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1. Introduction

Axel Thue in his remarkable works [Th 06], [Th 12] on infinite sequences of
symbols has shown the existence of infinite words over three-letter alphabet
without squares of nonempty words as factors. The construction of such a word
in [Th 12] is based on an infinite sequence ¢ over the two-letter alphabet {0, 1},
not containing a factor of the form xvxvx, x being a letter and v a nonempty
word. The i-th symbol of 7 can be described as the parity of occurrences of the
symbol 1 in binary notation of the natural number i (however, this is not the way
of its description in [Th 12]). The same sequence ¢ appears in the work of Morse
[Mo 21] on symbolic dynamics. Therefore we shall call ¢ the sequence of Thue
—DMorse.

In the sense of Cobham [Co72], ¢ is a simple example of a uniform tag
sequence. In [CKM-FR 80], where some algebraic properties of uniform tag
sequences are investigated, generalized sequences of Thue—Morse are introdu-
ced. In such a generalized sequence the i-th symbol denotes the parity of
occurrences of some fixed factor w over {0, 1} in binary notation of i. (In fact,
a slightly stronger generalization is given in [CKM-FR 80]). In this paper we
show that in such generalized words of Thue—Morse all the factors are of
a bounded power. More precisely, there are no factors of the form

(xv)™'x.

2. Notations and definitions

Let A* be the free monoid generated by a finite alphabet 4, with the neutral
element . Let A" = A* — {¢}. Let A® be the set of all infinite (to the right)
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sequences of elements of 4. Let A = A* U A°. The elements of 4~ will be called
words (finite or infinite). A word xe€ A* is a factor of a word ye A®, iff y = zxt
for some ze A*, te A”. x is called initial (terminal) {proper} factor of y iff z = ¢
(t = ¢) {zt # €}. The length |x| of a finite word x is the number of its symbols,
lel = 0.

Let ¢: A* > B* be a morphism of monoids. ¢ can be extended to the
mapping ¢: A* — B* satisfying

P(xy) = p(x)0(y)
forall xe A*, ye B*. ¢is called prolongable in a€ A if p(a) = ax forsome xe A*.
In this case for each n > 0 ¢"(a) is a proper initial factor of ¢”*'(a). There exists
a limit
z= lim ¢"(a)eA”

such that each ¢"(a) is an initial factor of z. Moreover, z is a fixpoint of ¢, i.e.
@(z) = z. A morphism ¢ is called m-uniform for some m > 0 iff |p(b)| = m for all
be A.

Let u: A'— A be a mapping, i, j > 1. u can be extended to the mapping
w A® — A® defined by

H(XpX1X5...) = YoP (Vs
where

Y iVij+r-Yij+j-1= MO Xy 1 Xk i—1)

for all k£ > 0. This extension is called (i, j)-substitution.

We shall use two devices for formal description of infinite words — uniform
tag systems and sorting automata.

A tag system is a quintuple T = (2, a, o, I', 1), where X and I"are alphabets,
o:X* —» 3* is a morphism prolongable in ae X, 7: 2* —» I'* is a morphism such
that 7(X) < I'. The internal (external) tag sequence generated by T is

intseq, = lim o”(a)

(seqr = lim 7(0”(a)) = t(intseqy)). .

The tag system and the corresponding sequences are called m-uniform iff o is
m-uniform.

Let m > 0. Denote [m] = {0, 1, ..., m — 1}. A sorting automaton over [m] is
a quintuple 4 = (S, 4, s,, F, G), where S is a finite set (of states), s,€.S is the
initial state, 6: S x [m] — S is the transition function satisfying (s, 0) = s,, G is
an alphabet, and F = {F,},.; is a disjoint partition of S. J can be extended to the -
domain S x [m]* by setting d(s, &) = s, (s, xd) = 6(5(s, x), d) for s€ S, xe[m]*,
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de[m)]. The state (sorting) sequence of the automaton A4 is defined by
state, = yy,...€S?
(sort, = xpx,...€GY),

where y; = &(so, i), i being the m-ary notation of i (since (sy, 0) = s, there
are no problems with leading zeros)

(=g iffl yeF)

Thus the sorting automaton is a slight generalization of the notion of finite
automaton which in fact sorts to two classes of objects (accepted — rejected).

