

nk_2=2k_3. Then nk =2k_(:‘.])> 2k_3=nk_2

implies z < 2. A contradiction to (33).
b) Form (17). Then we have

B _ 3.9k-2-G+2 gnd p, _, =3.2¢"5,
no=3.2"¢+953.2k=5=p,_, implies z < 2.
A contradiction to (33).

18



¢) Form (18). The we have
Bk _ 32.9k=2-G+4 and p, _, = 3.2k~°,

no=3%22k"C+953.2k=6=p _,implies z < 2.

As z = 1 cannot be, we have z = 2.
Therefore (35) becomes

n|<n2<...<nk_5=nk_4=%<nk_3=nk_2 (36)
with

n=2 fori=1,2, v k—8

nk_7 = 3'2k_8

nk__(, = 3'2k—7

=M _ 32.9k-8

e _s=M_4=

nk__3 = nk_2 = 3'2k_6.
Then the moduli of (33) are of the form (27) form (27) for w = 2.
d) Form (19). Then we have

B _ 3.0k-2-G+2 gpd My _p=28"4
> _

n=3.2k-¢+3 5 2k=4implies z < 2. Then z =2
andn,=2fori=1,2, ..., k—7
my_g=2""°

n -
”k-s="k-4=;k=3'2k 6

nk_3 =n,_,= 2k—4.
Therefore the moduli of (33) are of the form (28) for w = 2.

1ii) Let% = n, for some j such that »; only occurs once in (33). Then we can

obtain, from (33), a (2,2,2)-DCS with k — 1 moduli. By induction hypothesis
this DCS will have the moduli of one of the forms (24) through (28). Making the
change n, for 2n; we obtain the moduli of (33) in the required form.

iv) Let %;& n; for any j=1, 2, ..., k—2 in (33). Then we can obtain
a (2,2)-DCS:
19



a) If%<n,(_2_:,thenn.,_l <%<njforsomej= 1,2, ..,k—2—(z+1)

which implies, by Theorem 5,—’;—" < 2k-2-CG+Vputp, , =3-2"* which implies
z = 0. A contradiction to (33).
b) Ifn, _,_. <%< n, _,, then '—;’1= 3.2-*forsome j=k—2—(z—1),

k—2—-(z-2),....k—3.Thenn, =3-2"'<3.2""*=pn, _,. A contradiction
to (33). This finishes the proof of the theorem.

Examples of (2,2,2)-DCS.
Form (24) fork =9, w=3 and z =3

0 (mod 2)
3; 5 (mod 6)
7 (mod 12)
13; 25 (mod 36)
37 (mod 72)
1; 73 (mod 144).

Form (25) fork=9and w =3

0 (mod 2)

5 (mod 6)
3; 9 (mod 12)
7; 13 (mod 18)
19 (mod 36)
1; 37 (mod 72).

Form (26) fork =9 and w =3

0 (mod 2)

1; 5 (mod 8)
7; 11 (mod 12)
15 (mod 24)
3; 27 (mod 48).

Form (27) fork =10 and w =3

0 (mod 2)
5 (mod 6)
7 (mod 12)

20



9; 15 (mod 18)
1; 13 (mod 24)

21 (mod 36)
3; 39 (mod 72).

Form (28) fork =9 and w =3

0 (mod 2)

1 (mod 8)
7; 11 (mod 12)
5; 13 (mod 16)
15 (mod 24)
3; 27 (mod 48).

All the DCS in the theorems are Natural Covering Systems (see definition
in [2']).

Remark. In the paper [4] Znam made the following (false) conjecture: If in
a DCS there exist only pairs of equal moduli (no three being equal) then all
moduli are of the form 2°.3°, where a and b are nonnegative integers.
N. Burshtein and J. Schonheim (see [1]) found a counter-example to this
conjecture constructing a DCS with 8 pairs or equal moduli (no three moduli
being equal) and with the moduli of the form 27-3%.5¢, where a, b, and ¢ are
nonnegative integers.

It seems possible that by the methods used in the proofs of the above
theorems, it can be proved that a DCS with only couples of equal moduli, up
to 7 couples, has the moduli of the form 2°-3’, a and b being nonnegative
integers. Then, 16 will be the least number of moduli (i.e., 8 couples of moduli)
for a DCS satisfying:

1. There are only couples of equal moduli.

2. A prime number greater than 3 divides at least one modulus.
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SUHRN

ZOBECNENIE NIEKTORYCH VYSLEDKOV O PRESNE .
POKRYVAJUCICH SUSTAVACH

Margarita Otero, Madrid
V praci je okrem iného ukazané, Ze ak v presne pokryvajicej sustave s niektoré dve dvojice

modulov rovnaké, potom vietky moduly maju tvar 2°3%. Podobny vysledok je ukazany aj pre presne
pokryvajuce sustavy, v ktorych s rovnaké jedna dvojica a jedna trojica modulov, ako aj pre tri

dvojice rovnakych modulov.

PE3IOME

OBOBHIEHHWE HEKOTOPBIX PE3VJIbTATOB KACAIOIIUXCS AU3IBIOHKTHBIX
TMOKPBIBAIOIINX CUCTEM

Maprapura Otepo, Manpun
B pa6oTte xpoMe npoyero AoKa3aHa CleAyioilias TeopeMa: ecjii B JM3BIOHKTHO# NOKPLIBAIO-
mei CHCTeMe JBe Napbl MOAYyJel COBNAJAIOT, TO BCE MOMYIH HMEIOT BHA 2°3°. Ananorwymbiii

pe3y/bTaT AOKa3aH H JUIA AH3BbIOHKTHBIX MOKPHIBAIOLIMX CHCTEM, B KOTOPLIX COBNIAAET OAHA Napa
M OJIHA Tpo#ka MOJyJICH, HJIH JUIf TPELX NMap COBNAJaIOLIHX MOIYJICH.
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