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Introduction

Let E,(n = 1, 2, ...) denote the n-dimensional Euclidean space, let . be the
family of all Lebesgue measurable subsets of E,. Given 4 €.%, we shall denote
by |A4| the Lebesgue measure of A.

The following transformations of the type T, are studied in [1].

Let 2 be a metric space. Suppose that a transformation 7,,: ¥ —» % is
assigned (o each we L. Let the following conditions be satisfied.

(i) There exists w, € £2such that for every interval {a, b) < E, and for every
sequence {®,}_, in {2 converging to @, we have

lim (inf T, (<a, b))) = a; lim (sup T, (<a, b)) = b.

(i) If E, F are in & and E < F, then T,(E) = T,(F) for every we Q.
(iii) If E€ % and the sequence {®,}7_, converges to @, in £2, then

lim |7,(E)| = |T.(B)| = |E}.

The following theorem is true (cf. [1]).

Theorem A. Let 2and T, (we £2) be defined as above and let (i), (ii) and (iii)
be satisfied. Let 4€ #, |4| > 0 and let the sequence {w,} ., converge to @, in
£2. Then there exists a natural number n, such that for every n > n, we have
AnT,(A4)+#0.

In [2], the above results are extended from E, to any n-dimensional Euclide-
anspace E,(n=1, 2, ...). '

By S[c, ] (S(c, r)), we shall denote the closed (open) ball in E, with centre
c and radius r. For every x e E,, let || x|| denote the usual norm of xin E,. Ifac E,,
McE, thena— M= {a— x; xe M}.
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Let £2be a metric space. Assume that for every we € there exists a transfor-
mation T, which transforms measurable sets in E, to measurable sets in E,. Let
T, satisfy the following condicions:

(I) There exists @, € 2 such that for each ball K = S[aq, r] = E, and every
sequence {w,}_, converging to @, in £2 we have

nlifrl [sup {lyll; yea — T, (K)}] =r.

(IT) If E = F are measurable subsets of E,, then T,(E) < T,(F) for every
we L.

(ITT) If E is a measurable subset of E, and sequence {,}*_, converges to
@y, in £, then

nlirr; |T(E)| = |T(E)l = |E].

The following proposition is proved in [2] for transformations with the
properties given above.

Theorem B. Let a sequence {w,};°_, converge to a, in £2. Let T, be transfor-
mations meeting the conditions (I), (IT), and (III). Let 4 be a set having positive
measure in E,. Then there is a natural number n, such that, for any n > n,, the
set AN T, (A) has positive measure.

Interrelation between propérties (D—(1II) and (i)—(iii)

It is natural to ask how in the space E,, the properties (I)—(III) from [2] are
related to the properties (i)—(iii) from [1].

Theorem 1. In the space E,, the conditions (i)—(iii) are equivalent with
(DH—1ID).

Proof. It is immediately seen that (IT) and (I1I) are the same as (ii) and (iii).
It is therefore sufficient to check the relation between (I) and (i).

Let {w,},"- | be a sequence converging to @, Then, assuming (i) to be true,
for every interval {a, b) and every & > 0 there is n, such that for every n > n, we
have

inf T, (a, b))e(a — ¢; a + &),
sup T, ({a, b))e(b — &, b + ¢).
Therefore, if K = S[s, r] = {s — r, s + r) is any ball, it follows that whenever
€ > 0, there exists n, such that for every n > n, we have
inf T, (K)e(s—r—¢ s —r+¢),
sup T, (K)e(s+r—¢ s+ r+¢).
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Hence sup |s — T, (K)|| e (r — & r + €). Honewer, since the last relation is true
for any € > 0, we infer that

lim {sup ||s — T, (K)|I} =r,

for every sequence {®,},_, converging to @, Thus (i) implies (I).

On the other hand, we can see that (I) does not imply (i). In fact, if K =
= S[s, r] is any ball, it is sufficient to choose T,(K) = (s — r, s) for all we 2 to
meet (I) but not (i). However, we are going to prove that (i) follows from the
conditions (I) and (ITI).

