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COMPLEXITY CLASSES OF g-SYSTEMS ARE AFL
BRANISLAV ROVAN, Bratislava

The notion of a generative system (g-system) was introduced in [3] in an
attempt to facilitate a unified approach to various types of rewriting systems
studied in the literature. The complexity of language description by sequential
and parallel grammars was studied there. An important question arising in the
complexity theory is the study of complexity classes. In the present paper we
shall consider the complexity classes of g-systems. We shall show that each
complexity class for the measure STATE ,. (the number of states of the a-trans-
ducer of the g-system in normal form) is an abstract family of languages.

The paper consists of two sections. The first section briefly reviews the main
notions studied. The results are presented in the second section. The reader is
referred to [3] for further background and motivation concerning g-systems.
Language theory notions unexplained here can be found in [1] and [2].

1. Preliminaries

We shall define the main notions here. The reader is assumed to be familiar
with the basic notions and notations of the theory of formal languages (see e.g.
[1] and [2)).

Definition 1.1: A one-input finite state transducer with accepting states
(I-a-transducer) is a 6-tuple M = (K, X, Y, H, q,, F), where K is a finite set of
states, X and Y are finite alphabets (input and output resp.), g, in K is the initial
state, F < K is the set of accepting (final) states, and H is a finite subset of
Kx X x Y* x K. In case H is a subset of K x X x Y* x K, M is said to be
&free.

By a computation of such a 1-a-transducer a word 4,...h, in H* is understo-
od such that (i) pr,(h,) = g, (ii) pry(h,) is in F, and (iii) pr(h,,,) = pryh,) for
1 <i<n-—1, where pr; are homomorphisms on H* defined by pr,((x,, x,,
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X3, Xg)) = x; for i =1, 2, 3, and 4. The set of all computations of M is denoted
by IT,,.

A I-a-transducer mapping is then defined for each language L < X* by
M(L) = pry(pr; '(L) n IT,,). For a word w let M(w) = M({w}).

Definition 1.2: An [e-free] generative system (g-system) is a 4-tuple G = (N,
T, M, S), where N and T are finite alphabets of nonterminal and terminal
symbols resp. (not necessarily disjoint), S in N is the initial nonterminal symbol,
and M is a l-a-transducer mapping [e-free], with M(w) = @ for each w in
(T — N)*.

Definition 1.3: The language generated by a g-system G = (N, T, M, S) is the
language L(G) ={w in T%*; S% w}, where % is the transitive and reflexive

closure of the rewrite relation = defined by u=v iff v is in M(u).

When discussing g-systems we shall frequently employ the following expres-
sions. We shall say that x is a computation enabling a derivation step u = in

a g-system G = (N, T, M, S), if x is a computation in IT,, such that pr,(x) = u
and pry(x) = v. If A is a 4-tuple in H such that pr,(h) = a, we shall say that the
4-tuple A is rewriting the symbol a. The 4-tuple (p, a, a, p) is said to be a copying
cycle (for the symbol a in the state p).

We shall now define a special type of g-systems to be studied in this paper.

Definition 1.4: A g-system G = (N, T, M, S)with M = (K, V, V, H, qy, {gF}),
V =NuT,is said to be in normal form if the following holds:

(i) H contains 4-tuples (g, X, X, ¢o) and (¢ X, x, ) for each x in V (i.e.,
M contains a copying cycle for each symbol in its initial state and in its single
final state).

(i) If (p, x, y, q,) is in H, then p = g, and x = y (i.e., the only 4-tuples 4 in
H such that pr,(h) = g, are the copying cycles in the initial state).

(iii) If (g5, x, y, p) is in H, then p = g and x = y (i.e., the only 4-tuples / in
H such that pr,(h) = g, are the copying cycles in the final state).

(iv) If (p, x, y, q) is in H for some x in T, then y = x and either p = ¢ = g,
or p = g = g (i.e., the only 4-tuples rewriting terminal symbols are the copying
cycles in the initial and final states).

(V) M is e-free. .

It can be shown [3] that.for each &-free g-system G there exists a g-system
G’ in normal form such that L(G) = L(G’).

Several complexity measures were introduced in [3] to study the complexity
of g-systems. In what follows only one is considered.

Definition 1.5: Let G = (N, T, M, S) be a g-system with M = (K, V, V, H,
90 {95). Define STATE(G) to be the number of states in K. For a language
L (definable by some g-system in normal form) let '
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STATE , (L) = Gmlr} {STATE(G); L(G) = L},

where 4" is the family of all g-systems in normal form.

We shall use the following notation for the complexity classes of the
measure STATE.

Notation 1.6: For each k > 1 let L(k) = {L; STATE ,(L) < k}.

Note that L(1) contains only @ and all languages of the form {x}, where x is
a letter. The families L(k) for k > 2 are more interesting. We shall show that
each of them is an AFL.

