

Werk

Titel: Marcus Brandis und die Agenda Merseburgensis

Autor: Juntke, Fritz

Ort: Mainz Jahr: 1949

PURL: https://resolver.sub.uni-goettingen.de/purl?366382810_1944-49|log20

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

UNIVERSITAS COMENIANA ACTA MATHEMATICA UNIVERSITATIS COMENIANAE XLVIII—XLIX — 1986

ON THE KOLMOGOROV CONSISTENCY THEOREM FOR RIESZ SPACE VALUED MEASURES

JURAJ RIEČAN, Bratislava

Let I be an index set such that for every finite non-empty $\alpha \subset I$, $\alpha = \{i_1, ..., i_n\}$ there is a Borel probability measure $\mu_{\alpha} : B_n \to R$. If the measures $(\mu_{\alpha})_{\alpha \subset I}$ form a consistent system of measures, then the classical Kolmogorov theorem states that on the space R^I there is a measure μ such that $\mu(\pi_{\alpha}^{-1}(E)) = \mu_{\alpha}(E)$ for every finite $\alpha \subset I$, $E \in B$. In the paper we prove a generalization of the theorem in the case that $\mu_{\alpha} : B_n \to X$, where X is a Riesz space (i.e. a linear lattice) of some type.

1. Compact approximation

- 1.1 Definition. A linear space X will be called a Riesz space if
- a) X is a lattice
- b) for any $x, y \in X$ such that $x \le y$, any $z \in X$ and any $c \in R$, $c \ge 0$ it is $x + z \le y + z$, $c \cdot x \le c \cdot y$.
- **1.2 Definition.** Let M be a set, $A \subset 2^M$ be an algebra and X be a Riesz space. A function $\mu: A \to X$ will be called an X-valued content, if
 - (i) $\mu(\emptyset) = 0$
 - (ii) For any set $E \in A$ it is $\mu(E) \ge 0$.
- (iii) For any sets $E_i \in A$ (i = 1, 2, ...) such that $E_n \cap E_m = \emptyset$ $(n \neq m)$ and for any positive integer k it holds

$$\mu\left(\bigcup_{i=1}^{k} E_{i}\right) = \sum_{i=1}^{k} \mu(E_{i}) \qquad \text{(additivity)}$$

- **1.3 Definition.** Let M be a set, $A \subset 2^M$ be an algebra and X be a Riesz space. An X-valued content $\mu: A \to X$ will be called an X-valued measure, if
- (iv) for arbitrary sets $F_i \in A$ (i = 1, 2, ...) such that $E_n \cap E_m = \emptyset$ $(n \neq m)$ it holds

$$\mu\left(\bigcup_{i=1}^{\infty} E_i\right) = \bigvee_{n=1}^{\infty} \sum_{i=1}^{n} \mu(E_i) \qquad (\sigma\text{-additivity})$$

 μ will be called a continuous X-valued content, if

(v) for arbitrary sets $E_i \in A$ (i = 1, 2, ...) such that $E_{i+1} \subset E_i$ (i = 1, 2, ...) and $\bigcap_{i=1}^{\infty} E_i = \emptyset$, it is

$$\bigwedge_{i=1}^{\infty} \mu(E_i) = 0 \qquad \text{(continuity)}$$

1.4 Remark. A Riesz space X will be called σ -complete, if any non-empty, countable, bounded set has the supremum and the infimum. X is weakly σ -distributive, if it is true:

$$(a_{ij})_{ij}$$
 bounded, $a_{ij} > 0$ $(j \to \infty, i = 1, 2, ...) \Rightarrow$
 $\Rightarrow \bigwedge_{\varphi \in N^N} \bigvee_{i=1}^{\infty} a_{i, \varphi(i)} = 0$

It is easy to prove the following lemma:

