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INTEGRAL EQUIVALENCE OF AN ORDINARY
AND A FUNCTIONAL DIFFERENTIAL EQUATION

ALEXANDER HASCAK, Bratislava

In [2] a new notion, the (y, p)-integral equivalence of two systems of
ordinary differential equations is introduced and some sufficient conditions for
(v, p)-integral equivalence are found. In this paper we will prove an (y, p)-integ-
ral equivalence theorem for the systems

(@) w =F(t, u)
and
(b) v = G(t, v).

Suppose that F and G are such that they guarantee the existence of solutions of
(a) and (b), respectively, on the infinite interval {0, o).

Definition 1. Let y(¢) be a positive continuous function on an interval
{t,, o0)and let p > 0. We shall say that two systems (a) and (b) are (y, p)-integral
equivalent on {t,, o0) iff for each solution u(r) of (a) there exists a solution v(¢)
of (b) such that

© P (O)lu(r) — v(t) € L,(to, o)

and conversely, for each solution v(¢) of (b) there exists a solution u(#) of (a) such
that (c) holds. By a restricted (y, p)-integral equivalence between (a) and (b) we
shall mean that the relation (c) is satisfied for some subsets of solutions of (a)
and (b), e.g. for the bounded solutions.

We will say that a function z(¢) is y-bounded on the interval (¢, o) iff

sup |y~ '(1)z(1)| < .
121
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Next we will consider the systems

€)) uw'(t) = Au(t) + F(t, u)
and
2 v'(1) = A(1)v(2),

where A(¢) is an n x n matrix-tunction defined on <0, c0), whose elements are
integrable on compact subsets of <0, o0); # and v are n-dimensional vectors and
F(t, @) is a function on <0, o0) x C,into R", where C, is a space of continuous
functions on {—1, 0) (for some 7 > 0) into R" with the norm

|®| = su .| 2O)].

—r<0<

|.| denotes any convenient vector (matrix) norm.
If u(¢) is any function on (¢, — 7, o) into R”", then foreach tin t;, < t < ©
the symbol u, denotes the element of C, defined by

u(0) = u(t + 0), —-71<0<0.

We shall need the following lemmas in our considerations:
Lemma 1. (Lemma 1, A. Hasc¢ak [1].) Let p > 1 and g(¢) = 0 be continuous
on 0 < ¢ < oo such that

J s'Pg(s) ds < .
0
Then

'[ g(S) dSELp’(O’ w)9 pl >p'

Lemma 2. (Lemma 3, A. Ha$¢ak, M. Svec [2].) Let w(¢) and ¢(¢) be positive
functions for ¢ > 0, V(¢) a nonsingular matrix and P a projection. Further,
suppose that

J 1p
U ly='()V()PV =\ () p(s)I ds] <K
0

fort>0,K>0,p>0and

J. exp (—K_pj. @ (s)y(s) ds) dt < o0.
0 0

Then
lim y'()IV()P| =0 as t— oo
and
ly~'(t)V(2)P|€ L,(0, ).
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Now we are going to prove the following theorem: )
Theorem 1. Let V(¢) be a fundamental matrix of (2), y(7) and ¢(r) positive
continuous functions for 1 > — oo and ¢ > 0 respectively. Suppose that:

a) there exist supplementary projectors P, P, a constant K >0 and
2 < p > o such that

L v (OVORYV () p(s)P ds + j le™ (OV(ORV ' (s)p(s)F ds < K7

for all t > 0,

b) for each M > 0 there is 7 > 0 such that F(1, @) is defined for @ in C,
ly~'®| < M, t > 0. Further, let F(z, u,) be a continuous function of ¢t for t > 0
if u(?) is a continuous function on — 7 < t < oo with |y~ '(Nu(r)| < M. If u™ > u
in the sense of uniform convergence on each of the compact subsets, of <0, o0),
then F(s, u™™) —» F(s, u,) uniformly on each compact subset of <0, o0);

¢) there exists g: <0, o) x <0, c0) — €0, 00) such that (i) g(¢, u) is monotone
nondecreasing in u for each fixed 7€ (0, 00) and integrable on compact subsets

of €0, o0) for fixed u e <0, o), (ii) j s'?g” (s, ¢) ds < oo for any constant ¢ > 0,
0
where 1/p + 1/p" = 1, (iii) for any M > 0 and corresponding

|F(t, D) < o(t)g(t, v '(1)| D))

for every @ in C, with |y~ '®| < M a.e. on <0, ),
d) f exp {—K"’f P (s) ds} dr < o0
0 0

€) I IPV=(s)e(s)lg(s, c) ds < oo.
0

Then the sets of y-bounded solutions of (1) and of (2) are (y, p)-integral
equivalent.

