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Introduction

Constructing the real numbers we shall point out that quality of theirs
which will help us express the quantitative relations between objects and world,
i.e. the fact that they can be compared, added, multiplied and divided. To each
physical quantity which can be measured a number is attributed. In formal
opinion we can summarize these demands into axioms and we can construct this
theory axiomatically. That allows us to find out which properties of the solid of
real numbers are fundamental and thus we can penetrate easier into the structu-
re of proofs. We construct here the real numbers from objects that were
constructed beforehand. Concrete models of real numbers warrant out theory
is not contradictory and also they show us the way how to table the real numbers
to the physical quantity in the act of measurement.

In our view, the introduction of the theory of real numbers into the
curriculum at secondary schools by using models constructed by the theory of
sets (for example: with the help of Dedekind cuts or using classes of Cauchy-
-sequences) is not advisable. As for thinking it is too exact for very big abstrac-
tion which is necessary to the notion of a real number. Further, this abstraction
hinders an exercise of operations with real numbers and algorithms necessary to
the numerical calculus of special functions and their evaluations. Also the

axiomatical method is not advisable for the curriculum of secondary schools
because it misses continuities and it turns an attention out of concrete calculus.

In this paper we shall give an outline of the school programme of the theme
“Real numbers” for secondary schools and for universities. As for the course of
mathematics at secondary schools, the main idea is given in an identification of
real numbers with decimal expansions with respect to the paper [1] (also see [7]).
As for the course of mathematics in universities, the basic idea is located in an
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axiomatic method which is connected with a model constructed through Cau-
chy-sequences, i.e. by using the theorem of existence of a closure of a metric
space. We prefer this model to others because it gives us the construction of
p-addic numbers as well (see [2]). We shall deal not only with the proof of the
unicity of the field of real numbers (i.e. of categoricment of axioms) but also
with the proof of the unicity of the fields of complex numbers, quaternions and
Cayley numbers. We shall start from the field of rational numbers whose
properties we shall consider well-known.

Real numbers at secondary schools

At present in text-books [3], [4], the real numbers are presented as points on
the numerical axis [3, p. 127]. It gives a possibility to construct the sum, product
and quotient geometrically and to show the existence of a calculus of the second
root of a number [4, p. 146]. This procedure of a construction with the help of
a ruler and circular cannot be used by the higher roots of numbers, by the
evaluation of exponential, logarithmical and trigonometrical functions. There
are indroduced no algorithms for an evaluation of elementary functions in these
text-books (without [4, p. 170—171]). The authors of [3], [4] stand on the
positions of an actual infinity. From this aspect, the function is something
finished, evaluated-tabled once forever. The function is the set of couples (in
which no couple has the first co-ordinate the same and the second co-ordinate
different simultaneously [4, p. 15]), which are selected according to some com-
mon property (for example: they fulfil some equality [4, p. 30]). The verification
of this property was made for all couples long time ago; the way of verification
is not important. From this point of view, in the text-books [3], [4] only the
algebraic properties of elementary functions are exercised.

In this didactic remark we shall turn the reader’s attention to the fact that
the algorithm of developing real number into a decimal expansion gives us the
possibility to construct the theory of real numbers as a theory of decimal
expansions in which the elementary functions will be introduced with the help
of that algorithm. We think that the idea of a function as a set of couples on the
one hand and as an algorithm-calculation on the other hand are two equall-
-valued sides of the same matter and they should be substituted equally in
secondary text-books.

As the real number a we shall understand an arbitrary formal infinite sum
on the right side of an equality

a=a, 100 +a,_ - 100"+ ... + g, + %=1 4 %2

10 100
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or its record in a shorter form:

a=aa, ,.Qy,ad_,da_,... ' (1)

wherea, #0asn>0,0<qg,<9foralli=nn—1,...,0, —1, —2, .... In the
following we shall say that the right side of (1) is called a decimal form of
a number a or a decimal expansion of a number a. The non-negative integers
a_, are called digits of the k-order in this expansion. The two following expan-
sions

a,a, _...ay, A_,a_,...a_;999...9...
a,a,_,...ay a_a_,...(a_, + 1)000...0...,

where a_, < 9 can be identified because they present one real number only. We
will speak about a finite decimal expansion if there exist only zeros behind some
digit in that decimal expansion; sometimes we can omit the zeros in a record (1).

If those decimal expansions would be real numbers they have to satisfy the
following properties:

(a) For each physical quantity we can table numbers in a decimal represen-
tation by a measurement, especially for longitudes.