Lemma A. Let X be a σ -complete, weakly σ -distributive Riesz space. Let $\{a_{nij}\}_{n,i,j=1}^{\infty}$ be a bounded sequence such that $a_{nij} \searrow 0$ $(j \to \infty, i = 1, 2, ..., n = 1, 2, ...)$. Then to any $a \in X$, a > 0 there exists a bounded sequence $\{a_{ij}\}_{ij=1}^{\infty} a_{ij} \searrow 0$ $(j \to \infty, i = 1, 2, ...)$ such that for any $\varphi: N \to N$ it is

$$a \wedge \sum_{n=1}^{\infty} \bigvee_{i=1}^{\infty} a_{ni\varphi(i+n)} \leq \bigvee_{i=1}^{\infty} a_{i\varphi(i)}$$

(Proof: See [4] Proposition 3.)

1.5 Lemma. Let M be a set, $A \subset 2^M$ be an algebra, X be a σ -complete Riesz space and $\mu: A \to X$ be an X-valued content. Then μ is an X-valued measure if and only if it is a continuous X-valued content.

Proof. (⇒)

Let $\{E_i\}_{i=1}^{\infty}$ be a sequence such that $E_{i+1} \subset E_i$, $E_i \in A$ (i = 1, 2, ...) and $\bigcap_{i=1}^{\infty} E_i = \emptyset$. Put $F_i = E_i - E_{i+1}$ (i = 1, 2, ...). Evidently $F_n \cap F_m = \emptyset$ $(n \neq m)$, hence

$$\mu\left(\bigcup_{i=1}^{\infty} F_i\right) = \bigvee_{n=1}^{\infty} \sum_{i=1}^{n} \mu(F_i)$$

Further $E_1 = \bigcup_{n=1}^{\infty} F_n$ and

$$0 = \mu \left(E_1 - \bigcup_{i=1}^{\infty} F_i\right) = \mu(E_1) - \mu \left(\bigcup_{i=1}^{\infty} F_i\right) =$$

$$= \mu(E_1) - \bigvee_{n=1}^{\infty} \sum_{i=1}^{n} \mu(F_i) = \bigwedge_{n=1}^{\infty} \left(\mu(E_i) - \sum_{i=1}^{n} \mu(F_i) \right) =$$

$$= \bigwedge_{n=1}^{\infty} \left(\mu(E_1) - \left(\mu(E_1 \backslash E_n) \right) \right) = \bigwedge_{n=1}^{\infty} \mu(E_n)$$

$$(\Leftarrow)$$

Let $\{E_{i}\}_{i=1}^{\infty}$ be a sequence such that $E_i \in A$ (i = 1, 2, ...), $E_n \cap E_m = \emptyset$ $(n \neq m)$ and $E = \bigcup_{i=1}^{\infty} E_i \in A$. Denote

$$F_n = E - \bigcup_{i=1}^n E_i$$
 $(n = 1, 2, ...).$

Then $F_n \in A$, $F_{n+1} \subset F_n$ (n = 1, 2, ...) and $\bigcap_{n=1}^{\infty} F_n = \emptyset$, hence

$$0 = \bigwedge_{n=1}^{\infty} \mu(F_n) = \bigwedge_{n=1}^{\infty} \mu\left(E - \bigcup_{i=1}^{n} E_i\right) = \bigwedge_{n=1}^{\infty} \left(\mu(E) - \mu\left(\bigcup_{i=1}^{n} E_i\right)\right) =$$

$$= \mu(E) - \bigvee_{n=1}^{\infty} \left(\sum_{i=1}^{n} \mu(E_i)\right)$$

Hence

$$\mu(E) = \mu\left(\bigcup_{i=1}^{\infty} E_i\right) = \bigvee_{n=1}^{\infty} \left(\sum_{i=1}^{n} \mu(E_i)\right).$$

Q.E.D.

