D
[-A elt

Werk

Titel: Bucheinband

Ort: Mainz

Jahr: 1949

PURL: https://resolver.sub.uni-goettingen.de/purl?366382810_1944-49 | log36

Kontakt/Contact

Digizeitschriften e.V.
SUB Géttingen

Platz der Gottinger Sieben 1
37073 Gottingen

& info@digizeitschriften.de

http://www.digizeitschriften.de
mailto:info@digizeitschriften.de

UNIVERSITAS COMENIANA
ACTA MATHEMATICA UNIVERSITATIS COMENIANAE

XLVITI—XLIX — 1986

THE POLYNOMIAL GCD-ALGORITHM IMPLEMENTED
IN A SYSTOLIC ARCHITECTURE

JURAJ PROCHAZKA., Bratislava
Introduction

In the last decade we have witnessed a great progress in microelectronics
(VLSI) that caused drastic changes in computer construction. VLSI technology
allows the construction of circuits with a large density of logical elements. The
emergence of systolic systems is one consequence of this progress.

The systolic system is a regular net of processors that are processing and
shifting data through the system in a rhythmic fashion. Each processor works
like a heart pumping the blood in the circulating system. The algorithm imple-
mented in a systolic system is called systolic algorithm (or VLSI-algorithm).

Properties of a good systolic algorithm are the following:

(i) There are only few types of simple processors;

(i) Data and control flows are simple and regular;

(iii) The algorithm uses extensive concurrency by pipelining the processors
involved in a computation;

(iv) The algorithm makes multiple use of each input data item so that each
input travels through an array of processors.

In designing systolic algorithm we should follow the above criteria.

Systolic systems were suggested and studied for various problem areas (e.g.
searching and sorting, recognizing in formal languages, linear algebra, binary
and polynomial arithmetics, filtering and geometrical problems).

In this paper we shall study a polynomial GCD computation.

Let us have two polynomials u(x), v(x) with m = deg(u(x)), n = deg(v(x))
and m > n > 0. The systolic system for a computation of GCD for u(x) and v(x)
suggested in this paper uses (m + 1) processors (space complexity). If a time unit
is a time needed for realization of one pulse of the systolic system, then this
system gives the first coefficient of the result in (2m + 2n + 3) time units (time

325

complexity) after the coefficients u,, v, enter the first processor of the systolic
system, see Fig. 1.

=4
3
"
<«

P BR Br| IBR
n" I 7 Ve
GCo, v, 6o} GCo,, .

Vn-a t

Va-1

T
3

Fig. 1. Systolic system SC for Collins polynomial GCD algorithm

The systolic system described in this paper is based on the sequential Collins
algorithm, Knuth 1969 [8], so we call it the systolic system SC. The Collins
algorithm is an ingenious modification of the Euclidean algorithm for polyno-
mials over a unique factorization domain (UFD) using a pseudodivision. The
systolic system SC uses two kinds of processors:

1P — the initial processor that initializes parallel process of computing.

BP — the basic processor that performs the basic computing.

This result has potential application in the areas of symbolic and algebraic
computing, error-correcting codes, signal processing and image processing.

Collins algorithm

The Collins algorithm in the PASCAL-like form follows. We shall use the
following symbols: .

cont(u(x)) — is GCD of coefficients of the polynomial u(x);

pp(u(x)) — is a primitive part of u(x), i.e. u(x)/cont (u(x));

lc(u(x)) — is a leading coefficient of the polynomial u(x).

Algorithm CGCD

Input: The non-zero polynomials u(x), v(x) over UFD § with deg(u(x)) >
> deg(v(x)) > 0;

Output: The greatest common divisor of the polynomials u(x), v(x);

326

Function CGCD(u(x), v(x));
. begin d: = GCD(cont(u(x)), cont(v(x)));
u(x): = pp(u(x)); v(x): = pp(v(x));
a=1:
repeat REM(u(x), v(x), a)
until deg(v(x)) < 0;
5. CGCD: = if v(x) #£ 0 then d else d » pp(u(x))
end.

el R

procedure REM(u(x), v(x), a);
1. begin a: = Ic(v(x))deewt) - degotxh +1.
2. repeat
u(x): = le(v(x)) * u(x) — le(u(x)) * v(x) * xdea®) — dege(x)
until deg(u(x)) < deg(v(x));
3. c(x): = u(x); u(x): = v(x); v(x): = c(x)/a;
4. a:=a
end.