Definition 1.7 [1]: A family of languages containing a nonempty language
is said to be an abstract family of languages (AFL) if it is closed under &-free
homomorphism, inverse homomorphism, intersecion with regular sets, union,
concatenation and Kleene +.

2. Results

We shall consider the families L(k) for k > 2 in this section. Through
a sequence of theorems we shall show that each of them is an AFL.

Theorem 2.1: Each family L(k), k > 2, is closed under union.

Proof: We shall prove the above theorem by constructing a g-system in
normal form generating the union of languages generated by two given
g-systems in normal form. The fact the given g-systems are in normal form
enables us to “lay one over the other” and let them use the same set of states.
Due to the normal form assumption we can rename nonterminals so that no
cross-talk occurs. '

Formally, let L, and L, be in L(k), i.e., there are two g-systems G, and G,
in normal form such that L(G,)) =L, L(G, =L, STATE(G, <k, and
STATE(G,) < k. Letforiin {l,2} G;=(N, T, M,, S) and M, = (K, V, V, H,
90> 19r})- Let STATE(G,) = m and STATE(G, = n. Let us assume that m > n.
Let f be an injective mapping from K, to K, such that f(g,,) = g,; and
fGry) = g Clearly we can assume that (N, — T)) "V, = (N, — T)) n V, = 0. Let
us construct g-system G, = (N3, T;, M5, Sy), M= (K3, Vs, Vs, Hy, G0y {qrs)) as
follows. Let K;= K\, 403 =qo1, 9r3=qr» N3=N,UN,U{S3}, ;=T U T,
where S; is a new symbol, and the set H; = H, u H, U Q, where H’, = {(f(q), x,
¥, f(P)); (g, x, y, p) in Hy} and Q = {gg3, S5 S, 452, (G0 S> S» qr3)s (Gos» S5, Sy
903)> (4r3, S5, S3, )} Since G, and G, are in normal form, G, is also in normal
form. We shall prove that L(G;) = L, U L,. Let w be in L, U L,. Suppose w is in

Ly, ie., S, =w. Since H, < H,, it holds S, % w. Thus S, =S, % w and w is in
G. -~ G3 G} G]
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L(G5). Suppose w is in L,, i.e., S, = w. Then S, 2 w. (For, if (¢o, a;, v,, ) (g1,
Gy Gy

a, 05, 4)) ... (4, -, 4, v, q,) is a computation in M,, then (f(qyy), a1, vy, (¢)) (f(q)),

az, Uy, f(qZ)) (f(QI — l), a, v, f(qr)) is a ComputatiOﬂ in MS) Thus S3 == SZ =*> w

G, G,
and w is in L(G,). To prove the converse inclusion, let w be in L(G;) and let

S;=v,=0v,=...=v,=w be a derivation of w in G,. It follows from the
Gy Gy G G,

definition of H, that v, = S, or v, = S,. Suppose v, = S,. Since pry(x) is in V;*

for each x in H, with pry(x) in V;¥*it follows that v;isin V;* foreach i, 1 <i<r.

Since G, is in normal form, terminal symbols can be rewritten by copying cycles

in the initial and final states only. From this and the assumption (N, — T;) N

NV, =0 it follows that v,=c>vi+, for each i, 1 <i<r— 1. We can proceed
1

similarly in case v, = S,. (In each computation of M, on a word in V;* only
4-tuples from H; can be used, thus a computation with the same input and

output exists in M,.) We obtain S, = w, hence w is in L(G,) = L,. In each case
Gy

wisin L, u L, and the proof is complete.

Theorem 2.2: Each family L(k), k > 2, is closed under intersection with
regular sets.

Proof: The proof'is based on an idea similar to that of the proof of the same
property for the family of context-free languages. Given a g-system and a finite
state automaton we shall construct a.g-system which (in a sense) generates all
computations of the given automaton on the words generated by the given
g-system as sentential forms. The computations terminating in an accepting
state are then rewritten to terminal words.

Let L be in L(k) and R be a regular set. Thus L = L(G) for some g-system
G=(N,T, M, S), M=(K, V, V, H, gy {q5}) in normal form such that
STATE(G) = k and R = L(A) for some finite state atomaton 4 = (K, T, 4,
Jo» F). Without the loss of generality we can assume that 7 = T. Let us construct
g-system G'=(N', T, M’, §), M' = (K, V', V', H’, q,, {q5}) as follows. Let
N =K x V x Ru{S’}, with S" new, and let H' = H,u H,u H, U H,, where
Hl = {(q()’ SI’ (q-O' S’ ‘I), qF)7 q in F}, HZ = {(q’_(rv X, t)’ (r’ a, sl) (S|, a, SZ) (sj— s
a,1),pj=zlaisinV,1<i<j,sisinKforl <i<j-—1,(q, x,ay...a;,p)
isin H, r and t are in K}, H, = {q,, (r, x, 1), X, q); 6(r, x) = tand xisin T}, and
H,={(g, x, x, q); q is in {qo, ¢/}, x in V'}.