1.6 Definition. Let M be a set $\mathscr{A} \subset 2^M$ be an algebra, X be a Riesz space and μ : $A \to X$ be an X-valued content. A system $\mathscr{C} \subset \mathscr{A}$ approximates a set $B \in \mathscr{A}$, if there exists a bounded sequence $\{a_{ij}\}_{i,j=1}^{\infty}$ such that $a_{ij} \searrow 0$ $(j \to \infty, i = 1, 2, ...)$ and such that to any $\varphi: N \to N$ there exists $C \in \mathscr{C}$, $C \subset B$ and

$$\mu(B-C) \leq \bigvee_{i=1}^{\infty} a_{i\varphi(i)}$$

The system $\mathscr C$ approximates a system $\mathscr B \subset \mathscr A$, if it approximates each set $B \in \mathscr B$.

1.7 Definition. Let M be a set, $\mathscr{A} \subset 2^M$ be an algebra, X be a Riesz space and $\mu: \mathscr{A} \to X$ be an X-valued content. A system $\mathscr{C} \subset \mathscr{A}$ is compact, if for every sequence $\{C_i\}_{i=1}^{\infty}$, $C_i \in \mathscr{C}$ (i=1, 2, ...) such that $\bigcap_{i=1}^{n} C_i \neq \emptyset$ (n=1, 2, ...) it is $\bigcap_{i=1}^{\infty} C_i \neq \emptyset$. A system $\mathscr{B} \subset \mathscr{A}$ is compactly approximable, if there exists a compact system $\mathscr{C} \subset \mathscr{A}$ which approximates \mathscr{B} .

1.8 Theorem (Alexandrov). Let M be a set, $\mathscr{A} \subset 2^M$ be an algebra, X be a σ -complete, weakly σ -distributive Riesz space and $\mu: \mathscr{A} \to X$ be an X-valued

content. Let \mathscr{A} be compactly approximable. Then μ is continuous and hence μ is an X-valued measure.

Proof. Let $E_i \in \mathcal{A}$, $E_{i+1} \subset E_i$ (i = 1, 2, ...) and $\bigcap_{i=1}^{\infty} E_i = \emptyset$. Since \mathcal{A} is a compactly approximable algebra, there exists a compact system $\mathscr{C} \subset \mathcal{A}$ such that to any set F_n (n = 1, 2, ...) there exists $C_n \subset \mathscr{C}$ such that $C_n \subset E_n$ and $\mu(E_n - C_n) \leq \bigvee_{i=1}^{\infty} a_{ni\varphi(i)}$.

Since $\bigcap_{n=1}^{\infty} E_n = \emptyset$, then $\bigcap_{n=1}^{\infty} C_n = \emptyset$ and it follows by the compactness of \mathscr{C} that there exists $m \in \mathbb{Z}^+$ such that $\bigcap_{i=1}^m C_i = \emptyset$. Evidently $\bigcap_{i=1}^n C_i = \emptyset$ for any n > m. Hence for any n > m it is

$$\bigcap_{k=1}^{n} E_k = \bigcap_{k=1}^{n} E_k - \bigcap_{k=1}^{n} C_k \subset \bigcup_{k=1}^{n} (E_k - C_k).$$

It follows that

$$\mu(E_n) = \mu\left(\bigcup_{k=1}^n (E_k - C_k)\right) \leq \sum_{k=1}^n \bigvee_{i=1}^\infty a_{ki\varphi(i+n)}.$$

By Lemma A to the element $a = \mu(X)$ there exists a sequence $\{a_{ij}\}_{i,j=1}^{\infty}$ which is bounded and such that $a_{ij} \searrow 0$ $(j \rightarrow \infty, i = 1, 2, ...)$. Hence

$$\mu(E_n) = \mu(X) \wedge \sum_{k=1}^n \bigvee_{i=1}^\infty a_{ki\varphi(i+n)} \leq \bigvee_{i=1}^\infty a_{i\varphi(i)}$$

for any $\varphi: N \to N$. Therefore

$$\bigwedge_{n=1}^{\infty} \mu(E_n) \leq \bigwedge_{\varphi \in N^N} \bigvee_{i=1}^{\infty} a_{i\varphi(i)} = 0$$

By Lemma 1.5 μ is an X-valued measure.