(b) All rational numbers can be written in a decimal form. There are
decimal expansions which present no rational numbers.

(c) We can find out which one of two real numbers in a decimal representa-
tion is a greater than the other or when they are equivalent. We can insert the
third number in a decimal form between two different real numbers.

(d) We can find a limit (if it exists) in a decimal form to the sequence of
numbers in a decimal form. We can find the bound of a bounded set of real
numbers in a decimal representation.

(e) We can find the sum, difference, product and the quotient in a decimal
form for each two real numbers in a decimal form so that the commutative,
asociative and distributive laws are fulfilled. We can find also the inverse element
for addition and multiplication.

(f) We can calculate values of elementary functions for each real number
in a decimal representation once more in a decimal representation.

In the following, we shall distribute the properties (a)—(f) in sections in that
way as they will be introduced in secondary schools. We shall always accent the
numerical-constructive side of investigated objects. We shall not consider suitab-
le to introduce the total proofs of an existence of objects (limits, functions) in
a course of mathematics in a secondary school. We shall introduce them in
a part of an university-course of math which will be prepared. The proofs will
be made on a basis of decimal expansions which will be present by separate
classes of Cauchy-sequences. :
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(a) The measurement of abscissas. Let us choose a length of the abscissa 4B
as a unit length. We have an arbitrary abscissa CD and we denote its length
a. We can measure the length of the abscissa CD with the help of abscissa 4B
and we can express a result of measurement in a decimal form in the following
way:

We denote by [e] a number of possibilities to place the abscissa AB on CD
and we denote by {a} the length of that abscissa in CD which rests after this
placement (let it be C,D).

Similarly, we denote by [10{a}] a number of possibilities to place the abscissa
AB on an abscissa which is 10-times longer than C,D and by {10{a}} we denote
the rest of this placement, and so one. Then we have

10(a} _ o, [10{a}] , (10a} _

a=[a]+{a}=[a]+T [a] T T o
_ (g + [100@] | 100100} _
10 107

and so one. Now, if we put down the integer [a] in a decimal representation:
[a] =a,- 10"+ a,_,-10""'+ ... + q,

and we denote
a_, =[10{a}], a_, = [10{10{a}}], ...

we get the length a in a decimal form (1).

On the other hand, we can construct an abscissa CD to each decimal
number « in the form (1) so that we get this number a from its length by
algorithm (3): Firstly, we construct an abscissa of the length a,a, _,...a, with the
help of an unit abscissa 4B; then we complete it with an abscissa which is

a_,-multiple of an abscissa which length is equal to L of the length 4B, and so
one. L

Exercises

1. Apply algorithm (3) to concrete examples; especially to measuring a dia-
gonal in an unit square.

2. Find a corresponding length to a given number which has a finite
decimal expansion.

(b) Decimal expansions of rational numbers. We can directly use the algo-

rithm (3) for an expansion of a rational number a = ? from this canonical form,
q
if we denote by [a] the greatest integer which is not greater than @ and by {a} the

fractional part of ¢, i.e. {@} = @ — [@]. From that we have
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It is an extension of a well-known algorithm of division p:q of two integers with
digits which are standing on decimal places. As the fractional parts

El{of. fuforf -

which appear in (4) can only be of the form

012 4-1

9949  q
They have to repeat, therefore the decimal expansion (4) will be periodic. We can
abridge it and write « in the representation

a=a,a, ,...0p, d_1A_3..0_;A_ 4 1)-Q k4 m) (5)

where the last m digits present a period and a_,a_,...a_, is a foreperiod.
On the other hand, given any periodic decimal expansion (5), there exists

a rational numberZ in a canonical form which can be obtained by usingl—) in the

q
algorithm (3). We calculate it from the following equations:

p_1p

g = 10 4 +aa,_;..a, a_a_,..a_;
(6)
Bo_2oyom - A+ )=+ =k + my
9 9o

The last equation presents the calculation of o with a pure-periodic expan-
sion 0, @_ gy, 1)@ 4 2)--A_ 4 my o

By section (a), each decimal expansion represents some length and in
particular a non-periodic expansion represents the length of some abscissa
which cannot be expressed by a rational number. This was the main reason for
completing the rational numbers with the other numbers, i.e. irrational num-
bers, which are identic with non-periodic expansions in our point of view. The
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diagonal of a unit square was the first well-known abscissa with that properties.
Euclid showed the proof in his “Principia” in the following way: If a diago-

nal of a unit square has a length which equals a rational number 2 , then it would
q

2
be <[—)> = 2 according to the Pythagoras theorem. But this equation has no
q

solution in rational numbers. This follows from the theorem on the unique

decomposition of an integer into a product of primes (Euclid showed that using
his algorithm).