We shall prove that L(G’) = L n R. First we shall show the following.

(+) Let S=:>a,...a,,, a;in V for each i, 1 <i<n. Then

*
S? (so, al’ sl) (Sb a, SZ) (S,,_ I» a, S,,)

for each sequence of states s, ..., 5, in K such that s, = g,and s, = qp.
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The proof is by induction on the length of the derivation. Let the length be
d=0.Thenn = 1,a, = Sand (qy, S’, (50, S, 5,), qp) isin H, < H'. Thus S’ = (o,

S, 51). Suppose now that (+) holds for all sentential forms in G derivable by
derivations of length at most d. Let a,...a, be a sentential form in G with the
shortest derivation of length d + 1. Let it be the derivation S%b,...b,,,?

= ay...a,, with each b;in V. Let the computation enabling the last step of this

derivation be the computation (g,, by, v}, ¢,) (q1s b2 V3 @) <. (G 1s by U q.»),
with g,, = gp. Let (i}, j)), (i3 j»), ..., (i, j,) be the sequence of pairs of integers

r=1

such that j, is the length of v, and i, = Y j, (i.e., we can write v, = Q1@ 4 )
t=0

for each r. By the inductive hypothesis—we have
S’ %:?(So, by, 1) (81 by 5:) - (Sips by 5,)-

Since (g,, b,, v,, g, ) is in H for each r, 1 < r < m, the set H, (thus H’) contains
for each such r the fourtuple (q,. (5, by, 5., ), (S4s @y s 15 541 (s 1> @y 120 55 12)

v (sir+jr—|’ air+jr—|’ sir+|)’ qr+l)' Thus
(S0, b1, siz) (siz’ by, si3) we (850 Oip Sl ?(S(p ay, $)(Sy A 59 ... (Sp_15 Ay ),

proving the inductive step.

We can now prove LN R < L(G’). Let wbe in LN R, w = q...a, for some
a, ...,a,in T, n > 1. Since wis in R = L(A), there is an accepting computation
of Aonw(qy, a,...a,) — (s, ay...a,) — ... — (5, @)+ (5,, &), 5,in F. Since w is
in L = L(G), there is a derivationS f}a,...a,, of win G. It follows from (+) that

S’ 2 (o, 15 1) (515 @3, 5 oo (S 15 A 5.

Using the fact the g-system G’ is in normal form (hence it has a copying cycle
for each symbol in g, and g;), we have by the definition of H,

(Go> a1, $1)($1, A2, §) .- (Sy_ 1, A ) T
= ay($), @5 5) ... (S, -1, Ay 5y =
= a,a,(sy, a3, $3) e (Sp_1s Qs S,) = ... a4,
Thus S’ % a,...a, and w is in L(G").
To prove L(G’) = L n R we have to prove several properties of derivations

in G'.
(++) If S’?(sl, Xy, 87) (53 Xg 89 ... (S, X, 57, then s7=s,,, for each
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ib1<i<n-—1,s =g¢q,ands,isin F.
We prove (+ +) by induction on the length of the derivation. For all sentential
forms having derivations of length one (+ +) holds due to the definition of H’
(see definition of H,). Now suppose (+ +) holds for all sentential forms in
(K x V x K)* having a derivation of length at most d. Let a minimal derivation
S’% u=x for a sentential form x = (s,, x,, 57) (53 X5, 5% ... (5,5 X,, 5,) be of

length d + 1. By the definition of H uisin (K x V x K)* (for otherwise x could
not be in (K x ¥ x K)*) and by the inductive hypothesis u = (r,, u,, r,) (1, ,,
r3) ... (Fps Ups Ty o)) With ry, = ggand r,, ., in F. By the definition of H’ the only
4-tuples (besides the copying cycles in H,) that can be used in the computation
enabling the derivation step u = x are those in H,. In case a symbol (r, u,, ;. )

is rewritten by a 4-tuple in H,, it is replaced by some nonempty string (¢,, v,, t7)
o (tyv,t)suchthatty =r,t;=r,,,and tj=1;  forallj, 1 <j<s— 1. Thus
x clearly satisfies (+ +), proving the inductive step. Hence (+ +) holds.

We now prove

(+++) IfS %(s,, X1, 85) (S5 X3 83) oo (5,0 X,p S, 1), then S %x,...x,,.

The proof is again by induction on the length of the derivation. Derivations of
length one are in this case enabled by computations consisting of a single 4-tuple
in H,. Since S =:> S, (+ + +) holds in this case. Let it hold for all sentential forms

(8}, X5 89) (S35 X35 83) ... (S, X,» S, 4 1) With a derivation of length at most d. Let
x be a sential form with a minimal derivation S’ =;:;u——6-7x of length 4+ 1.