Q.E.D.

1.9 Lemma. Let M be a set, $\mathscr{A} \subset 2^M$ be a σ -algebra, X be a σ -complete, weakly σ -distributive Riesz space and $\mu: \mathscr{A} \to X$ be an X-valued content. Let $\mathscr{S} \subset \mathscr{A}$ approximate $\mathscr{B} \subset \mathscr{A}$. Then \mathscr{S}^{σ} approximates \mathscr{B}^{σ} and \mathscr{S}^{δ} approximates \mathscr{B}^{δ} . (\mathscr{B}^{σ} is the system generated by \mathscr{B} and closed under countable unions and \mathscr{B}^{δ} is the generated system closed under countable intersections.)

Proof. 1° (unions). If $B \in \mathcal{B}^{\sigma}$, then there exist $B_k \in \mathcal{B}$ (k = 1, 2, ...) such that $B = \bigcup_{k=1}^{\infty} B_k$. To any positive integer k there exists $\{a_{kij}\}_{i,j=1}^{\infty}$ which is bounded, $a_{kij} \searrow 0$ $(j \to \infty, i = 1, 2, ...)$ and such that the following is true: There exist $S_k \in \mathcal{S}$ such that $S_k \subset B_k$ and

$$\mu(B_k - S_k) = \bigvee_{i=1}^{\infty} a_{ki\varphi(k+i)}.$$

By Lemma A (see 1.4) there exists a bounded sequence $\{a_{ij}\}_{i,j=1}^{\infty}$ such that

$$\sum_{k} \bigvee_{i} a_{ki\varphi(k+i)} = \bigvee_{i} a_{i\varphi(i)}.$$

Further, $S = \bigcup_{k=1}^{\infty} S_k \subset \bigcup_{k=1}^{\infty} B_k = B$ and to any $\varphi: N \to N$

$$\mu(B-S) \leq \mu\left(\bigcup_{k=1}^{\infty} (B_k - S_k)\right) \leq \mu(M) \wedge \sum_{k=1}^{\infty} \bigvee_{i=1}^{\infty} a_{ki\varphi(i+k)} \leq \bigcup_{i=1}^{\infty} a_{i\varphi(i)}$$

 2° (intersections). If $B \in \mathcal{B}^{\delta}$, then there exist $B_k \in \mathcal{B}$ (k = 1, 2, ...) such that $B = \bigcap_{k=1}^{\infty} B_k$. To any positive integer k there exists $\{a_{kij}\}_{i,j=1}^{\infty}$, which is bounded, $a_{kij} \searrow 0$ $(j \to \infty, i, k = 1, 2, ...)$ and there is $S_k \in \mathcal{S}$, $S_k \subset B_k$ that for every $\varphi: N \to N$

 $\mu(B_k - S_k) \leq \bigvee_{i=1}^{\infty} a_{ki\varphi(i+k)}$

Hence by Lemma A there exists a bounded sequence $\{a_{ij}\}_{i,j=1}^{\infty}$ such that $a_{ij} > 0$ $(j \to \infty, i = 1, 2, ...)$ and

$$\mu(M) \wedge \sum_{i} \bigvee_{k} a_{ki\varphi(k+i)} \leq \bigvee_{i} a_{i\varphi(i)}$$

Then $S = \bigcap_{k=1}^{\infty} S_k \subset \bigcap_{k=1}^{\infty} B_k = B$ and

$$\mu(B-S) \leq \mu\left(\bigcup_{k=1}^{\infty} (B_k - S_k)\right) = \mu(M) \wedge \sum_{k=1}^{\infty} \bigvee_{i=1}^{\infty} a_{ki\varphi(i+k)} = \bigvee_{i=1}^{\infty} a_{i\varphi(i)}$$

for any $\varphi: N \to N$. Q.E.D.