Proof. Let v(¢) be a y-bounded solution of (2) on {#,, ®©), f, = 0. Choose
0> 0 and M so that |y~ '(f)v(¢)| < ¢ and M > 3p. By hypotheses b) there is
a positive number 7 such that F(z, @) is defined for @eC, |y '®| < M, 1> 0.
For the rest the proof 9o, M and r are fixed. Choose ¢, so large that

© \p’
3) K{J‘ g’ (s, 30) ds} <o
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Let

B, , = {u: u is continuous on {#, — 7, ) and sup |y '(Du(t)| < o}
P2y -

Definer for ue B, ,, the operator

v(ty) forty— 1<ty
Tu(t) = !
v(t) + .[ V)PV~ \(s)F(s, u,) ds —

- I V)PV ~\(s)F(s, u,) ds, 12t
1
Since u(t) is continuous on ¢ > t, — t and
ly~'(Du()] <30 < M,

it follows from b) that F(t, u,) is continuous for ¢ > t,. Also u€ B, ;,implies that
u,eC._fort > t, with

v '(Olu) <30< M.

Now the existence of I V(t)P,V~'(s)F(s, u;) ds is guaranteed by a) and c). Then

/g

lw™ ') Tu()] < y~' (@) + j Ly (OV()PV()F(s, u)l ds +
+ J ~ ly~ (OV()BYV T '($)F(s, u)l ds <

<o+ j Ly~ (V)P V' (5)p(s)lg(s, v '(s)lu) ds +
+ I .|W“(I)V(t)PzV"(S)(D(S)Ig(S, Y '(9)luy)) ds.
Using the Holder inequality, a), ¢) and (3) we get

ly~"'(8)Tu(r)| <

t 1/p 4 1/p
<o+ {J v (OV()PV - (s)e(s)P ds} {J g (s, 30) dS} +

0

1p

* Up ([
+U |W"'(I)V(1)P2V"(s)q)(s)l"ds} {I g7 (s, 30) ds} <

* 1/p’
<o+ K{j‘ g’ (s, 30) ds} < 2p.

Ul

Thus T maps B, ;, into itself.
194



Next we are going to prove the continuity of 7 on B, ,, Let u"(z),
u(t)e B, 3, u™(t) converges to u(f) uniformly on compact subintervals of
{ty, 00). We have

| Tu™ (1) — Tu(t)| <

!

< IV(OPV =Y SIIF(s, u”) — F(s, u)| ds +

+ jw IV(OBV () IF(s, u”) — F(s, u)l ds =
= y(1) L: ly= ' (OVORY ' (S)p(s)l ¢ '(s) [F(s, ul”) — F(s, u)| ds +
+ !V(t)‘[ao lw= ' (OVORY ' ()p(s)l @ () [F(s, ul™) — F(s, u)| ds <

< () {£ ly = (OV(PV(s)p(s)F dS}‘ '

1p

U 077 () |F(s, ") — F(s, w)f" ds} ¥

© 1/p
+w(t)U Yy (OV(ORY ' (s)p(s) dS} :

1/p’

H @7 () |F(s, u) — F(s, u)l” ds} <

1/p’

< v(K {J @ 7 () |F(s, u) — F(s, u)l” dS} 2

= Ky(1) {j @77 () |F(s, u) — F(s, u)l ds +

0
1p’

+ J @ " () |F(s, ) — F(s, u)f’ dS}

On {1, ;> u™(t) converges to u(¢) uniformly. Then by b) it follows that to &€ > 0
there is ny(#,) such that for n > ny(t,) we have

~1(8) |F(s, u™) — F(s, u, <« £ for se{f,. 1)
@™ (9) |F( ) — F(s, uy| aKG — )" o N

Applying this and c) (iii) we have for n > n,
e

|Tu™(t) — Tu(r)| < Ky(r) [}% +2 .[, O ()P (NLT (5. 30) ds]
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Choose t, such that
e ) gp'
2 P S, 3 ds < —
L g’ (s, 30) i

Then we have
| Tu"™(t) — Tu(t)| < ey(t) on {t, ).
For te <t0 i 1) t0>9

Tu"(t) — Tu(t) = Tu"™(ty) — Tu(ty).

This shows that T is continuous on B, ;,

The functions in TB,, ,, are evidently uniformly bounded foreach s > 1, — 7
because 7B, ;,< B, ;,

Because w = Tu is a solution of the equation
w'(t) = A()w(t) + F(t, u) for t > t,

the derivatives of the functions in TB, ,, are uniformly bounded cn every
compact interval. Thus the functions in TB, ;, are equicontinuous on every
compact subinterval of {#, — 7, ).