Assume, therefore, conditions (I) and (III). Let {®,}”_, be a sequence
converging to @, and let {a, b) (a < b) be any interval. Denoting its length by
2r and its centre by s, we put {a, b) = S[s, r] = K. Now suppose, on the
contrary, that (i) does not hold. Then at least one of the equalities

lim {inf T, (<a, b))} = a, lim {sup T, ({a, b))} =b
is false, 1.e. the sequence {inf T;, ({a, b))}_ , has a limit point different from a or
the sequence {sup 7, ({a, b))}*_, has a limit point distinct from b. If there were
a limit point of {inf T, (<{a, b))} _, less than a, or a limit point of {sup
T,,(a, b))}, | greater than b, we would immedately obtain a contradiction with
(I). Hence we infer that all limit points of the two sequences are in {a, b>. We
show that none of them can be in the open interval (a, b).
To be specific, suppose that some ce(a, b) is a limit point of

inf T, (Ca, b))} .

Then there is-a subsequence {inf 7,, ((a, b))}, converging to ¢ > a. In that case

: c—a
however, for any e with 0 < ¢ <

there exists n,, such that for all n, > n,, we

have T, (K) c ¢ — ¢, b — ¢). Therefore

|Ta»,,-(K)|§b—c+2£<b—c+e;a= _a-?i.—c

and hence
a+c

lim |T, (Ca, b)) < b — <b-—a,

which contradicts (II1).

The theorem is proved.

In view of the last theorem we can say that Theorem B is a generalization
of and an improvement upon Theorem A.
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Transformations of a similar type in topological spaces

Let X be an arbitrary nonempty set. Let ¥ and % be families of subsets of
X. Let & denote a o-ring of subsets of X with ¥ — &% and # — &. Let u be
a measure on <.

Let £2 be a metric space and let for each we (2 there exist a transformatlon
1, & — & with the following properties:

(a) There exists € €2 such that for all sequences {®,}_, converging to m,
we have: Whenever F, G < X, Fe¥, Ge%, F < G then there is n, such that
I, (F) < G for every n > n,.

(b) If E, Fe¥, E c F, then T,(E) < T,(F) for all we .

(c) If a sequence {w,},"_, converges to @, then for all E€ ¥ we have

lim u(T,(E)) = p(Tin(E)) = W(E).

Definition 1. a) Let X, ¥, % and % have the same meaning as above. We
shall say that the measure y is € — #-regular if for every E€ &

U(E) = sup {u(C), Ce¥, C < E}=inf {u(U), Ue¥, E c U}.

b) Let (X, %) be a Hausdorff topological space. Denote by % the family of
all compact subsets of X. Let & be a o-algebra containing all open sets, i.e.
% <. Let y be a measure on &. We shall say that u is regular if it is
‘¢ — -regular.

Theorem 2. Let £ be a metric space and X an arbitrary nonempty set. Let
¢, % and ¥ be families of subsets of X, such that & is a o-ringand ¢, # < &.
Let u be a € — %-regular measure on . Let for each we 2 there exist a tran-
sformation T,; & — & with the properties (a), (b) and (c). Then the following
is true.

If Ee#, u(E) = @,0 < @ < + o0, yis a number in the interval (0, @) and
lo,},_\ is any sequence in £ converging to a,, then there is such an index n, that
UENT,(E)) > y for every n > n,.

Proof. Let Ee &, u(E) = a,0 < a < + 0. Let a sequence {w,}_ , converge
to @, in the space £2. Choose ye(0, a). Due to the € — %-regularity of u there
exists a set Fe % such that F c E and

3a+ vy

3
F +>(a—7y) =
uF) >y 4(a 7) ;

On the other hand, the ¥ — #-regularity of u also implies that there exists
a—7
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Since Fe &, Ge% and F = G, by (a) we infer that there is n’ such that for
every n > n’ we have

T,(F) c G. (1)
However, due to the condition (c) there exists n” such that n > n” implies
1 a+
I >+ (a-p=="T. b)

Denote n, = max {n’, n"}. Now, for every n > n,, both (1) and (2) will be true and
in view of (b) we can write

%7 < W(T,(F)) = p((T,(F)) " G) =

= H(EU (G — E) A T, (F)) =
= WE N T,(F) + u(G — E) A T, (F)) <
< WENT,(E) + (G — E) n T, (F)) <

< WENT,(E) + “; L

Hence for all n > n, we get

a—y a—y a+ 3y
WENT,(E)) > 5 : G o F

The theorem is proved.