The relation between tag systems and sorting automata can be expressed as
in the following proposition.

Proposition 1 [Co 72]. Let T = (2, a, o, I', 7) be an m-uniform tag system
and let 4 = (Z, 6, s,, F, I') be a sorting automaton over [m] such that (s, i) =
= i-th symbol of a(s), 5, = a, and se F, iff 7(s) = g, where s€ S, ie[m], geTI.

Then intseq, = state,, seq; = sort .

Finally, let us define the generalized words of Thue—Morse. Let we
€{0, 1}* — 0*. Denote

a, = a(0)a()a(2)...

the infinite word with i-th symbol
a(i) = # (i) mod 2

where # ,.(x) denotes the number of occurrences of the factor w in the word
x and i, is the binary notation of i with at least |w| leading zeros. For example,
000010101010101 contains five occurrences of the factor 0101.

From [CKM-FR 80] we know the following important property of the
words a,.

Proposition 2 [CKM-FR 80]. Let we {0, 1}* — 0*, let ube a (2™ !, 2"!)-sub-
stitution on {0, 1} defined by

H(X0X) .. X =1 _1) = YV 1---Yami — 15
yi= X + x.(i) mod 2 ie{0, 1, ..., 2" -1}
where 2,(i) = if w is a terminal factor of iy then 1 else 0.
Then u(a,) = a,.

As one can easily see, there is exactly one je{0, 1, ..., 2" — 1} such that

x0) =1

In the case w = 1 we obtain

a, =t =0110100110010110...
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— the word of Thue—Morse. It is well known that ¢ does not contain any factor

of the form xvxvx, xe{0, 1}, ve{0, 1}*. In particular, ¢ contains no cubes
3

X = Xxx.

3. Proof of the result

Our goal is to prove that there are no factors of the form (xv)™'x in a,. It
is well known to be true [Fi80, Pag81] for w = 1, thus in the following we
consider we {0, 1}* — 0* to be a fixed word of length at least 2.

The proof is based on the method from [Pa81]. The proof is divided to
a series of lemmas. In the first of them, the minimal sorting automaton for a,
is described. Since the notion of the sorting automaton is derived directly from
the notion of the finite automaton, the results from the theory of finite automata
concerning the minimality can be applied to sorting automata, too. This fact is
used in the proof of the first lemma.

Lemma 1. Let 4, = (S, 6, s, (F,, F)), {0, 1}) be a sorting automaton over
{0, 1}, where S = {{a@),, {@),| ais a proper initial factor of w}

oK, x) = (ax); if ax)eS
(> _; fax=w
{a'>; otherwise,

where i€{0, 1}, xe{0, 1},  is the longest proper terminal factor of ax, being
a proper initial factor of w, s = 0%, where 0%, k > 0 is the longest initial factor
of w not containing 1,

F={ao}, i=0,1

Then A, is minimal among the sorting automata with the sorting sequen-
cea

we

Proof. By induction on |z| one can easily show for ze{0, 1}*,i=0, 1
8(sp, 2) = {@); iff #,(0"z) =i (mod2)

and a is the longest terminal factor of 0"'z, being the proper initial factor of w.

The nonequivalence of each pair of distinct states is evident. (Two states s,
s, are equivalent iff for each x€{0, 1}* (s, x) € F; iff &(s,, x) e F,.)

