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SOME ASPECTS OF THE C.-B.-S. INEQUALITY

LADISLAV KOSMAK—LUDMILA WINTEROVA, Bratislava

(£a) 5(54)(£,%) 0

is useful e.g. for proving that the function x+ |x| from R" to R with

The inequality

x| = (x] + ... + x,z,)%
for x = (xy, ..., x,), fulfils the triangle inequality
X + ¥ = |x| -+ [yl
Indeed, from (1) we get
L+ b)Y =2Zai+2Xab,+Ib <

1 1 1 1
<X+ 2ATa) (ZbY) + bl = (Ea)? + EH)),

where all summations run from 1 to n.

The inequality (1) is given in Cauchy’s Cours d’analyse de I’Ecole Royala
Polytechnique, 1, Analyse algébrique, Paris, 1821. An integral version of this
inequality has been published by V. Bunyakovskij in the paper Sur quelques
inégalités concernant les intégrales ordinaires et les intégrales aux différences
finies, Mémoires de I'Académie de St.-Pétersbourgh (VII), 1, No 9, 1859. Some
26 years later, it appears in the paper of H. A. Schwarz: Ueber ein Flichen
kleinsten Flicheninhalts betreffendes Problem der Variationsrechnung, Acta
Soc. Sc. Fenn. 15 (1885), 315—362. The relation (1) and its generalizations are
mostly known under the name of Schwarz’s inequality; historically more cor-
rect, but combersom is the name Cauchy—Bunyakovskij—Schwarz (abbrevia-
ted C.-B.-S.) inequality.

341



1. Geometrical aspect

Let a, b be nonnull vectors in the Euclidean space R",

a= (ab # 5.0y an)
b=(by, ..., b).
The angle ¢ of the vectors a, b is defined as the convex angle between the halflines
{Aa; 1 2 0}, {Ab; 1 = O}
In the triangle with sides of length |a|, ||, |a — b| we have the cosine formula
la — b = |af* + b]* — 2la| |b| cos @

(g —b) =ZXai+ XTbl—2JEa) (b} cos .

Hence

ab, = @ 5) >
lal |6] |al 1b]
where (a, b) is the scalar product of a, b. This leads to the definition of the angle

between two vectors in an arbitrary vector space with scalar product.
Since |cos ¢| < 1, it follows from (2) that

cos @ =

)

(@, b)| < lal|bl,

i.e. the inequality (1); equality holds if and only if |cos ¢| = 1, in other words,
if the vectors a, b are linearly dependent.

2. Algebraic aspect
For arbitrary real q,, ..., a,, by, ..., b, we have
Oé‘;;(a,bk—a )} =
=Y Tabi - 2% Tapab+ T it} =

J

~(g) )25 8) (o) + (52)(54)-
-2(34)(g) -2(go0.)

summations running over the set {1, ..., n}. Thus we get both the Lagrange
identity
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(Fan) = (za)(z8) -3 2 3@0-atr 0

k J

and the inequality (1). Equality holds if and only if the rank of the matrix

(a,, a,,)
bl’ ceey bn

is less then 2, i.e. if one of the n-tuples (a,, ..., a,), (b, ..., b,) is a multiple of the
other.

In the notation of part 1, the Lagrange identity for nonnull vectors a, be R?
can be written in the form

(a, b)* = |al* b — la x bI,
where a x b denotes the vector product of a, b. In other words,
lal* | cos® @ = lal* |b]* — |al* |b[*sin” . (3)
Hence in this case (3) follows trivially from the equality
sin”@ + cos’ @ = 1.
Another algebraic proof using the properties of the quadratic form
Z;(xa,- + yb)?
4
is given in [6], 11, 2.4.
An inductive proof of (1) together with the equality condition looks as

follows. For n = 1 the assertion is obvious. Assume that it holds for somen = 1.
Since fork =1, ..., n

2
(@b, o1 — a, 410" 20,
1.e.
212 2 72
2a,ba, b, 1 < aiby o\ + a, b

we get
2ab, + ... +ab)a, b, S @+ ...+ a)by, + (BT + ... + b)ag s
where equality holds if and only if

a 4, 4

=0
bk bn+l

for k=1, ..., n. Hence
(@b + ... + @, by )’ = (@b + ... + ap)’ +
+ 2(a\b, + ... + ab)a, by + at, i, <
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S@+ ...+ + ... +b)+ @+ ... +a)by, +
+ B+ ..+ v a b =@+ tal )b+ .+ b))

with the same equality condition as in the first algebraic proof.

3. Physical aspect

Let (A4, p) with p = 0 be a material point in the Euclidean space R*’. The
moment of inertia of (4, p) with respect to a point XeR® is defined as the
number p- XA% More generally, if {(4,, m,), ..., (4,, m,)} is a system of material
points with positive masses and with the centre of gravity 7, denote by 4|, ..
d,, d the distances of the points 4,, ..., 4,, T from X and put

]

m+...+m,=m.
Then the moment of inertia of this system with respect to X is the number
Iy=md}+ ... + md}.

Hence I, =0 if and only if 4, = ... = 4, = X. By Lagrange theorem (cf. [2],
p. 72, or [3], p. 159) we have

IX = IT + Mdz.
Let a,, ..., a, be positive numbers and b,, ..., b, = 0. Assume that the points
A,, ..., A, lie on a halfline starting from X and that
m, = a
dk = ﬁ
2 ak

fork =1, ..., n. Then

“hay  yha
a,m , m

d (@b, + ... +aph,).