This result caused a crisis in the atomic concept of the space, especially of
the length. In fact, if the unit abscissa 4B included g atoms and another abscissa
CD included p atoms then the length of abscissa CD would be expressed in

a form 2 by using the unit abscissa AB.
q
All our numerical calculus is performed in a finite time and by using rational

numbers only. From that point of view, the extention of rational numbers by
non-periodic numbers (i.e. not finite expansions) seems to be forced by a philo-
sophy of mathematics only and to have no practical importance. The contrary
is true. For example: The irrational number 7 acts in the calculus of a circulating
course of satellites. The more complex experiments we make, the more precisely
we need to know the number 7. We would never write it in the whole, but we
need to know a method-algorithm using which we can evaluate the next term in
its decimal expansion whenever we need it.

Also, to know an irrational number means to know an algorithm by which
we can evaluate any digits in its decimal expansion. We identify that number
with its algorithm.

Exercises

1. Exercise the expansion of a rational number given in a canonical form
into its decimal representation and verify

(i) the decimal expansion of a number Pis pure-periodic and infinite if the
q
denominator ¢ has no common divisor with a number 10;

(ii) the decimal expansion of a number P is finite if q = Q.55
9 .
(iii) the decimal expansion of a number £ is infinite with a foreperiod if the
q
denominator ¢ is divided by 2 or 5 and also if ¢ is divided by a number which
is not divided by 2 or 5.

2. Exercise algorithm (3) in which the number 10 is substituted by 2 (i.e. it
means an expression in the binary system).
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3. Exercise calculating a rational number back in a canonical form from
a given periodical expansion (6).
4. Construct non-periodical expansions, for example

{] if k is a square
=% .
k 0 in other casses.

5. Prove the irrationality of 3\/5 by using the Euclidean method, similarly
for\/i+\/§,\/§+\/§+\/§.

6. Exercise the following Estermann’s proof of the irrationality of v/2 in
which the fundamental theorem of arithmetics is not used for other roots.

Let \/2 be a ratinal number. Then a set A of all positive integers k such that
kﬁ is a positive integer is not empty and then it has a minimum and we denote
it k. Then we have

(1) koﬁ — ko is a positive integer,

(ii) kO\/E — k,€ A because \/5 (e — ko) = 2k, — ﬁko is again a positive
integer,

(iii) ko\/i — ko < ko which is a contradiction with the fact that k, is the
minimum of the set A.

(c) Ordering. Two real numbers @, § in the decimal representation

a= a,,a,,_ |...a0, a_]a_z...
ﬂ: bmbm— |...b0, b—lb—-Z"'

fulfil the inequality @ < Bif it is not the case (2) and if it is true either m > n or
m =n and

an=bm an—l =bn—]! s50y an-i=bn—i’ an—i—l <b

ni—i—1

i.e. it is defined by an inequality between first digits in which they are different.
For example:

1

0,000...0a_,a_, _,... < T = 0,000...010...
The above definition of rational numbers E, 4 is in accordance with the
q s
definition of £ < © by the inequality
q s
ps < qr

therefore if we develop 2, L into a decimal form by (4) then [L)] = [E:l implies
q s q B
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< {10{5}} and so on, then there must be a strong inequality somewhere
s

between whole parts of real numbers.
The number 0 has a decimal expansion

0,000...0...

and therefore 0 < a is true for all real numbers @ # 0 in a decimal form (1). We
add all negative real numbers to the positive real numbers in the same way as
for rational numbers: we attach the sign — to each positive real number and
their ordering will be inverse, i.e. if @ < fthen —a > —f.

We speak about a number axis if we draw a line in a plane and a point 0 on
it, on the right side of 0 we can depict lenghts which are corresponding to
positive real numbers, on the left side of 0 those corresponding to negative real
numbers. Let |a — f| denote the distance between two points on a number axis.

If @, B have the same digits up to the place of order £ then

1

— Bl £ — 7
la=pl s ¥

since |@ — f) has all digits (as we shall see) equal to zero up to the place of order
k.