- 1.10 Remark. If we assume in Lemma 1.9 that \mathscr{A} is an algebra, then we can prove that \mathscr{S}^{\cap} (the least system over \mathscr{S} closed under finite intersections) approximates \mathscr{S}^{\cap} and \mathscr{S}^{\cup} (the least system over \mathscr{S} closed under finite unions) approximates \mathscr{S}^{\cup} .
- **1.11 Lemma.** Let M be a set, $\mathscr{A} \subset 2^M$ be an algebra, X be a Riesz space and μ : $\mathscr{A} \to X$ be an X-valued content. Let I be an index set. Let $\mathscr{S}_{\alpha} \subset \mathscr{A}$ approximate $\mathscr{B}_{\alpha} \subset \mathscr{A}$ for any $\alpha \in I$. Then $\bigcup_{\alpha \in I} \mathscr{S}_{\alpha}$ approximates $\bigcup_{\alpha \in I} \mathscr{B}_{\alpha}$.

Proof. To any $B_0 \in \bigcup_{\alpha \in I} \mathscr{B}_{\alpha}$ there exists $\alpha_0 \in I$ such that $B_0 \in \mathscr{B}_{\alpha_0}$. Since \mathscr{S}_{α_0} approximates \mathscr{B}_{α_0} , $\bigcup_{\alpha \in I} \mathscr{S}_{\alpha}$ approximates \mathscr{B}_0 .

1.12 Lemma. Let M be a set, $\mathscr{A} \subset 2^M$ be an algebra, X be a σ -complete, weakly σ -distributive Riesz space, $\mu: A \to X$ be an X-valued content. Let I be an index set. Let $\mathscr{S}_{\alpha} \subset \mathscr{A}$ approximate $\mathscr{B}_{\alpha} \subset \mathscr{A}$ for any $\alpha \in I$. Then $\left(\bigcup_{\alpha \in I} \mathscr{S}_{\alpha}\right)^{\cap \cup}$ approximates the algebra $\mathscr{A}\left(\bigcup_{\alpha \in I} \mathscr{B}_{\alpha}\right)$ generated by $\bigcup_{\alpha \in I} \mathscr{B}_{\alpha}$.

Proof. We shall use the next lemma (see [1], Corollary (0.2)): Let $\{\mathscr{A}_{\alpha}; \alpha \in I\}$ be a system of subalgebras of an algebra \mathscr{A} . Then

$$\mathscr{A}\left(\bigcup_{\alpha\in I}\mathscr{A}_{\alpha}\right)=\bigcup_{b\in I_0}\left(\bigcup_{\alpha\in I_0}\mathscr{A}_{\alpha}\right)^{\cap \cup},$$

where $J_0 = \{I_0 \subset I; I_0 \text{ is finite}\}.$

By Lemma 1.11 the system $\bigcup_{a \parallel} \mathscr{S}_a$ approximates $\bigcup_{\alpha \in I} \mathscr{B}_{a^*}$ By Lemma 1.9 the

system $\left(\bigcup_{\alpha\in I}\mathscr{S}_{\alpha}\right)^{\cap \cup}$ approximates $\left(\bigcup_{\alpha\in I}\mathscr{B}_{\alpha}\right)^{\cap \cup}$, hence also

$$\mathscr{A}\left(\bigcup_{\alpha\in I}\mathscr{B}_{\alpha}\right)=\bigcup_{l_0\in J_0}\left(\bigcup_{\alpha\in I_0}\mathscr{B}_{\alpha}\right)^{\cap \cup}.$$

Q.E.D.

1.13 Corollary. Let M be a set, $\mathscr{A} \subset 2^M$ be an algebra, X be a σ -complete, σ -distributive Riesz space and $\mu: \mathscr{A} \to X$ be an X-valued content. Let $\{\mathscr{B}_{\alpha}; \alpha \in I\}$ be a system of algebraically σ -independent algebras $(\mathscr{B}_{\alpha} \subset \mathscr{A})$ and \mathscr{B}_{α} be a compactly approximable algebra for any $\alpha \in I$. Then the algebra $\mathscr{A}\left(\bigcup_{\alpha \in I} \mathscr{B}_{\alpha}\right)$ is compactly approximable.