Putting
la]b[ + o5 + a,,b" =39
we have, fork =1, ..., n
T )= 2
m

a;
so that

L=all4, = TP+ ... +aj|l4,— TP =
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2 2
=B+ . +B2—2 (@b +...tap)+ =4 . +p2- L
m m

m
Simee Li=b+ ..+
2
Ii—L=md="2<,
m
we get
2
0<l,=I,->= bi+ ...+ b —(ab, + ... +ap) @+ ... +ad)”!
m
and this is the inequality (1). Equality holds if and only if 4, = ... = 4,, i.e. if
b b
PR
in other words, if the n-tuple (b,, ..., b,) is a multiple of (a,, ..., a,).
If some of the numbers a,, ..., a, equal 0 we have to consider only such

indices je{l, ..., n} for which g, # 0.

Remark. The properties of the centre of gravity of a finite system of material
points can be used to give physically motivated proofs of many mathematical
formulas and theorems; for an account of many applications of this method the
reader is referred to the book [2].

4. Probability aspect

Let X, Y be random variables on a finite probability space and assume that

X, and Y, takes on the values a,, ..., a, and b,, ..., b, with the probabilities
P .- P» and gq,, ..., g, respectively. By the well-known properties of the
correlation coefficient R(X, Y) of X, Y we have

IR(X, Y)| = |R(aX + B, cY + d)| £ 1 4)

for arbitrary a, b, ¢, d (see for instance [7], Theorem 6.2.1), so that we can
suppose that

E(X) = E(Y) = 0.

If, moreover, |

h=-=Dh=q0=...=qy="

n

pp=PX=a,Y=b)=0 forj#k (5)

1
Pij=—
n
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and if we consider the nontrivial case when E(X?) # 0, E(Y?) # 0 then

E(XY)
RX, V) =t 6
X, Y) EXOE(T) (6)

1
E(XY) = = (a,b, + sisle + a"b")
n

where

EX)=-(a+..+d)

S |-

E(Y2)=l(b%+ e + B)).
n

Hence (4) and (6) yield (1); equality holds if and only if ¥ = aX for some a # 0
(cf. [7], Theorem 6.2.2).

Another way to obtain (1) by probabilistic arguments without using corre-
lation coefficient consists in the following. If

EX)#0, E(Y)#0
take

g X p__Y

JEXD' VE(YD

The elementary inequality

2|xy| £ X%+ y?
yields
2N =¥+ 12
Thus ,
2E(XY)) £ E(X?) + E(Y?) =2,

i.e. (see [S], p. 93)
(E(XY))’ < (E(XY)) £ E(X)E(YD).

In particular, if the conditions (5) are fulfiled, we get (1), without direct informa-
tion about equality conditions. ‘

5. Generalizations

Passing to the limit for n — oo in (1) we get the corresponding inequality in
the real space /,.
An integral form of the C.-B.-S. inequality for continuous functions defined
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on the interval [a, b] follows from the integral version of the Lagrange identity:
we have

b pb
J [ Vx)g () — f)g(x)ldxdy =

va

b pb b b
= f J L(x)g*(y)dxdy — 2j J S(x)g(x)f()g(y)dxdy +

b b ’ b b b 2
+ f _[ S 0)g (x)dxdy = 2I f?(X)dXI g (x)dx — 2<J S (X)g(X)dX) :

Thus

b 2 b b b pb
(J f(X)g(X)dX> = f f(x)dx J g (x)dx — % J f V(x)g() — f()g(x)Fdxdy.

For further generalizations of this kind the reader is referred e.g. to [4], I, § 18.
The C.-B.-C. inequality in all its forms is a special case of the corresponding
Hoélder’s inequality.
If a, b are elements of a complex vector space L with scalar product, then

|(a, b)I* = (a, a) (b, b). (M

This inequality can be proved in the following well-known way: for any complex
A we have

0=(a+ b, a+ Ab) = (a, a) + A*(a, b) + A(b, a) + AA*(b, b),
where A* is the conjugate of A. For b # 0 put

__@bd
(b, b)
Then
@a- @t @b @by
' (b,b) (b,b) (b, b)
ie.

(a7 a) (b’ b) - '(aa b)lz g 0.

For b = 0 the inequality is obvious. Equality holds if and only if a is a multiple
of b.

For arbitrary a,, ..., a,€ L the matrix G(a,, ..., a,) with elements (a, ay),
j, k=1, ..., nis called Gram’s matrix of the vectors a, ..., a, (in this order). It
is well-known that for the corresponding Gram’s determinant we have

det G(a,, ..., a,) 20 ®)
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with equality if and only if a,, ..., a, are linearly dependent (see [8], p. 19—23,
or [1], p. 23—26). The inequality (7) follows from (8) for n = 2.
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SUHRN
NIEKOLKO ASPEKTOV C.-B.-S. NEROVNOSTI
Ladislav Kosmak. Cudmila Winterova
Nerovnost (1) sa v praci dokazuje geometrickymi, algebraickymi, fyzikalnymi a pravdepodob-
nostnymi metodami a s uvedené jej zovseobecnenia.
PE3IOME
HECKOJIBKO ACIEKTOB HEPABEHCTBA K.-B.-Iil.
JlanucnaB Kocmak, Jlroamuina Bunteposa -
B paGoTte npuBoasSTCS A0Ka3aTelbCTBa HepaBeHCTBa (1) cpeacTBamu reoMeTpuu, anrebpel,

QJHSHKH H TCOPHH Bepoxmoc*reﬁ. B 3aknroueHue paccMaTpHBAKOTCA HEKOTOPBIC 06001eH s ITOrO
HEpPaBCHCTBA.
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