On the other hand, if (7) is true then real numbers @, § need not have the
same digits up to the place of order k because (if a_; < 9)

1
ad, _\...05 a_1a_y...a_999..9a_4 . a_@ip--- +— =

10
=a,a,_,...dp, @_1a_,...(a_; + 1)000...0a_ 4 , ya_ 42

@®)

By (8), if we know the digits of f and we know that (7) is true for a, then a has
the same digits as 8 up to the digit located before a digit followed by all 9’s or
all 0’s up to the digit of order k. ,
Addition a + B and a substraction @ —  which were used above can be
performed also in the following way which is different from the definition in ().
To begin with we add and substract individual digits (we complet zeros in
order that n = m)

(@, +b)@,_1+b,_1)...(ay+ by, (a_, +b_)(a_,+b_)...
@ —=b)@,_ —b,_))...(ap—by), (a_,—b_)(a_,—b_)...
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If a_, + b_, = 10 then we make the carry yielding

@ w_ny+b_g_n+1) and (a_,+b_, —10);
if a_, — b_, > 0 then we make the carry yielding

@ w-n=—b_w_y—1) and (a_,—b_,+10).

(If all preceding digits (a_, — b_,) are zeros then we only transfer a sign — at
the beginning of a number.)

Using the absolute value |@ — f|, we remove the sign in @ — f. It permits us
to treat two possible situations @ < f and f < a simultaneously.

Exercises

. . . : r .
1. Find decimal expansions of concrete rational numbers 4 , —and verify an

inequality between them using those expansions. 99
2. Show that we can insert a third number between two arbitrary distinct

real numbers given by decimal expansions.
3. Exercise the properties of an absolute value, especially the triangle-

-inequality |a + | < |al + |B.
4. What initial digits has a number « if we know that it is true

|a — 0,059109999976| < nS
10°
5. Add two real numbers:

0,90990999099990...
1,10010001000010... .

(d) Limit and supremum. Let us have a sequence of real numbers a(i), i = 1,
2, 3, ... and a real number «a in a decimal form

a(i) = a,;(D)a,g _1(0)...a)D), a_(Da_xi)...a_;(i)...
a= anan_ |...a0, a_la_z...a_k... .
We say that a(i) converges to a (a(i) » @) or a is a limit of a sequence a(i)

lim a(i)) = a

§ =30

if n(i) = n for all sufficiently large i and if one of the two following casses occurs:
(j) @ is not in the form (2) and

a,()—>a, a,_() > a,_,, ..., afi) > ap a_(i) »a_,, a_fi) »a_, ...

while the sequence of nonnegative integers is convergent and if it is constant
after finitely many terms; or
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(jj) ais in the form (2) and the sequence a(i) can be expressed as consisting
of at most two parts, the firts part converging by (j) to @ which is written in
a decimal form (2) with terminal digits equal to zero, and the (eventual) second
part converging by (j) to a which is written in a decimal form (2) with terminal
digits equal to 9.

For example, if

a(i) = —l- = 0,000...010...
10’
then a(i) — 0. Or if

a(1) = 1,100...
a(2) = 0,900...
a(3) = 1,010...
a(4) = 0,990...

and so on, then a(i) — 1.
Let 4 = {a(t); te T} be a set of real numbers in a decimal form

a(1) = @y Dy (1)...a(0), a_(O)a_0)...a_()...

and let it be upper bounded by a number f. Then we can find the smallest upper
bound, called the supremum of a set 4, in a following way:

a(t) £ P implies that non-negative integers n(t) are upper bounded. We
ought to find n = max n(r). :

For numbers a(t) for which n(r) = n, we shall find a, = max a,(t); for
numbers a(z) for which n(t) = n, a,(t) = a,we shall find a, _, = max a,_,(¢) and
so on. Summarizing,

sup A =a=4a,a, ,...0, d_0_5...0 ...

since the first digit in which @(z) and a differ is greater in @ and there always
exists a(¢) which has arbitrarily many initial digits in common with a.
For instance, if we choose for ¢ > 0

a(t) = 0, a_(Da_yt)...a_i0)...
) = {[t] (mod 10) if k is odd
@K = Ukt + k] (mod 10) if k is even

(where a (mod 10) denotes the remainder after a division by 10.) then

a_ (=9 for 9+ml0<t<10+ml0, m=01,2, ..
a_(t)=1 forl—29-+m10§t<10+m10
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a_(t)=9 for%9+m10§t< 10 + m10

a_t) =3 for—34—9+ ml0<t<10+mlo...

i.e. a supremum equals

a=09193....

Similarly we find the greatest lower bound, called the infimum.
Exercises
1. Let a sequence a(i), i = 1, 2, 3, ... be defined in the following way

a(i) = 0, a_,(a_(i)...a_,(i)...