Proof. Let \mathscr{C}_{α} be a compact system approximating \mathscr{B}_{α} for any α .

- I. Then by Lemma 1.12 $\left(\bigcup_{\alpha \in I} \mathscr{C}_{\alpha}\right)^{\cap}$ approximates the algebra $\mathscr{A}\left(\bigcup_{\alpha \in I} \mathscr{B}_{\alpha}\right)$. By [1] Lemma (1.3), Lemma 1.4 and Theorem 1.6, $\left(\bigcup_{\alpha \in I} \mathscr{C}_{\alpha}\right)^{\cap}$ is a compact system.
- 1.14 Theorem. Let $\{\mathcal{A}_{\alpha}; \alpha \in I\}$ be a system of algebraically σ -independent algebras, X be a σ -complete, weakly σ -distributive Riesz space and

$$\mu: \mathscr{A}\left(\bigcup_{a\in I} \mathscr{A}_a\right) \to X$$

be an X-valued content. Let \mathcal{A}_{α} be compactly approximable for any $\alpha \in I$. Then $\mathcal{A}\left(\bigcup_{\alpha \in I} \mathcal{A}_{\alpha}\right)$ is compactly approximable and μ is an X-valued measure.

Proof. By Corollary 1.13 the algebra $\mathscr{A}\left(\bigcup_{\alpha\in I}\mathscr{A}_{\alpha}\right)$ is compactly approximable and by the Alexandrov theorem 1.8 μ is an X-valued measure.

Q.E.D.

2. Kolmogorov theorem

Let I be a directed set (i.e. such a partially ordered set that for every α , $\beta \in I$ there exists $\gamma \in I$ with $\alpha \leq \gamma$, $\beta \leq \gamma$). By a projective system we mean a family $\{X_{\alpha}; \alpha \in I\}$ of sets with a family of mappings $\pi_{\beta, \alpha}: X_{\beta} \to X_{\alpha} \ (\alpha \leq \beta)$ such that $\pi_{\alpha, \alpha}$ is the identity map for every $\alpha \in I$ and $\pi_{\beta, \alpha} \circ \pi_{\gamma, \beta} = \pi_{\gamma, \alpha}$ whenever $\alpha, \beta, \gamma \in I$, $\alpha \leq \beta \leq \gamma$. The projective limit of a projective system $\{X_{\alpha}; \alpha \in I\}$ is the set $X_{\infty} = \left\{x \in X_{\alpha}; \pi_{\beta, \alpha}(x_{\beta}) = x_{\alpha} \text{ for any } \alpha, \beta \in I \text{ such that } \alpha \leq \beta \right\}$.

In this section $\{X_{\alpha}; \alpha \in I\}$ will be a projective system of compact topological spaces, $\mathcal{B}(X_{\alpha})$ will mean the family of Baire subsets of X_{α} and π_{α} : $X_{\infty} \to X_{\alpha}$ will be the projection.

2.1 Definition. Let $\{X_{\alpha}; \alpha \in I\}$ be a projective system of spaces. Let $\mu_{\alpha}: \mathcal{B}(X_{\alpha}) \to X$ be an X-valued content for any $\alpha \in I$. $\{\mu_{\alpha}; \alpha \in I\}$ is called a consistent system of contents, if for any $\alpha_1 < \alpha_2 \in I$ and for any set $E \in \mathcal{B}(X_{\alpha})$ it is