We can use the above algorithm only if we suppose that there exist auxiliary
algorithms:

— for computing GCD for elements from S;

— for dividing a by b for a, be S, in the case b # 0 and there exists ce S s.t.
a=c*b.

Generally, S can be an integral domain of the polynomials.

The algorithm CGCD uses procedure REM in order to compute remainder
of two polynomials in a pseudodivision.

In a systolic implementation we do not need to perform all instructions of
the Collins algorithm in a systolic system. In the sake of the SC-system simplicity
we can leave the instructions 1. and 2. from the function CGCD and also the
multiplication d * pp(u(x)) outside of the systolic system. In case the polynomials
u(x), v(x) are over integers, these instructions are based on the integer GCD
computation that was already effectively solved in a systolic system [3, 7].

The following CGCD/1-algorithm is the Collins algorithm CGCD after the
above simplification.

Function CGCDI1(u(x), v(x));

1. begin a: =1,
2. repeat REM(u(x), v(x), a)
until deg(v(x)) < 0;
3. CGCDI: = if v(x) #£ 0 then 1 else u(x)
end.

327

The input polynomials u(x), v(x) for the CGCDI1 algorithm will be primiti-
ve.

Systolic system SC

The systolic system SC is based on the linear two directional array of
processors in Fig. /. The input of the polynomial coefficients into the SC-system
is oblique, such that

the i-th coefficients of u(x), v(x), i.e. u,, _;, , V,_,;,, enter the i-th processor

of the SC-system in the i-th pulse of computation.

The Collins algorithm as all well-knowns algorithms for solving the polynomial
GCD problem is based on the general technique of reducing the degree of the
two given polynomials by “GCD-preserving” transformations. In the Collins
algorithm we denote this transformation R.

R: (u(x), v(x)) « (i(x), v(x)), where

(1 i(x) = le(v(x)) * u(x) — le(u(x)) * v(x) * xeeu() = dege(0),

The sequence of transformations R denoted (7, ..., T)) is implemented in the
SC-system. The transformation 7; is computed in the first (m + 1) processors
such that the output in the (i + 1)-st pulse from the i-th BP-processor is the
coefficient i, _, of the polynomial #(x), see (1), and in the next pulse @, _;is an
input to the (i — 1)-st BP-processor. Each second pulse, that is (2i — 1)-st pulse,
the new transformation 7, starts in the IP-processor, so that it sends the leading
coefficients of the current u(x), v(x) to the right in order to pass through all
processors of the SC-system. The SC-system activity of starting new R-transfor-
mations continues until deg(u(x)) < deg(v(x)), and then the SC-system exchan-
ges the roles of the polynomials u(x), v(x) by the transformation:

2 (u(x), v(x)) < (v(x), @(x)/a).

The other activity provided by the SC-system is shifting the leading coeffi-
cient lc(i#(x)) to the left to the IP-processor, when deg(i#(x)) < deg(u(x)) — 1.
We can divide the work of the SC-system into three basic activities provided in
a parallel manner:

1. sequence of “GCD-preserving” transformations R;

2. exchange transformation

(u(x), v(x)) < (v(x), @(x)/a),

when deg(i1(x)), deg(v(x));
3. shifting the first nonzero coefficient of #(x) to the IP-processor.

328

In a systolic system working this way each processor is active each second

pulse. The time of the processor nonactivity, we say the dual time, could be used
for a dual computation.

In the SC-system, as mentioned above, we shall use two types of processors
drawn in Fig. 2.

min uin uout uin

a l b) \ l

nu STOPin STOPoyt |

|n:] «d xout xin _J «O L~ xout

d QD _,)’OUt yin — VD L Y out
1 |—>TARTout STARTin_,; — STARTout
s aout ain — a out
v |—=Tu out nuin __]

P | INITout INITin B8P | iNITout

nv out Volut vlin Ain vout vin

Fig. 2. Communication lines of the SC-system processors:
a) Initial processor;
b) Basic processor.

The sense of the communication lines of the SC-system processors is
described in the next processor programs.