K7 + ki + 1
alf =[ l3ki2;2 ] YRt

Find a limit of a(i).
2. Let a set A = {a(t); t > 0} be defined in the following way

a(t) =0, a_()a_x1)...a_,(1)...

a_,(t) = [K*¢*] (mod 10).
Find sup 4.
(e) Operations. Assign a rational number

& =a,a,_,...ay, a_,a_,...a_,000

to a number @ which has a decimal expansion (1); we will call it the initial
k-section. A number @ is given if there is given an algorithm by which can
compute any of its digits. We only recognize a finite number of its digits, i.e. only
@, in a finite time (up to exceptions). Then we can define operationsa + 5, a — f3

£

a . . . : .
a- B, — between real numbers a, S given in a decimal representation using their

§ . _ : Q

initial sections only and it will be in a form @, + S, & — B - B, . They are
k

well-known operations between rational numbers. We can write those numbers

in a decimal form and inquire about sequences which are formed by those
numbers for k = 1, 2, 3, ... if they converge by (d). Really, in a university course
of mathematics we can prove that there exist limits of those sequences and that
passing to the limit all properties of operations with rational numbers are
transfered to real numbers. If we stand on a position that we have a non-limited
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time available, i.e. that we have enumerated a + 8, a — 8, a- 3, ¢ without a rest

then we can estimate the differences between those numbers and a, + f,,

a, — B, a;- P ﬂusing the distributive law and the triangle-inequality which are
k
well-known properties of rational numbers.
We get (using (7))
2

Ia+ﬂ~(ak+ﬂk)|§|a_ak|+lﬁ—ﬁkléﬁ

@ — f— (@ — Bl < la— a + 1B— ﬂdé%

laB — a.B = |af — af + af — afil = la(B— B) + Bila— a)l =
2
<lal|B— Bl + IBdla— al = %,; (lakol 1Bl + ;)

=|a(—1[;—i>+i(a—ak)

1
lag| + 1B | + T(%

©)

a a

a a a o
+

B B B B

s

BB

- 1, 1
<l C=Bly 1o o — :
| BBy 1Bl 10 B
where k, is an arbitrary positive integer for which B, # 0, ko < k. The right sides
of the above inequalities represent estimates of errors with which the real

numbers a + B, a — B, a- f, %are approximated by rational numbers ¢, + S,

a ; : . :
a, — ., a,-B,, —=. Using them, we can solve exercises of following type: Find
k
k to a given n so that

=

=10

a

B B

. . . . a .
i.e. find a rational number which approximates — with error less than or equal

to # Then by (8) a real number 2 has the same digits as % up to a digit which
k
is located before a digit followed by all 0’s or all 9’s up to the digit or order

n. Thus there can be many non-coinciding digits up to the order n. In a numeri-
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cal calculation, the precision depends on the exactness with which we substitute
one number for another and not on the digits being identical. We come to
a situation when it is more convenient to consider a real number a given if we

know how to calculate rational numbers £ in a canonical form which approxi-

q
mate a with an arbitrary exactness; the calculation of its digits themselves is seen

not to be important.

Exercises
1. Let
a= 0, a__|a_2...a_k...
ﬂ: O’ b_]b_z...b_k...
where
1if k =n?
a_k =
0 in other casses
4 e ]
B, 9ifk=n

0 in other casses

: ; . . . - a .
Find a rational number in a canonical form which approximates — with an error

less than L
I 9

. r
2. Transfer two rational numbers E, I (E, =

< l) from a canonical form
to a decimal form, qg s\q9 s

= 0, a_la_z...a_k...

QI

Lo0,b_byb ...
A

Perform a formal addition of digits
0, (@, +b_)(@,+b_y)..(a,+ b_,)...
From it you can directly find a decimal expansion of their sum
P r_pstar
q qs
3. We can introduce the operations between a and S geometrically by
constructing corresponding abscissas of lengths @, f to them by (a) and then we

(Y

. . a .
construct abscissas with lengths a + 8, a — B, a- §, B and we can express their
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lengths back in a decimal representation by (a). The more exactness we would
like to achieve the larger unit of length we must choose. Then we need a non-
-limited space in addition to a non-limited time. The error of this geometrical
method depends on many factors, its estimate cannot be made in the same
simple form as in a numerical calculus.

We have to carry out experimentaly a geometrical construction of aff and

%, to calculate their decimal form and to verify how the exactness of the
calculation will be changed if we magnify the unit of length.