Similarly as in the proof of (+ +) we have that uis in (K x ¥ x K)*. Thus, by
(+ +), we can write u in a form u = (ry, u), ;) (ry, U, r3) oo (Fpy Upy 'y 4 1)- By the
inductive hypothesis S % u,...u,. Let the computation of M’ enabling u =X be

(qO’ (rh Uy, r2)9 Y1 ql) (ql’ (7'2, Uy rl)’ V> q2) (qm— I (rma Upp T+ I)! Y ms qm), dm = 4F
Each 4-tuple is in H, U H, due to the form of x. Let # be a homomorphism,

h: (K x V x K)* - V*, defined by h((p, a, q)) = a for each p, ¢, a. By the
definition of H, and the fact G is in normal form it then follows that for each
LO<i<m—1,(q, h((ric1s s 1574 2), h(i1)s 54 ) 18 in H. Thus (go, 4y, h(y)),
q)) (g1, Uy h(¥y), q2) . (Gm—1s U B(V), 4,) 1 @ computation of M. Clearly
X = ...y thus h(y)...h(y,) = x,...x, and S%x,...x,,. This completes the

proof of (+ + +).

Let us now consider symbols in K x T x K. Since G is in normal form, all
symbols in K x T x K are in a given derivation step rewritten by copying cycles
in g, or g or there is only one symbol changed in this step and that is by
a 4-tuple in H,. The terminal symbol obtained using a 4-tuple in H, can be later
rewritten only by copying cacles in g, or g,. That means, for each computation
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of M’ enabling a derivation step uav = u'av’ with a in T, there is a computation
of M’ (differing by one copying cycle only) enabling u(p, a, g)v = u'(p, a, q)v’ for
any p and g. Furthermore, regardless of u and v, if ¢ = 6(p, a) then u(p, a, v =
= uav. Thus the following holds.

(++ + +) For each x in L(G’) there is a derivation in G’ S’ = u =:> x such
that u is in (Kx T'x K)* and all computations enabling the

. # . * .
derivation steps in u Z X are in HiHH¥

Now we are ready to prove L(G') = Ln R. Let wbein L(G'). By (+ + + +)
there is a derivation S’ ?*» u% w such that uisin (K x T x K)*. By (+ +) u is

of the form u = (go, uy, q1) (q1s U3, q3) .. (§n_1» U q,), With g, in F. By the
definition of H, foreach i, 1 <i<n—1, &g, 4;,,) = g,,, and &Gy, u,) = q,.
Thus (g, u;...u,) —* (g,, €) is an accepting computation of 4 on u,...u,. Further-
more it follows from the definition of H, that u,...u, = w, thus w is in R. By
(++4+)S =:;> u,...u, hence w is also in L. This completes the proof.

Theorem 2.3: Each family L(k), k > 2, is closed under substitution by
context-free languages not containing the empty word.

Proof: Let L bein L(k) and let G = (N, T, M, S) be a g-system M = (K, V,
V, H, qo, q5), such that L(G) = L and STATE(G) < k. Let 7 be a substitution
such that 7(a) is an &-free context-free language for each symbol a, with t(a) =
= L(G,) for an &-free context-free grammar G, = (N, T, P, S,). Denoting
N,U T, by V, as usual, we can assume without loss of generahty that Nn
N U = @ and foreacha N, n(U V,u V> =0.Leth: V* > (NU U {S‘,}) be

b+#a

a homomorphlsm defined by A(x) = x for x in N and A(x) = S, for xuin T. We
shall construct a g-system G’ that will first generate a word A(w) for w in L and
then derive from each S, in h(w) a word in 7(a). Let G’ = (N’, T', M’, S), where

=(K, V', V', H', q, qp), N' = NUUNQ, T'=\JT, and H' = H,u
qu U H,, where “

Hl == {(P’ h(X), h(y)s Q), (p~ X5 Y, ‘1) in H}’
= {(qo, x, ¥, qp); x =y in () a}, and

Hy=1{(q, x, x, q); x in V', g in {qy, q5}}.

It is easy to prove that G’ is in normal form and STATE(G’) = STATE(G). We
shall show that L(G") = L(G).

From the definition of H, and the fact G is in normal form (thus it contams
a copying cycle for each symbol in ¢, and g;) we have
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(+) Ifu = for some a and words w, vin V,*, then xuy = Xvy for all words

]

for all words x, y in (V")*.
It is easy to show by induction on the length of the derivation (based on the
definition of H,) that the following holds.
(++) S%x if and only if §= h(x).

Consider now w in 7(L). Then there is a word x = q,...a, in L, n > 1 and
each ¢, in T, and words w, in 7(a,), ..., w, in 7(a,) such that w = w,...w,. Since
xisin L, S=:‘_>_\‘ and by (+ +) we have

.S,

Now, for each i, 1 < i< n, Su,;—*> w,, since w; is in 7(a;). Thus by (4+) we have

(+++) S=:?S

a

(++++) Su|...S(,“% W, Ss...S, % wwsS,...S,, %tt*,u'z...)1’,,= w.
By (+++) and (+ ++ +) S=w, thus w is in L(G").