Program basicprocessor;
begin if INITin = 1 then v: = vin; INITout: = INITin;
case STARTin of
0: begin {NORMAL}
uout: = yin* uin — xin * v; xout: = xin; yout: = yin;
STARTout: = 0; STOPout: =0
end,
1: begin {LATENT)
u: = yin*uin — xin * v; xout: = xin; yout: = yin;
STARTout: = 0;
if nuin < 0 then STOPout: = 1
else if u = 0 then STOPout: = 2
else (uout: = u div ain; STOPout: = 3)
end,
2: begin {STOP} vout: = v; STARTout: = 2 end.
3. begin {EXCHANGE)
STARTout: = 3; aout: = ain;

329

u: = uin div ain; uout: = yin* v — xin*u; v: = uin
xout: = xin; yout: = yin; STOPout: =0
end
end
end.

Program initialprocessor,
begin INITout: = 0;

case STOPin of
0: begin {(NORMAL}
- Xxout: = uin; yout: = v;
if k =0 then (STARTout: = 1; nu: = nu — 1;
aout: = a)
else STARTout: = 0;
k:=k—1
end,
1: begin {STOP}
if nv = 0 then vout: = 1 else vout: = v;
nvout: = nv; STARTout: = 2
end,
2: begin {LATENTPRESERVER}
xout: = 0; yout: = 1; aout: = a; STARTout: = 1,
nu:=nu— 1
end,
3: begin {RESTART}
xout: = v; yout: = uin; v: = uin; STARTout: = 3;
ki=nv—nu,n:=nu;a:=a;a:=untk+1);
ki=k—1;ao0ut:=a
end,
4: begin {START}
Xout: = uin; yout: = vin; v: = vin;
k: = min — nin; nv: = nin; nu: = nin; a: = 1,
if k =0 then (STARTout: = 1, nu: = nu — 1;
‘ aout: = a) :
else STARTout: = 0;
a:=vl(k+1);k:=k—1; INITout: =1
end,
end, nuout: = nu
end.

The above mentioned programs for the IP-processor and for the
330

BP-processor together with Fig. I and Fig. 2 form one integral unit called the
systolic system SC that implements the Collins algorithm.

Formal correctness proof is beyond the scope of this paper. Nevertheless,
this systolic algorithm has been tested by simulation using PASCAL program on
a serial computer.

Conclusions

There exists already the polynomial GCD systolic algorithm suggested by
Brent and Kung [2, 3]; we denote it B-K system. The B-K system is based on the
linear one-directional array of processors with different speeds of data flows.
The SC-system was developed independently. Before comparing the B-K system
and the SC-system we should transform these two systems to the same bases.
The B-K system works for polynomials over finite field and the SC-system over
UFD (integers). The SC-system can be easily transformed in order to work over
a finite field and the processor programs would be simpler. On the contrary, the
B-K system could be extended for UFD. The SC-system working over a finite
field can be easily transformed to the systolic system solving an extended
GCD-problem: that is, for u(x), v(x), to find polynomials s(x), 7(x) such that

u(x) * s(x) + v(x) *t(x) = GCD.

An extended GCD problem for the Collins algorithm has been solved serially
in [12], but not yet in a systolic system. Up to now it has been an open problem.

For the computation of GCD (u(x), v(x)) the SC-system needs

Space: (m + 1)-processors;

Time: in the worst case (2m + 2n + 3)-time units, in the best case 2m + 3)-
-time units until the output of the first GCD-coefficient.

For the same computation the B-K system needs

Space: (m + n + 1)-processors:

Time: (2m + 2n + 2)-time units in all cases.
Let us compare the SC-system with the B-K system on the same basis. In the
SC-system there is a slight improvement (about 2 times better) in the space
complexity. But we shall pay for it by increasing (about 2 times) the period of
computation (systolic complexity), because we must wait with a next input until
the output of the first GCD-coefficient. (We should use also the dual computa-
tion: Slightly changing the programs of the processors we can transform them
to the combinatorial elements without memory. In this case we can use the time
of the processor nonactivity for the dual computation.)

The SC-system gives us a more effective GCD-computation of the set of
k polynomials, with k > 2. We need it in symbolic and algebraic computations,

331

for example in solving pp(u(x, y)). In this case the B-K system loses the
advantage of the period of computation, because it must wait until an interme-
diate GCD-result is available. But the SC-system gives us the GCD-result in
the same place as we need it. The first GCD-coefficient emerges from the first
processor on the contrary to the B-K system, where each GCD-coefficient
emerges from the last processor.