4. The relation between real and rational numbers will be preserved by
a transfer of operations. In particular:

Ifa<fthena+y<f+y
if @ < fand y > 0 then ay < By.

Using these two properties, we have to show that (here &, n are positive integers)
(i) if 0 < @ < B then " < B,

(i) if0 <a <1 and kK < n then & > o".

() Functions. By a function we shall understand an arbitrary sequence of
operations (called an algorithm), we can sign them f(x) comprehensively so that
if we give a real number ¢ at the beginning then we can calculate a real number
f(@) unambiguously by those operations. We can do it provided that we have
a non-limited time at our disposal.

For example:

f(x) =32+ 2x + 1 (10)
or
f(x) = we change each even digit in a decimal
expansion of x to zero.

(Im

In a general case, we can find a real number @ in a limited time only by

calculating a rational number P for each positive integer k so that
q

a_

el_'_
q

IIA

104
In the general case, the imput x may be a rational number 2. If the number of

q .
operations in f(x) is infinite then again we can find a real number f (’—’) just by
q

computing a rational number — for each k such that it is true:
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©)-2lsis
q/ QI 10
In order to know the real number f(a) in the above sense, we have to find an
estimate

a— ’il (13)
q

fia) —f(’;’)’ <e

using the algorithm f(x), where ¢ does not depend on k, 2 and it can be
calculated from rational estimations q

Dot
90 U

by using some elementary method.
Summarizing we get
P p p Pl _c+1
o) -2 <@ - 1(2) + 1(2) - 2| <
Q0 q g/ @l 10°
c+1

10*

or that a rational number

P approximates f(a@) with an error which is not greater than c;(};kl .

We say we have found f(@) with an exactness

For example: we can get

fla) —f(’;’) = }30:2 4341 = (3(’5)2 + 2({;’) + 1)’ _
oG Hes Al
§|3(2ak0+ lgko>.a_§l

for a function (10) where we have obtain the last inequality from the fact that

if ky < k then |

10

aéak°+

e<a+ I fa + 1 + l
q 10 10 0%

Therefore, in the sequel we shall consider a function f(x) given if we know how
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to calculate (12) and (13). Thus f(l—)) — f(@) is implied by the convergence
q

P _, & for those functions. We call them continous functions. The function (11)

q
does not belong among such functions since f(1) =0 and £(0,999...) =
= 0,9090... .

Root. At the beginning, our situation is so that we do not know f{x) and we
have only a given property which f(x) ought to fulfil. For example: Given
1

a positive integer s, by a function x* called the s-root we shall understand such

!
a function f(x) defined for a > 0 for which the output f(@) = &’ has so property
that

[ 1.
ar-ar‘...ar‘=(ar‘)' =a (14)
1
If we know that such a number &' exists we can compute (13) in the following
way:

‘,j_(g)%’:( o l“‘?l{ PR
a' + \aof -(;)"-!— ...+a"((;)") +(<:])‘>

! l
where o', (I—))‘ can be estimated from below by finding a number k, for which
q

1
107" < a (that is, 107 < ar‘) and if

q 10*
then
1 SL_ 1 éa_L__gE
10~ 104 10" 104~ ¢

where ks < k, < k. Using these estimates we can calculate the constant cin (13),
for example in the form

]0k3(s —1)
C = .
s
From (14) it follows that
1
1 }
(e)v _Z (15)
q 5
q
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1
Therefore, in order to be able to compute x* we need only to know how to

calculate s-roots of positive integers.
1

If we know that there exists a real number a = p' with a property o' = p
(what is proved in a university course of Calculus) then we can compute the
coefficients in its decimal expansion in the following way:

By the fundamental algorithm (3) to express a number in a decimal form
(1) is the same as to calculate the integer parts

a_, = [10{10{...10{10{a}}...}}].
For a number from the right-hand side it is true
10{10{...10{10{a}}...}} = 10{10{...10{10(a — j)}...}} =
= 10{10{...10(10a — 10, — j,)...}} = 10ke — j*
To find the integer part of 10*a — j means to solve the inequality
as10a—j<a+1 (16)

with respect to the integer a.