Consider now the converse inclusion. By the definition of H’ there are only
two types of computations in M’, namely those in H¥H}H¥ and those in
H¥H,H* Similarly to the case of the symbols in K x T x K in the proof of
Theorem 2.2 the symbols in }” — N have a special role in the derivations in G’.
Each symbol from V' — N in a sentential form is during one derivation step
either just copied (by a copying cycle in g, or g,) or rewritten by a fourtuple in
H,. In the latter case it is at most one symbol in the sentential form that is
changed and it is replaced by a string in (V' — N)*. It therefore follows that

(§) If uxv=>uyv, where x isin V" — N and y is in (V" — N)*, is enabled by

a complutation in H¥H,H¥ and some computation in H3¥H H ¥enables
uyv ? u'y’v’, then y" = y, and uxv ? u'xv’ =G> wyv'.
The assertion (§) thus says that the derivation steps enabled by computations in

HYH,H*may be deferred. Thus the following holds.
(§§) Foreach word xin L(G’) thereis a derivationof xin G’ S =:> u €> x with

uin {S,; a in T}* such that the derivation steps enabled by computati-
ons in H¥H,H¥ are exactly those in u =:>t

The assertion (§§) follows (by induction) directly from (§). It suffices to show that
uisin {S, a in T}*. This follows from the following facts. (i) All computations
enabling derivation steps in S -—;:» u are in H¥H}H#% (ii) Sis in N. (iii) There is no

fourtuple in H, U H, rewriting a symbol in N to a string containing a terminal
symbol. (iv) Only fourtuples in H, can rewrite a nonterminal symbol to a string
containing a terminal symbol. (v) The fourtuples in H, can rewrite symbols from
V" — N only. And finally. (vi) The symbols in {S,; a in T} are the only symbols
in V" — N to which symbols in N can be rewritten.
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Now, let x, y be in N’ — N and r, s, and ¢ be in (V’)*. Clearly, if

rxsyt = rxsy’t = rx’'sy’t,

then it also holds that
rxsyt = rx'syt = rx’sy’t.

It thus follows

(888) In (§§) we can moreover assume that in each step of the derivation
* . .
uZx the fourtuple in H, rewrites the leftmost occurrence of a nonter-

minal symbol.
Now it is easy to show L(G’) < 7(L). Let w be in L(G”). Let S% u =:> w be

a derivation of w satisfying (§§) and (§§§). Let u = Sa,--Sq, for n > 1 and some

a, ..., a,in T. By (+ +) S=a,...a,, thus a,...a, is in L. Consider now the
derivation u =:> w. Let this derivation be

U=uy=uUu,=...=U
G’ G’ 5 G’

=Ww
G

and let i, ..., i, be those indices for which u, = ww,...w;_,S,...S,, for each j,
1 <j<nand w;in (T")*. Since all computations enabling the derivation steps
in this derivation are in H¥H,H?, we have S, -—:*-» w; for each j, 1 < j < n. Since we

assumed N"ﬂ<U V,u V) =0, it follows from the definition of H’ (H, in
b+#a

particular) that Sjj = w;, 1 <j < n. Thus each w; is in 7(a) and w in 7(a,...a,) is
G,

in 7(L). This complé’tes the proof.

The following two corollaries are immediate consequences of the above
theorem.

Corollary 2.4: Each family L(k), k > 2, is closed under &-free regular
substitution.

Corollary 2.5: Each family L(k), k > 2, is closed under &-free homomor-
phism.

In order to show that each family L(k), k = 2, is closed under inverse
homomorphism we need three lemmas.

Lemma 2.6: Each family L(k), k > 2, is closed under union with regular
sets.

Proof: It is easy to see that for k > 2 each L(k) contains the family of
regular sets. The result then follows by Theorem 2.1.

We shall need the following special type of homomorphism [1]. .

Definition 2.7: Let 4 be an alphabet and ¢ a symbol not in A. Let /1 be
a homomorphism defined by /(a) = a for each a in 4 and h(c) = € Let L =
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c (A*{c; 1 €i< n})* for some fixed n. The homomorphism # is said to be
limited symbol erasing (on L).

Lemma 2.8: Each family L(k), k > 2, is closed under limited symbol erasing.