It is sufficient to show the accessibility of each state (from the initial state).
Obviously, each state is accessible from <&), or {(&),. On the other hand, the
states (@, {@,, Where @, is the longest proper initial factor of w are accessib-
le. Thus it is sufficient to show that (&), is accesible from {a,), i =0, 1. The
proof is based on induction. For each a€ {0, 1}*, @ # £a word ye {0, 1}* is given
such that
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0(<ay, V) =<d); and |d|<|a|

Let w = af8. We consider several cases.
1. w=1% k> 1. Then y=0.
2. w=xv"k=>1,m>1, x, xe{0, 1}, X # x. Then y = pw.
3. w = xX*¥"xs, k, m, x, % like in case 2., s€{0, 1}*
3.1 |a| <k. Then y= x*~ldgm+!
32 k+1<|a| <k+m. Then y=xm+k-ld+!
3.3 k+m+ 1< |a. Then y = y, where y is the inverse of the first letter
of B. |
Let T = (S, s, 0, {0, 1}, 7) be the 2-uniform tag system corresponding te the
automaton 4 from Lemma 1 according to Proposition 1. Hence seq, = sort, =
= a,. Denote

b, = b(0)b(1)b(2)... = intseq, = state .

Lemma 2. o is an injective mapping.

Proof. Let s, 5,€ S, s, # 5, 0(5,) = 0(s,). From minimality of the automa-
ton A we get 7(s,) # 7(s,). Let now d be the rightmost symbol of w and d its
inverse. Since no occurrence of w in the word scanned by 4 can be terminated
by d, we get

(s1) = 7(8(s, d))
= (8(s,, ) since o(s,) = o(s,)

= 1(s,) — a contradiction. |

To obtain our main result we will first investigate the structure of the word
b,; the results for a, will follow directly as can be seen from the following
Lemma 4.

Let xe S, x = (@), Denote x = (a),_;. Elements x, ye§ will be called
associated (x ~ y) if x =y or x = .

Remark 1. If for some x, ye S we have x ~ y and 7(x) = 7(y), then x = y.

Lemma 3. For each i > 0, b(i) ~ b(i + 2™~ ").

Proof. Let se S. Then

8(s, i) = {ay; for some <a)eS

iff @ is a terminal factor of i (as in Lemma 1)

iff @ is a terminal factor of (i + 2"~ "),

iff 8(s, (i + 2" ")) = (@), for some k{0, 1}. |

Lemmad. If g, = au® ... for some a, u€ {0, 1}*, then b, = & («’)’... for some
o, u' € S* such that || = |al, || = ™" 7.

Proof. Since [#*"'| is a multiple of 2~  the assertion follows from
Lemma 3 and Remark 1. |
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Lemma 5.
(1) Let i > 0. Then
7(b(20)) + ©(b(2i + 1)) =
o(b(2i + 2) + 7(b(Q2i + 1 + 2™)) (mod 2)
(i1) There is exactly one 0 <j < 2" -2 — 1 such that for all i > 0 and all
0<k<g2M-2-1]
o(b2™-i + 2-k)) + t(b2M i + 2-k + 1)) %
(B i+ 2k + 2" ) + TB@" i + 2.k + 1 42 1)
(mod 2)
iff k = j.

Proof. The assertions follow from Proposition 2. |

A word x e §* will be called m-block (m = 0) iff x = 0"(d) for some deS.
A word xe S* is m-factorizable iff it is a (possible empty) concatenation of
m-blocks. The set of all m-blocks will be denoted 4,,, the set of all m-factorizable
words will be denoted & .

Remark 2. Each m-block is of length 2.

Each initial factor of b, is of length divisible by 2™ iff it is m-factorizable.

An m-block x will be called even (odd) iff for some i = 0 x = o”(b(2i))
(x = o”(b(2i + 1))).

Remark 3. For m > 1 each m-block is a concatenation of some even
(m — 1)-block with some odd (m — 1)-block.

Lemma 6. For m > 0 no m-block can be both even and odd.

Proof. Let for some m, i, k = 0 o”(b(2i)) = o”(b(2k + 1)).