Applying algorithm (3), we can construct some real numbers « with any
special property if we know that such a number exists and if we can rewrite (16)
(using this property) in a form in which the unknown @ does not appear. So for

1 .

example: if a = p; then we can reduce (16) to the form
1
af10p' —j<a+1

1
a+j<10p <a+j+1
(@+)y =108 <(a+j+ 1y

We can solve the last inequality trying a substitution fora =0, 1, 2, ..., 9. For
example, for a = 3\/5 we get

V2= W+ R =14 Q- =14 082D

-=1+[10(i/§—1)1+{10(’\/150—1)}=1+3+10&/§—1)—2=

10 10 10
3 = 23 —12
=1+3+10(10ﬁ 12)=1+3+[10ﬁ 0,
10 10 10 10

*Exactly a_, = [10*a — [10*~'q]].
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+{(102{/5—120)}= 2 _5_+10(10“\/§—125)=

- I+ =+
10 10 10 10°
33 /5 _
14259 1000°32 ~ 1259)
10 10* 10° 10*

1
We solve inequality (12) for a function f(x) = x* by finding a number k, for
a number using the estimate (9) so that the inequality

F__ hle 1
1 N | = 10k
: (‘I‘)k. 10
be implied by the inequalities
1 1 1 1 1 1
p - (ps)k.l = E’ 7" (qS)"l‘ = F

Then the obtained rational number P will be equal to quotient of the initial

1 1 1 1
k,-sections of real numbers p* and ¢* which we denote by (p-‘)k , (q-’)k .
1 1
1
Exponential. Using x*, we can construct a power function x? and an expo-
nential function f%, i.e. we can calculate a general power of (a > 0) if we find an

estimate
()]
q
in terms of
b4
q s

because, according to what has been said, we can calculate
1

(e)i _er

q .

(q)

1
Firstly, we shall estimate (similarly as for x’) by usual algebraic reductions

374



where we compute the constant ¢, by estimating ' from below and from above
1
=< Lk to estimate (‘2)’ from below and from above too.
10

and by using the -

g P
q

Secondly, we estimate

laﬂ—a§|= @’|log al‘ﬂ“i‘ =

-
ﬂ B —’

s
using the derivative (@)’ = a@*-log a and the Lagrange’s mean-value theorem

. . r s i
where f is a suitable number between S and -. Here it is necessary to employ
s

results from a university course of Calculus. Finally, we use

ek

Logarithm. A logarithmic function to the base 10 for a > 0 is defined by the
property

éLﬁ—é-+

10°%°° = q, (17

Using the derivative (log,, x)" = l-log,oe and the Lagrange’s mean-value theo-
X

rem which is inevitable we get (13) in the form

10310 a — log £
q

1
= —-log,pe
a

a——’—"g
q

_
104

ko

where @ is a suitable number between @ and £ and ko, k, are such integers for
which ¢, >0, k, < k, < k. 9
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From equality (17) it follows
log, 2 =1 ~1
0810 " 08P — 108109

hence it is sufficient to know how to calculate the logarithms of integers. Here
we can use once more algorithm (3), because if @ = log,,p, i.e. 10* = p, then (16)
reduces to
a< 10 logyp—j<a+1
a+j<10Flogep<a+j+1

]0a+j§p|0k < 10a+j+l

where the last inequality can be solved experimentally substituting a =0, 1, 2,
..., 9. For instance for a = log;;2 we get

10 log,,2 —0+ [10 log,,2] 4 {10 log,, 2} _

log,2 =0 +
= 10 10 10

=0+i+umom%z—n=0+i+ummm%g—nLk
10 102 10 102
—— z —
L 110010 logi, 2 =3) _ /3 0 10(10%log, 2 — 30) _
102 10 10 10°
3 g _
04340 1 10(10°log,2 — 301)
10 10* 10° 10*

Finaly, log,oe can be approximated by the difference of initial k-sections
q

(logy, ) — (log,,9)s yielding a solution (12).

Sine. There is the same ratio between corresponding sides in any two
orthogonal triangles with the same angles. It permits us to calculate lengths of
sides in a large triangle using a relation of sides in a small triangle if we know
one of its sides. In that way we can calculate a distance between two inaccessible
places, which was one of the earliest applications of mathematics. It is useful to
have those ratios between sides together with the given angles arranged into
tables (so it was in the past when there was no need of a great exactness) or to
be able to compute them quickly (with a calculator).

A sine of an angle is the ratio between the side opposite this angle and the
hypotenuse in an orthogonal triangle. In order to regard a sine as a function f{(x)
defined for real numbers we have to know how to express the magnitude of an
angle as a real number. This is possible if we measure the length of a correspon-
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ding arc of a unit circle. We speak about measuring angles in radians. Then we
can calculate sin x for x = a by the following algorithm:

To a number a we find an abscissa of a length « and we find an arc of
a length @ using thread so that we roll up the thread on a (material) circle which
has a unit radius. We draw a straight line perpendicular to the diameter of the
circle from the end point. The length of the perpendicular will represent sin a
(the sign will be — if an end point is located under the diameter of the circle).
If we like to improve the exactness of the calculation of sin a, we must enlarge
the used unit of length; here we cannot express the error exactly.