Proof: Let L be in L(k) and let L = (T{c’; 0 < i < n})*, where ¢ is a symbol
not in T. Let 4 be a homomorphism such that #(a) = a for ain T and h(c) = ¢.
Let G=(N, T, M, S),with M = (K, V, V, H, q, {qs}) be a g-system such that
L(G) = L and STATE(G) < k. We shall define a g-system G' = (N', T, M’, S),
with M’ = (K, V', V', H’, q,, {q,}) such that L(G’) = h(L) (and clearly STA-
TE(G’) = STATE(G)). Let the nonterminals be N’ ={S}u{[w]; w in N,
1<w|<2n+1} and let H"'= H v H,uH,;UH,UH, where H, = {(q, S,
f(y)w qF)* (‘Io, S’ Vs qF) in H}’ H2 = {((Io~ [X], ‘f(yl"'ym)’ qF)» 1 < le < n, x =
= X)...X,, €ach x;in V, and (o, X1, ¥1» ) (G5 X Y2 4D -+ (G 15 Xons Yiu» GF) 18
a computation of M for some q,, ..., q,,_}» Hy = {(p, [x], f1---¥m)s 9); P, g in
K,n+1<|x| <2n+2, x=x...x,. with at least one x; in N, and there exists
a sequence of fourtuples (p, x,, ¥, 4) (41 X2 V2 §2) oo (@m—1» X Voo @) 1IN0 H
for some g, ..., g, 1}s Hi = {(qo, [x], h(x), gp); xin T* — ™}, and H; = {(q, a,
a, 4); q in {q,, g}, a in V’}, with the function f: V* — (N’)* defined by f(a,...
...a,) =la,...a,) if | <m < nand

f(al~-~am) = [al'-'an+ l] [an+2"'02n+2]"'[a(l— |)n+!"'aln+l] [am+l+ l-“am]

ifm=@+1)(n+1)+rforsomet>0and 0 <r<n.

The function fthus assigns to each nonempty string of length at most n one
symbol (the symbol [x] to a string x) and to each string x of length exceeding n it
assigns a sequence of symbols [x,] [x,]... [x,_ ][x]suchthat|x|=n+ 1,1 <i <
<t-—1,n+1<|x|<2n+1,and x = x,...x,.

It is easy to verify that G’ is in normal form. It thus remains to show that
L(G’) = h(L). We shall use the following assertions.

(+) If S [x]...[x,), then 82 Xp.e X

(++) If S%u and u # S, then there is m > 1 and u,, ..., u,, such that
u=u,...u, and S-(-?[u,] e u).

We shall prove (+) by induction on the length of the derivation of the

sential form [x)]...[x,]. For the derivation of length one the assertion follows

from the definition of H,. Suppose (+) holds for the sentential forms having

a dt_:rivation of length at most P. Let [x)]...[x,] be a sentential form with
a minimal derivation of length P + 1. Let S=:? u = x be such a derivation and

u=[u]...[u). If p = 1, then the compuation of M’ enabling the derivation step
u = x consists of a single fourtuple (in H, or H,, depending on the length of u,)

and thus by the definition of H, or H, resp. it follows u, = X)...X,. NOW suppose
p = 2and let for each i, 1 <i < p, u; = u;...u; with allu;in V. Let the computa-
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tion of M’ enabling u = x be (9o, [u], 21, q1) (g, [u3], 25, ) ... Gp-1[ud 2, q).
4, = qp- By the definition of H, for each fourtuple (¢,_,, [u], z, q,) in this
computation there is a sequence of fourtuples of M (g, _,, Ui Vipr i) (Gis Uiy Vis
9i) - iy, - 1y U Vir» 4) such that z; —f(y,-‘...y,-,r). Concatenating these sequen-
ces we clearly obtain a computation of the 1-a-transducer M on the word

u”ulz...u“luz]... U =u|...u

with the output
Yidi--Yudoeeo oo Vpp, = Xpeo o X

(The last equality follows from the fact that x = zy...2, = [x]...[x,].) It thus
holds u,...u, = Xj...X,,. By the inductive hypothesis S = ..Uy, hence § %x,.“

...X,,. This proves (+).

To prove (+ +) we shall again proceed by induction on the length of the
derivation of the sentential form u. For the derivation of length one the assertion
follows by the definition of H,. Suppose (+ + ) holds for sentential forms having
a derivation of length at most P. Let u be a sentential form with a minimal
derivation of length P + 1. Let S =;> v = u be such a derivation. By the inductive

hypothesis there exist m > 1 and v,, ..., v,, such that v = v,...0,, and S=;? [v]...
.. [v,]. Let the computation of M enabling v=>ube (4o, a, Xy, q)) (91, G X5, ¢»)

.- (4,\, a, x, q,), with g, = q;. Clearly v = a,...a, Let i, ..., i, . be indices

such that for each j, 1 <j<m, v, = aa,...a;, . (Thusiy=1andi,, =

=r+1). By the definition of H, (or H, if r =n) H’ contains (gi, -1 [v).
Sxexy, -0, g, ,_y) for each j, 1 <j<m. Thus, noting that 7, — 1 =0,
iny1— 1 =r, and g, = g5, we can see that