1. Let m = |w| — 1. Let j be as in (ii) of Lemma 5. Since

7(0"(b(20)) = 1(c"(b(2k + 1)),
using (i) of Lemma 5 we get

t(bQ2" 'k + 2)) + tbR" 'k + 2+ 1) =
(bQR™ i+ 2) + (bR i+ 2j+ 1)) =
(bQ™" 'k + 2/ +2™) + o(b2" T 'k + 2j + 1 + 2™)) (mod 2)

— a contradiction to (ii) of Lemma 5.

2. If m # |w| — 1, then by several applications of o or 6~' (Lemma 2) one
obtains case 1. , |

Lemma 7. If b, = xB..., where Be 4,,, then xe & .

Proof. Induction on m. The case m = 0 is evident.

Let m > 0. Then B = B,B,, where By, B,€ #,,_,, B, is even. By induction
hypothesis, xe #,,_,. If x¢ #,,, then B, is odd — a contradiction to Lemma 6.

|

Lemma 8. If b, = xu... = x,u..., where x, e ¥, — %, ., x,€ %, ., then

u is a proper initial factor both of some even and some odd m-block.
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Proof. « is an initial factor of an infinite word starting with an odd m-block,
and of some other starting with an even m-block. Since no m-block can be both
even and odd, |u| < 2" ]

Lemma 9. If b, = xuBu..., B being a word of length divisible by 2", and
Xe%F,, then ue % .

Proof. Let we#, —-%,,, m =20. If m"<m, then xe#,,,
xuBe #, ,,. From Lemma 8 and the fact that ue #,, follows u = ¢ hence

ue ¥, ,, — a contradiction. ]
Lemma 10. b, contains no factors of the form uBuBu where ue S*, Be 4,,,
m=0

Proof. Let b, = xuBuBu.... We use induction on |u|.

1. |u| = 0. In this case b, = xBB..., from Lemma 7 we obtain xe %, thus
B is both even and odd — a contradiction.

2. |lu| > 0. Lemma 7 implies xue & ,,, xuBue %, hence ue %,

2.1 If B is an even m-block then u can be factorized as u = Cv, Ce %,

|v| < |u| and b,. = xCvBCvBCv..., BCe%,,,, — a contradiction to induction
hypothesis.

2.2 If B is an odd m-block then a similar contradiction can be obtained
using the factorization u = vC, Ce %,,. |

Corollary 1. b, contains no cubes.

Proof. If b, = xv’... then (if v # &) v = uB for some Be %, = S and b, =
= xuBuBuB... . |

Lemma 11. b, contains no factor of the form xyBzxyBzx... where xe S,
Be A, zxyeAB,, m = |w| — 2.

Proof. If b, contains such a factor then it is of length 2" + 1. Let the first
occurrence of x in this factor have in b, index i. Then for i < k <i+2""'we
have b(k) = b(k + 2"~ "), which yields a contradiction to (ii) of Lemma 5. |

Lemma 12. b, contains no factor of the form xyBzxyBzx where x€ S,
Be#,, zxyeAB,, m = 0.

Proof. If Be 4,, then o(B)€ g,,, ,. Thus if b, contains a factor xyBzxyBzx
for some m, then it contains a similar factor for m + 1. Lemma 1 now direct'~
implies that b, does not contain a factor xyBzxyBzx for m < |w| — 2. For
m > |w| — 2 we proceed by induction.

Let b, = axyBzxyBzx... for some m > |w| — 2.

1. Let || be even, i.e. x is an even 0O-block. Then y # & otherwise the
m-block zxy would be terminated by an even 0-block. Thus y = dv, de S, ve S*,
and

b, = axdvBzxdvBzx...

From Lemma 3 we obtain

b, = axdvBzxdvBzxd' ...
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where d ~ d’. From (i) of Lemma 5 and from Remark 1 we get

7(x) + 7(d) = 1(x) + ©(d)
7(d) = t(d")
d=d'.