Then from Schauder’s fixed point theorem follows the existence of a fixed
point u(t) of T'in B, ;,. We have

1

u(t) =uv(t) + j

Iy

V(t)PV~\(s)F(s, u) ds — J V() BV ~\(s)F(s, u,) ds, t2
u(t) = u(ty), th— T<t <t
Also
u'(t) = A(u(t) + F(t, u), 1=,

A direct verification shows that this fixed point u(¢) is a y-bounded solution
of (1).

Conversely, let u(t) be a y-bounded solution of (1) on some interval {t,, )
which satisfies

ly '(u)l <M, v '(Oul<M, 21,

Then F(t, u,) is defined for ¢ > ¢, and

IF(t, u)| < @(t)g(t, w'(1) lu)) < o(t)g(t, M).
Define

v(t) = u(t) — j V(t)PV~\(s)F(s, u) ds + j V(t)PV ~\(s)F(s, u,) ds, t

v
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The infinite integral converges and is bounded by

lp

Ky(1) [I g’ (s, M) ds]

It is easy to prove that v(¢) is a y-bounded solution of (2).
Now we have to prove that y~'(¢) |u(r) — v(¢)|€ L,(t,, ©). We have

v (O [u@) — v(0)] = '[ v (OV(ORV ' ()F(s, u,) ds —

= j v (OV(OPRV~(s)F(s, u,) ds.

It suffices to prove that the terms on the right-hand side belong to L,(t, 0).
Respecting the assumptions of the theorem by Hélder inequality we get

J v (OVORV - ()F(s, u,) ds| <

< IW"(I)V(I)RIJ IRV~ (5)e(s)g(s, 30)| ds.

From Lemma 2 we have that
[y~ '()V()P| € L,(t,, )

and e) holds; it is evident that this first term belongs to L,(#,, c0). For the second
term we have

<

j v (OVORY ' ()F(s, uy) ds

< f’ Y OVORY ' ()p(s)| g(s, 30) ds <

1/p

© l/p ®
S(_[ ly~ ' (OV(ORY~(s)ps)P dS) (I g7 (s, 30) ds) <

LY 1/p’
<K (f g’ (s, 30) dS) -
t

Thus from c) (iii) and Lemma 2 we get that also this term belongs to L,(ty, 0).
The proof of the theorem is complete.
Remark. If we substitute in Theorem 1 the condition c) (ii) by the condition

Lo 1/p’
(J g7 (s, ¢ ds) eL,(0, o)
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and for p we assume that 1 < p < oo, then the conclusions of Theorem 1 hold.

Corollary 1.1. Let p = 1 (and thus p’ = 00). Assume that the assumptions
of Theorem 1 are satisfied exeept c) (ii) which is substituted by the conditions
lim y.(z) = 0foreach ¢ > 0 arid y.(z) e L,(0, o0), where 7.(t) = sup g(s, ¢). Then

the conclusion of Theorem 1 holds true.
Corollary 1.2. Let p = oo (and p’ = 1). Let the condition a) of the The-

orem 1 be replaced by
sup |PT(OV(ORV (o) + sup [y (OV(OBV(9)es) < K

Iosssl P
and
ly~'()V(1)P, e L (0, 0), v>1

and let all the other assumptions of Theorem 1 hold. Then the sets of y-bounded
solution of (1) and of (2) are (y, v)-integral equivalent.

It is possible to change the assumptions in Theorem 1 in such a way that
we will assume more about the expression on the left side of the inequality in a)
and less about the function g(z, ). It holds

Theorem 2. Assume that the following hypotheses from the Theorem 1 are
satisfied: a), b), ¢) (i), (iii). Instead of c) (ii) let

o0
Jg"’(t,c)dt<oo, 0<c<
0

be satisfied only; instead of d) let

J; POy () dt =

be satisfied. '

Finally, let the left side of the inequality a) belong to L,(0, c0). Then the
conclusion of Theorem 1 is still valid.

Proof. The proof of Theorem 2 can be made in the same manner as that of
Theorem 1.

Theorem 3. Let y(z), a(t) and B(¢) be positive continuous functions for
t > 1, > 0 with lim y~'(#) = 0 as - oo and f(¢) bounded on {7, ). Let ¥(r)
be a fundamental matrix of (2).