@1 [0 XX, - ) (g, 1 [0,
SOy ) @iy 1) o (i 15 [0 S X — s G- 1)
is a computation of M’ and therefore
S f(x,...x, _ M Xy ) oo e Xy -
By the definition of f there exist u,, ..., u, such that
S xi, VXipeoxi 1) o fXe Xy 1) = [w)] - [1)]

and clearly u,...u, = X+ Xjp oy —1 = Xp...X, = u. Thus (4 +) holds.
We shall now show that #(L) = L(G’). Let w be in A(L). Thus there exists
a (nonempty) word u in L such that w = h(u). By (+ +) there exist words u,, ...
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u,,. It is easy to see that {u,, ..., u,,} nc¢* = 0, i.e., none of the words u; consists
entirely of letters c. [For, with the exception of the case m = 1 the length of all
words uy, ..., u, is at least n + 1. Since L = (T{c; 0 <i <n})*, no word in
L contains more than »n consecutive letters ¢. Thus each of the words u,, ..., u,
contains at least one letter distinct from c. In the case m = 1 it may hold |u,| < n.
However, in this case ¥ = u, and due to the fact that L n¢* = ( u, contains at
least one letter distinct from ¢ as well.] Thus (q,, [©], ~(%), q;) is in H, for each
symbol [i]. It thus follows

[ul] [um] ? h(ul) [uZ] [le] ?
= h(u)h(u,) [us) ... [u,,) = ... =G?h(u,)h(uz) ... h(u,).

Clearly h(u)) ... h(u,)) = h(u) = w. Thus S% w and w is in L(G").

We shall now prove the converse inclusion, L(G’) € hA(L). Since G is in
normal form, only the fourtuples in H, or H; may have in their second compo-
nent symbols [x] for x in T*. Besides, only the fourtuples in H; may have
a terminal symbol in their second component. It is hence easy to see that

(+++) Ifulx]v = uh(x)v = u' h(x)v’ for some x in 7% and words u, v, ¥,

v’ in (V)*, then it also holds that u[x]v = u'[x’ = uh(x)v'.

Based on (+ + +) we can show by an easy induction proof that for each
derivation in G’ we can find a derivation yielding the same word in which the
derivation steps enabled by the computations in H¥H,H¥occur at the end, i.e.,
(+ + + +) Eachword uin L(G’) has a derivation S 20 ——g:» u such that none

of the computations enabling the derivation steps in S%v

contains a fourtuple in H, and all computations enabling the
derivation steps in v =;> u are in H¥H H¥

Let w be in L(G'). Let S % v -—:> w be a derivation satisfying (+ + + +). Clearly

v is of the form v = [v/] ... [v,] for some v,, ..., v,,in T*. By the definition of H,
we have w = h(v)) ... h(v,), i.e., w = h(v,...v,). Since S %[v,] ... [v,], we have by

(+) S% v,...v,. Hence v,...v,,1s in L and w = h(v,...v,,)) in A(L). This proves the

second inclusion and the proof is complete.

Lemma 2.9 [1]: Let & be a family of languages closed under &-free regular
substitution, limited symbol erasing, union with &-free regular sets, and intersec-
tion with regular sets. Then % is closed under inverse homomorphism.

Based on the above lemma, Theorem 2.2, Lemmas 2.6 and 2.8, and Corolla-
ry 2.4 we have the following theorem.
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Theorem 2.10: Each family L(k), k > 2, is closed under inverse homomor-
phism.

To prove the closure of L(k) under Kleene + we need the following
auxiliary result.

Lemma 2.11: Let L bein L(k), k > 2, and let ¢ be a new symbol. Then (Lc)*
is in L(k).

Proof: Let L = L(G) for some g-system G = (N, T, M, S) in normal form,
with M = (K, V, V, H, q,, q;) and STATE(G) < k. Let S’ be a new symbol. Let
us construct a g-system G' = (N U {S"}, Tu {c}, M", S"), where M’ = (K, V', V",
H’, g0, g9 and H" = HU H, U H,, with H, and H, defined by H, = {(¢, x, x, g):
q in {q,, g5} and x in {S’, c}} and H, = {(q,, S’, Sc, g9, (¢ S’, S’'Sc, gp)}. It is
easy to see that G’ is in normal form and STATE(G’) = STATE(G). We shall
prove that L(G") = (Lc¢)*. Since H < H’, we have

(+) Ifx?y, then x=y.

Besides, since G’ is in normal form, we have
(++) Ifx=>y, then uxv = uyv for each u and v in (V")*.

Suppose wis in (Lc)*. Then there exist n > 1 and words w b eoe Wy in L such that
w = wicwyc...w,c. By the definition of H’ we have S’=>S|cS7c .S,c, where
S =8=. = §. Since each w; is in L, S, =>w By (+) and (+ +) thus

7 * * *
S ? S,cS,c...S,¢c = wieSoc...S,c T T WL WL

Hence w is in L(G’), proving (Lc)* = L(G").