Algorithm (3) is not convenient for calculating sin a since we cannot
eliminate a sine from inequality (16)

as10sina—j<a+1

It is in the university course of Calculus only that suitable algorithms for
computing sin x can be found. It is the so-called Taylor’s expansion sin x (see

e.g. [5, p. 97)),

3 5 2k + 1
sinx=2—-X 4 X 4 Ly g
I 31 5! 2k + 1)!
or in its finite form
n x2k+l x2n’+2
sinx= ) (—1)) ——+ (=1)"*' ———5sin (Ox)
k=0 2k + 1)! (2n + 2)!

(0 < O, < 1) where the last member represents and error which we make if we
sum up only the terms from k = 0 to k = » in that infinite series. Hence we
obtain a solution (12) in the form
1 2n+2
<|a"°l " 10*0>

sin (2) — E‘ <
q ol (2n 4+ 2)!

Poel (VLY Ly ()
Q q 1! \g/ 31 \qg/ 5! . G B

We get a solution (13) by using a derivative (sin x)’ = cos x and from Lagran-
ge’s mean-value theorem:
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sin a — sin la

q

= |cos 4 a—*=

q

q

Concluding, we remark that a disadvantage of the algorithms for a calcula-
1

a—l—)\ =<

]

ting x*, log,, x which are derived using the fundamental algorithm (3) is the fact
that the numbers occuring when solving inequality (16) increase very quickly
(see a calculation of ’\/i, log,,2). In order to increase the exactness of the
computation, i.e. of calculating the next terms in a decimal expansion we would
have to construct an arithmetics of great numbers.

There are algorithms derived in a university course of mathematics from the
Taylor’s theorem which converge quickly enough, i.e. we obtain a good exact-
ness of the result using a little number of steps. For instance (see [5, p. 99])

n +I
log (1 =Y (=D 4 (=12
og(l+x)=2 (=" +(=D (n+ 1)1+ Ox)y !

where x> —1,0< O, < 1.

xk+(_l)n+l

x> b |-

(1= = 3 (-1

where —1 <x<1,0< ®; <1 and
l.(l_ 1)...(1—k+ 1)
s \s§ s

We use this formula similarly as for sin x.
Exercises

1. Applying property (14) show that
1 1
(i) if 0 < a < B, then &' < f°

X L |-

1 1
(i) if 5, < 5, and 0 < @ < 1, then @" < @”
Nt
oo 2
(iii) (as' = g"

1

(Y _ @)

o (-1
@

where s, s,, 5,, r are positive integers. All those properties hold also for positive
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rational exponents and then they extend also to real exponents. We put ¢~ = 4
for a negative exponent, a’
2. Why does (— 1)‘/5 not exist?
3. Using property (17) show that
(1) if 0 < @ < B then log,y a < log,,
(ii) log,opq = logyop + log,eq

(iii) log.o’é = log,,p — log,q

r

(iv) log,, @ = ! log,, @
K

(v) log,B-logza = 1.
All these properties of logarithm extend also to real numbers.
1

4. Find & with an exactness of %03 at the point a = ’\/i using a decimal

. . . P
expansion of 3\/5, i.e. find a rational number — so that

; %_5’ 1
’(ﬁ) Qélo-"

. 1
How many digits of g will be equal to digits of (’\/5)2?
5. How many terms from a decimal expansion of \/5 are needed to find

. P
a rational number — such that

}\/iﬁ = 5‘ <o
Q 10]0

6. Find log,,2 with an exactness 10~° by using the Taylor’s theorem.

7. Express cos x, tg x in terms of sin x.

8. Review the addition formulas for trigonometrical functions.

9. Calculate sin \/2 with an exactness 10~°. How many exact digits of
sin /2 shall we find by it?

10. Calculate sin /2 using a tread and a unit circle. Investigate experimen-
taly how the exactness improves with increasing unit length.
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PE3IOME
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3ABEJJEHUU, 1 s
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B paGoTte cucTeMaTHYeCKH M3J1araeTcs TEOPHA AEHCTBHTENBHBIX YHCEN M AEHCTBHUTENBHBIX
dyHKUMI HA OCHOBE [EKaJAMYECKOrO MPEICTABJICHUs AEHCTBHTEILHOIO YHCIA.
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