$$\mu_{\infty}(\pi_{\infty\alpha_1}^{-1}(E)) = \mu_{\alpha_1}(E)$$

- **2.2 Definition.** Let X_{∞} be a projective limit of $\{X_{\alpha}; \alpha \in I\}$. Let $M = \{\mu_{\alpha}; \alpha \in I\}$ be a consistent system of measures with values in a Riesz space X $(\mu_{\alpha}: \mathcal{B}(X_{\alpha}) \to X)$. Define and X-valued content $\mu: X_{\infty} \to X$ induced by the system M in the following way: $E = \pi_{\alpha}^{-1}(F)$, $F \in \mathcal{B}_{\alpha}$, $\alpha \setminus \emptyset$ we define $\mu(E) = \mu_{\alpha}(\pi_{\alpha}^{-1}(F))$.
- **2.3 Lemma.** $\mathcal{B}(X_a)$ is a compactly approximable system (See [3], Theorem 2.)
- **2.4 Lemma.** Let $S = \{X_{\alpha}; \alpha \in I\}$ be a projective system, X a be Riesz space, $(\mu_{\alpha})_{\alpha \in I}$ be a consistent system of X-valued measures and μ be the induced X-valued content. Then $\pi_{\alpha}^{-1}(\mathcal{B}(X_{\alpha}))$ is a compactly approximable system for any $\alpha \in I$ and $\pi_{\alpha}^{-1}(\mathcal{B}(X_{\alpha}))$ is an algebra.
- **Proof.** By Lemma 2.3 and Definition 2.2 $\mathscr{B}(X_a)$ is a compactly approximable system. Evidently $\pi_a^{-1}(\mathscr{B}(X_a))$ is a compactly approximable system for any $\alpha \in I$. Q.E.D.
- **2.5 Theorem** (A generalized Kolmogorov theorem for measures with values in Riesz spaces). Let X be a σ -complete, weakly σ -distributive Riesz space. (I, <) be a directed set, $S = \{X_a; \alpha \in I\}$ be a projective system. Let X_x be a projective limit of this system, $M = \{\mu_a; \mathcal{B}(X_a) \to X; \alpha \in I\}$ be a consistent system of X-valued contents, $\mu \colon \mathcal{A}(X_x) \to X$ be the induced X-valued content. Then μ is an X-valued measure.

Proof. By 2.3 and 2.4 $\{\pi_{\alpha}^{-1}(\mathcal{B}(X_{\alpha})); \alpha \in I\}$ is a system of compactly approximable algebras. $\pi_{\alpha}^{-1}(\mathcal{B}(X_{\alpha}))$ are algebraically σ -independent algebras. By 1.14 $\mathscr{A}(X_{\infty})$ is compactly approximable and so μ is an X-valued measure.

Q.E.D.

REFERENCES

- [1] Pfanzagl, J.—Pierlo, W.: Compact systems of sets. Springer, Berlin 1966.
- [2] Riečan, B.: A simplified proof of the Daniell extension theorem in ordered spaces. Math. Slovaca 32 (1982), 75—80.
- [3] Riečan, B.: On regular measures with values in ordered spaces. In: Proc. Fifth Prague Topol. Symp. 1981. Heldermann Verlag, Berlin 1982, 569—571.
- [4] Riečan, B.—Volauf, P.: On a technical lemma in lattice ordered groups. Acta Math. Univ. Comen. 44—45 (1984), 31—36.

Author's address:
Juraj Riečan
MFF UK, Katedra teórie pravdepodobnosti
a matematickej štatistiky
Matematický pavilón
Mlynská dolina
Bratislava
842 15

Received: 7. 2. 1984

РЕЗЮМЕ

О ТЕОРЕМЕ КОЛМОГОРОВА О СОГЛАСОВАНИИ ДЛЯ МЕРЫ С ЗНАЧЕНИЯМИ В ПРОСТРАНСТВЕ РИСА

Юрай Риечан, Братислава

В работе доказывается теорема Колмогорова для проективных систем мер с значениями в о-полном, слабо о-дистрибутивном пространстве Риса.

SÚHRN

O KOLMOGOROVOVEJ VETE O KONZISTENCII PRE MIERY S HODNOTAMI V RIESZOVOM PRIESTORE

Juraj Riečan, Bratislava

V práci sa dokazuje Kolmogorovova veta pre projektívne systémy mier s hodnotami v σ -úplnom, slabo σ -distributívnom Rieszovom priestore.