A new technology of the programmable systolic chip (PSC) [4] allows even
practical implementations of the above-described algorithm in systolic arrays.
PSC is one solution for the following problem: For their regularity and simplici-
ty, the cost of the design and implementation of systolic systems is less than the
cost of the design and implementation of a general-purpose computer. This
advantage is usually spoiled because a special systolic system can be used only
for a narrow class of problems. PSC was developed in the Carnegie-Mellon
University.

REFERENCES

[1] Aho, A. V.—Hopcroft, J. E—Ullman, J. D.: The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading, Mass. 1974.

[2] Brent, R. P.—Kung, H. T.: Systolic VLSI Arrays for Polynomial GCD Computation.
Tech. Report CM U-CS-82-118, Dept. of Comp. Science, Carnegie-Mellon University, March
1982.

[3] Brent, R. P.—Kung, H. T—Luk, F. T.: Some Linear-Time Algorithms for Systolic
Arrays. Information Processing 83, pp. 865—876, North-Holland, 1983.

[4] Fisher, A. L—Kung, H. T—Monier, L. M.—Dohi, Y.: Architecture of the PSC:
Programable Systolic Chip. Proc. of 10-th Int. Symp. on Computer Architecture 1983,
pp. 48—353.

[5] Gruska, J.: Personal Communication, 1984.

[6] Gruska, J.—Ruzi¢ka, P—Wiedermann, J.: Systolické systémy. Proc. of Software se-
minar SOFSEM ’83, Zdiar 1983, pp. 267—307.

[7] Kannan, R—Miller, G—Rudolph, L.: Sublinear Parallel Algorithm for Computing
the Greatest Common Divisor of Two Integers. Proc. of 25th Annual Symposium on Founda-
tion of Computer Science, Oct. 1984, pp. 7—11.

[8] Knuth, D. E.: The Art of Computer Programing, Vol. 2: Seminumerical Algorithms.
Addison-Wesley, Reading, Mass. 1969.

[9] Kung, H. T.: Let’s Design Algorithms for VLSI Systems. Tech. Report, Dept. of Compu-
ter Science, Carnegie-Mellon University, Sept. 1979.

[10] Kung, H. T.: Use of VLSI in Algebraic Computation: Some Suggestions. Proc. of the
ACM Symp. SYMSAC °81, 1981, pp. 218—222.

[11] Kung, H. T.. Why Systolic Architectures? Computer Magazine, 15 (1), Jan. 1982,
pp. 37—46.

332

[12] Sasaki, T.: Extended Euclidean Algorithm and Determinants, Inform. Process. Society of
Japan, WG SYM-Meeting, May 1982.

Author’s address : Received: 13. 2. 1984
Juraj Prochazka,

Katedra teoretickej kybernetiky, MFF UK,
Matematicky pavilon,

Milynska dolina,

842 15 Bratislava

SUHRN

ALGORITMUS PRE NSD DVOCH POLYNOMOV
IMPLEMENTOVANY V SYSTOLICKEJ ARCHITEKTURE

Juraj Prochazka, Bratislava

Majme dva polynémy u(x), v(x), st(u) =st(v) = 0, nad oborom integrity s jednoznaénym
rozkladom. V prici je navrhnuty a opisany novy systolicky algoritmus, ktory vyuziva linearne
dvojsmerné pole s poétom procesorov (st(u) + 1). Dizka vypoctu je (2-st(u) + 2-st(v) + 3) asovych
Jjednotiek (pulzov) v najhorSom pripade.

PE3IOME

AJITOPUTM 1J14 H.O0.4. ABYX MHOI'OYJIEHOB,
UMIUVIEMEHTUPOBAHHBII B CUCTOJIMYECKON APXUTEKTYPE

FOpaii I1poxaska, Bpatucnasa

MycTb u(x), v(x) MHOrOYNEHBI HAl 06IACTBIO C OJHO3HAYHBIM PA3JIOXKEHHEM Ha MHOXKHTENIH
H st(u) 2 st(v) 2 0. B cTaThe NOKa3aH M OMMCAH CHCTOJIMYECKH aNTOPHTM HAXOASIUHA HAHGOIb-
wmii o6wmit aenuTenb s u(x) ¥ v(x). AJIrOPUTM HCMOB3YeT THHEHHOE MoJie napaJenbHo-pabo-

TAIOLIUX MPOLECCOPOB MIHHOH B (st(u) + 1). Bpems Bbiuucienus He Gonbiue yem (2-st(u) +
+ 2-st(v) + 3)-ny/NbCOB CHCTOJMYECKOrO MOJIS.

333

	
	Article