Since o is injective, b, can be factorized as follows:
b,=ax'yBzxyBzx...

where o(a') = a, o(x') = xd, o()’) = v, o(B’) = B, o(z') = z — a contradiction
to induction hypothesis.

2. If o] is-odd then by factorization z = vd one can obtain a contradiction
analogically to case 1. |

Lemma 13. b, contains no factor of the form xyBzxyBzx where xe S,
Be #,, z, ye S*.

Proof. Induction on |zxy|.

I. |zxy| = 1 i.e. z = y = & The assertion follows from Lemma 10.

2. |zxy| > 1. Let b, = axyBzxyB:zx... . From Lemma 7 we obtain ZXyeF,,
Moreover, |zxy| is an odd multiple of 2", otherwise B would be simultaneously
odd and even.

2.1 y=vA4, A being an even m-block. Then b, = axvABzxvABzx...,
ABe A, , ., |zxv| < |zxy| a contradiction to induction hypothesis.

22 z=Av, Ae#, ., Then b, = axyBAvxyBavx..., |vxyB| < |Avxy| =
= |zxy| — a contradiction to i.h.

23 z=Av, A being an odd m-block. Then b, = axyBAvxyBAvx...,
BAe#,, ., lvxy| < |zxy| — a contradiction to i.h.

2.5 zxye#, — a contratiction to Lemma 12. ]

We have now proved the following properties of 5, and a,:

Theorem 1. b, does not contain a factor of the form Xvxvx, Xx€ S, ve S*,

Proof. The case v = ¢ follows from Corollary 1.

In the case v # ¢ using the factorization v = dz, deB,= S, ze S*, one
obtains xvxvx = xdzxdzx and Lemma 13 implies that such a factor cannot be
contained in b,. ]

Theorem 2. ¢, does not contain a factor of the form (xv)™'x, xe{0, 1},
vtef0, 1}*,

Proof. Applying Lemma 4 for x = xv and u = vx, one obtains that b,
contains a factor of the form x'v’x’v’x’ — a contradiction to Theorem 1. |}

Theorem 2 does not exclude the possibility that a, contains a factor of the
form #*". Our next goal is to find some necessary conditions for appearing of
such a factor in a,. First we shall describe how the squares in b, look like.

Lemma 14. Let b, = auBu..., Be B, u # ¢.

Then o, ue 7,

306



Proof. Let ee #,, — #, .. Let m" < m. Lemma 7 implies ue & ,,. Since
a¢ F ., the first m’-block of u is odd. Since Be %, , ,, the same block is even
— a contradiction.

Thus m’ > m, ae #,. Lemma 7 implies that ue %, ]

Lemma 15. Let b, = auBu..., Be #,,. Then |u| = 29 — 2" for some g > m.

Proof. Induction on |u|.

1. If |ul =0, then |u| = 2" — 2™,

2. Let |u| > 0. Lemma 14 implies that |u| is divisible by 2.

2.1 If |u] = 2™, then |u| = 2™+ — 2™,

2.2 Let|u| > 2". Thenu = AvC, A, CeB,,veS* and b, = aAvCBAVC....
Either CB or BA is an (m + 1)-block. By induction hypothesis, for some
gzm+1,|Av| =29—2"*" or [vC| = 29— 2"+, In both cases

uf =27 —2m*1 4 2m = 29 _ om |

Lemma 16. Let b, = auu..., u # ¢, ae #,,

Then |u| = 2% for some ¢ > m + |w| — 1.

Proof. u=0vB for some veS* BeS =4, Lemma 15 implies that
[v] = 27— 1 for some g >0, hence |u| = 2¢. Let q <|w|— 1+ m. Since o is
injective (Lemma 2) and b, = o(b,), for k = [w| — 1 — g (satisfying —m < k <
< |wl — 1), one obtains [6*(w)| = 2", oX(a)e #,, and b, = o*(a)d*(u)d*(u)...