Suppose further

a) for each M > 0 there is 7> 0 such that F(z, @) is defined for @ in C,,
lv~'®@| < M, t > 0; let F(¢, u,) be a continuous function of 7 for ¢ > 7, = 0if u(t)
is a continuous function on 7, — 7 < ¢ < oo with |y~ '(Hu(?)) < M. If u™” - u in
the sense of uniform convergence on each of the compact subsets of {7, ),
then F(s, u™ — F(s, u,) uniformly on each compact subset of {7, o);
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b) there exist w: {1y, 00) x <0, 00) = €0, c0) such that |F(t, @)| < w(t, |D|)
for t > 1, ®eC, and |y~ '®| < M; w(t, r) is nondecreasing in r for each fixed
t = 1, w(t, cy(t)) is integrable on compact subsets of {7, o) for each ¢ > 0;

c) f sa(s)w(s, cy(s)) ds < oo for each ¢ = 0;
K|

d) j B(t — s)a(s)w(s, cy(s)) dse L,(7, oo) for each ¢ > 0;

€) there are two supplementary projections P, and P, and a constant ¢ > 0
such that

IV(O)PV\(s)a™'(s)| < cB(t —s) for 5, <s <t
IV()BYV ' (s)a™'(s)| <c for 5, <t <s < 0. _

Then between the set of all y-bounded solutions of (1) and the set of all
y-bounded solutions of (2) the (1, p)-integral equivalence holds, p > 1.

Proof. Let v(7) be a y-bounded solution of (2) defined on {¢,, ). Choose
0> 0 and M so that |y~ '(f)v(r)] < ¢ and M > 3p. By hypotheses a) there is
a positive number 7 such that F(¢z, @) is defined for ®eC, |y~ '®| < M. Let

o) =a’'(t), g(t,r)=a(®)w(t, y(t)r) fort>1,

Then for ¢t > ¢, g(t, r) is monotone nondecreasing in r and for each fixed
re0, o) g(t, r) is integrable on compact subsets of (¢, o) by condition b).
From c) we get that

J sg(s,c)ds< oo forc=0.
‘o

Moreover, condition e) and the assumptions on ¥(¢) and f(¢) imply that there
exists K such that

sup [y (OV(ORV ™90l + sup v ' OVORY ()9 < K.

t0$:<t

Now the same reasoning as in the proof of Theorem 1 with p = oo gives the
existence of solution u(¢) of (1) such that

sup |y~ '(Nu(1)| < 3o
121

and

0

u(t) = o(t) + J V)PV~ (s)F(s, u)) ds — f V(RYV-\s)F(s,u)ds, 1> 1,
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Conversely, given a yw-bounded solution u(z) of (1) we have that

0

v(t) = u(t) — j V()PV~\(s)F(s, u,) ds + '[ V(t)BV ~\(s)F(s, u,) ds, t

WV

is a solution of (2).
Now, we have to prove that

[u(t) — v(t)|€ L,(t;, o).
We have

t

lu(t) — v()] < J: IV(OPY ()| |1F(s, u)l ds +
+ er(t)Pz V= NFGs, u)l ds <
< IIIV(I)R V=i(s9)a™ ()] a(s)w(s, 3oyls)) ds +
+ fo IV()BV ™ (s)a” ()] als)w(s, 3ey(s)) ds <

< cj B(t — s)a(s)w(s, 3ow(s)) ds + cj a(s)w(s, 3ow(s)) ds.

It is sufficient to prove that each of the two terms on the right-hand side belongs
to L,(y, o).

For the first term the statement is true by assumption d) and for the second
term it follows from c¢) and Lemma 1.
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SUHRN

INTEGRALNA EKVIVALENCIA OBYCAJNEJ A FUNKCIONALNEJ
DIFERENCIALNEJ ROVNICE

Alexander Hasc¢ak, Bratislava
V praci sa vySetruji postacujiice podmienky (y, p)-integralnej ekvivalencie systémov diferen-

cialnych rovnic tvaru ' = F(t, u) a v’ = G(t, v). Na odvodenie vysledkov sa pouziva variacia
konstant a veta o pevhom bode.

PE3IOME

WHTEIPAJIbHAS SKBUBAJIEHTHOCTh OBBIKHOBEHHOI'O
U ®YHKLIMOHAJIBHOI'O JU®PEPEHLIMAJIBHOIO YPABHEHUM

Anexcannep Xamwak, Bpatucnasa
B cratbe nccnenyitrotcs noctaTounble yciosus Ans (W, p)-MHTErpabHON IKBUBATIEHTHOCTH

cucteM nuddepenumanbHpIX ypaBHeHni Buaa v’ = F(t, u,), v’ = G(t, v). K noctixenno pe3yJibTa-
TOB HCTNOJIb3YeTCs BAPHALMSA MOCTHAHHBIX H TEOPEMa O HEMOIBHXHOM TOYKE.

201






	
	Article