To prove the converse inclusion we shall need several assertions concerning
derivations in G'. Since c is a new symbol, it follows from the definition of H’
that ¢ can be rewritten only by copying cycles in g, and g,. Since G’ satisfies the
conditions (ii) and (iii) of Definition 1.4, we have

©) If uycuyc...u nC T2 VICVLC.... 0, C for some n > 1 and some u,, ..., u,, vy, ....

v,in V7, then there is at most one index r, 1 < r < n, such that u, # v,
and furthermore

(3] Ifu,cuze...unc F U Uy (COCU 4 (€ UpC = UNC Uy (COLU 4 (ol

-cveu; , c...u,c for some uy, ..., u, v, v; m V*and 1 <i <j < n,then
UNCUSC . UpC 22 UNCo Uy (COM; 1Con Uy€ 2 UC Uy (COU; (€l (O
“Uj 4 1C... U, C.

By the definition of H’ the initial nonterminal S’ can be rewritten either by the
copying cycles in g, or g, or its rewriting causes the transition from g, to g. It

thus follows that
(888 If S'u = S'u = S’Scu’ or S'u =S = Scu’ and the computations
enabling the first step of these derivations do not contain any fourtup-
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le from H,, then it also holds that S’u=G?S'Scu=G?S'Scu’ or Suz
= Scu = Scu’ resp.

By (§), (§§), and (§§§) we thus have
(§88§) Each word win L(G’) has a derivation of the form S’ % u =;’> w, where

all computations enabling the derivation steps in S” -—g> u are in H,{(qx,

a,a, qp); ain V’'}* and all computations enabling the derivation steps
inu = ware in {(qq, @, a, qo); ain T U {c}}* H*{(q, a, a, qp); ain V'}*.

For, by (§§§) the steps in which S” is not copied can be “moved” towards the
beginning of the derivation, by (§) one derivation step can change only one
group of symbols separated by c’s, and by (§§) we can change the order of
derivation steps to make it the leftmost group containing a nonterminal symbol.

We shall now prove L(G’) < (Lc)*. Let wbe in L(G’) and let S’ % u =:> w be

its derivation satisfying (§§§8). Clearly u does not contain the symbol S’ and it
is the first such sentential form in this derivation of w. It then follows from the
form of computations enabling the derivation steps in S’ =:> uthat u = S,cSyc...

...S,c, where S, =S,=...=S§,=S, for some n > 1. Due to the form of the
computations enabling the derivation steps in u -—’G-"> w given in (§§§3), there exist

wy, ..., w, in T7 such that
%k * *
u=Sc...S,c = wcSyc...S,c T T WIEWLLW,C

Since except for the copying cycles in g, and g, all the fourtuples used in these
computations are in H, we have foreach i, 1 <i<n, S, % w,. Thus w;isin L. w is

in (Lc)" = (Le)* and the inclusion L(G’) < (Lc)* holds. Both inclusions imply
the equality and the proof is complete.

Theorem 2.12: Each family L(k), k > 2, is closed under Kleene +.

Proof: Let L be in L(k) and let ¢ be a new symbol. By Lemma 2.11, (L¢)*
is in L(k). Let h be a homomorphism defined by A(c) = ¢ and h(a) = a for each
a in the alphabet of L. Clearly A is a symbol limited erasing on (Lc¢)*. By
Lemma 2.8, A((Lc)*) is in L(k). Since h((Lc)*) = L*, the proof is complete.

We are now ready to state the main result of this paper.

Theorem 2.13: Each family L(k), kK > 2, is an AFL, i.e., it is closed under
&-free homomorphism, inverse homomorphism, intersection with regular sets,
union, Kleene +, and concatenation.

Proof: The proof follows from Theorems 2.1, 2.2, 2.10, 2.12, Corollary 2.5,
and the fact [1] that each family closed under the first five operations is closed
under concatenation as well.
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SUHRN

TRIEDY ZLOZITOSTI g-SYSTEMOV SU AFL

V préci sa skimaji triedy zlozZitosti pre mieru STATE ,- (pocet stavov a-prekladaca v g-systé-
me). Dokazuje sa, Ze sii to abstraktné triedy jazykov, t.j., triedy jazykov uzavreté na nevymazavajuci
homomorfizmus, inverzny homomorfizmus, prienik s regularnymi mnozinami, zjednotenie, zretaze-
nie a iteraciu.

PE3IOME
KJIACCBI CJIOXXHOCTH g-CUCTEM SBJISIIOTCA A®JI
BbpanucnaB Posau, Bpatucnasa
B paboTe noxaseiBaeTcs, uTo K1acchl c10XHOCTH Mepbl STATE - (YHC/I0 COCTOAHMI KOHEUHO-
ro mnpeo6pa3opaTes C JOMYCKAIOUIHMH COCTOSHHSAMH) SBJIAIOTCA aGCTPAaKTHBIMH CEMERCTBAMH
A3BIKOB, T. €. OHM 3aMKHYTbl OTHOCHTEJILHO ONepalMii HeCOKpalaoLIero romoMopdusma, obpart-

HOro roMOMOpP(}H3Ma, NEPECEUEHHS C PEryISPHBIMH MHOXECTBAMM, COSAMHEHHA, CLIETUICHUS U HTe-
pauuu.
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