— a contradiction to (ii) of Lemma 5. 1
Lemma 17. Let b, = auu..., u # ¢, aeF, — F, .1
Then |u| =2"*"~"and ue #, — #, , .

Proof. According to Lemma 16 |u] is divisible by 2”. ae #,, implies that
ue #,. Since a¢ #, , | the initial m-block of u is odd, thus u¢F . .\

Considering Lemma 16 it is enough to prove |ul <2"*M-! Let
u=2*"*M=1"r>0. Then b, = 0""(b,) = du'ui'..., where ] =27+ =1,
deF,—F, Letu =xv,xeS,veS* If r > | then from Lemma 3 and (i) of
Lemma 5 it follows (since the rightmost letter of u’x’ has in b,. an even index)
that b, = a’xvxv... = & xvxvx... — a contradiction to Theorem 1. ]

Corollary 2. If b, = auu...,u # ¢, ac ¥, — F,, . for some m > 0 then the
same is true for m = 0.

Lemma 18. Let b, = auu..., u # ¢, aeF,— &F,.

Then either for y = a or for y = au

(*) Wl =v(w)+d (mod 2"),

where d is the inverse of the rightmost digit of w and v(w) is the integer whose
binary notation is w. _

Proof. Lemma 17 implies that |u| = 2"'~'. It is easy to see that (ii) of
Lemma 5 is satisfied only if (%) is valid. i
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Our knowledge of the powers in b,. and a, can now be summarized in the
following theorems:

Theorem 3. If b, = auu..., u # ¢, ae ¥, — %,,,,, then

@) lu=2"""*'"and ueF, — %, .1

(ii)) b, = dvw'u'...forsomeu” # ¢, @ € F,— F,and either for y = « or for

y = au, |yl = v(w) + d (mod 2').

Theorem 4. If a, = au®'..., u # &, |a| divisible by 2™ and not divisible by
2"+ then

(i) |ul =27,

(ii) either for z = |a|/2" or for z = |a]/2" + 2™ ', z = v(w) + d (mod 2™).

Using Corollary 2 one can show that b,,,, does not contain squares, and
consequently that a,,,, does not contain a factor of the form «'®. On the other
hand for each w of the form 1¥, k > 1, a, contains the subword 0* beginning in
a, at the place with the index (in binary notation) 1w = 1**',

Each a,. contains the factor 0°™'~', as shown in the following table where n is
a binary notation of such an index in a, that

a(n+ Da(n + 2)...a(n + 2™ — 1) = 0™ -!

and xe{0, 1}*, k> 1.

w n remark
00x 1¥01w we¢0*

10x 1™y x¢0*

11x Iw

0lx 01"y x¢0*u1*
10% wwl*~'w

010* 011011w

011* : wOlww

01 010000
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SUHRN
ZOVSEOBECNENE SLOVA THUEHO—MORSEHO
Anton Cerny, Bratislava
V praci sa vySetruje trieda nekoneénych slov nad abecedou {0, 1}, ktoré si zovieobecnenim

nekonecného slova vznikajiceho iteraciou morfizmu 0 — 01, 1 — 10 znameho z prac Thueho a Mor-
seho. Ukazuje sa, Ze takéto nekonecné slova obsahujii ako podslova len ohraniéené mocniny slov.

PE3IOME
OBOBUEHHBIE CJIOBA TIO—MOPCA
AnTOH YepHnbl, BpaTucnasa
B pabore paccyxaaeTcs omuH kiacc 6eckOHeuHbIX noccaeaoBaTenbHocTei B andasurte {0, 1},
SBJISIOLIMIACH 0606IIEHHEM NOCNEAOBATENBHOCTH NOPOXAAEMOl uTepauneii Mmopdusma 0 — 01,

1 — 10 n3secTHo# U3 pabot Tio 1 Mopca. [Toka3aHo, YTO Takue CJIOBA CONEPXAT B BUAY MOACIOB
TOJIbKO CJIOBA OTPDAaHHYEHHOM CTENEHH.
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