Remark 1. The above proof shows that Theorem 2 will be true also if we
consider, instead of the measure x4 on the o-ring %, any monotone subadditive
set function defined on a ring containing the families ¢ and %.

As we have already mentioned, further properties of transformations T, will
be studied in topological spaces.

Corollary 1. Let £ be a metric space and (X, %) a topological space. Let
& be a o-algebra of subsets of X, containing all open and compact subsets. Let
4 be a regular measure defined on . Let for every we 2 there exist a transfor-
mation T,; & — . Let the transformations T, satisfy (a), (b) and (c). (Here.
% denotes the family of all compact subsets of X.) Then for any E€ &, u(E) = a.
0 <a< +o, ye(0, @) and any sequence {®,}>_, of elements of £2 converging
to m, there exists n, such that

H(E N T,(E) > 7.
for all n > n,.
Proof. Quite analogous to that of Theorem 2. It is sufficient to let ¢ be the
family of all compact subsets of X. Since by hypothesis, & is a o-algebra
containing both the family % of all open sets and the family ¢ of all compact
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sets, regularity of the measure in that case coincides with its ¥ — %-regularity
in the sense of Definition 1.

Now we can observe the connection between properties (a)—(c) and
(I)—(III) in Euclidean spaces.

Definition 2. We shall say that a transformation T}, has the property (x) if
for any two closed balls K, = S[a,, r|] and K, = S[a,, 4] in E, we have

I(Ki v Ky = T,(K)) v T(K)).

Theorem 3. Let E, (n = 1, 2, ...) be the n-dimensional Euclidean space with
Lebesgue measure y. Denote by € the family of all compacts and by % the family
of all open sets in E,. Then

a) The assumptions (a), (b), (c) imply the properties (I), (I1), (III).

b) If the transformations 7, satisfy () for all we £, then (I)—(I11) and
(a)—(c) are equivalent.

Proof.

a) Assumptions (b) and (c) are the same as (II) and (I11). If the transforma-
tions T, satisfy (a), they still need not meet (I). For example, put T,(S[a, r]) =

=S| a, ; for each we Q2 and every ball S[a, r]. However, it can be easily

deduced from the properties of the usual topology in Euclidean spaces that
whenever the transformations T, satisfy (a) and (c), then they satisfy also (I).

b) In view of the proof of part a) it is sufficient to show that (I), (IT), (I11)
and () imply (a). We are going to show that (a) is implied by (I), (IT) and (x).
(Later we shall give an example showing that even in E, the properties (I), (II),
(IIT) need not imply (a).)

Let F = G, Fe%, Ge % are arbitrary sets. Since G is an open subset of E,,
it can be expressed in the form

G = U S(a,, r),

i=1

where S(a,, r)(i=1,2,...) are open balls whose closures are subsets of G. These

balls cover the compact set F as well. Therefore we can choose finitely many balls
with

Fec O S(a;, r,),

ji=1

and also F < | ) S[a,, r,]. Put
ji=1

F,= FnSla, r], G=12,.., m).
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Forallj=1, 2, ..., m, F;is a compact set and moreover

F,c Sla;, r] < G.

ijs

In view of (II) for each we 2 we have
T.(F) = T,(Sla;, ). 3

Now let {w,},"_ | be a sequence converging to a, in £2. By (), for every j = 1,
2, ..., m there exists n; such that for all n < n; we have

Ta»,(S[ai,, rij]) G. “4)

Put ny = max {n,, n,, ..., n,}. Then due to (3) and (4) we shall have for all n > n,
and for all sets F, j =1, 2, ..., m)

T,(F) < G.

Since (*) implies an analogous proposition for any finite number of closed balls,
for all n > n, we get

1P = T £) < 7 (U 16, 73) = () TuSla r < 6.

=1

The proof is complete.

The following example shows that if the transformations 7, have the pro-
perties (I)—(III) but have not the property (), then they need not have the
property (a).

Example 1. Let 2 # ( be an arbitrary metric space and @, any point in
€. For each we 2 define T: 2*' — 2! by the following rule

T(M)=<MichE,and{0;2}¢M
° MU{1}if M c E, and {0; 2} = M.

Conditions (I), (IT) and (ITI) are satisfied but the transformations thus defined
fail to have the property (*). It suffices to choose

K=(-35) &=(2).
2 2 2 2
11 35
T = (- 3:3) (30

s~ (-L)uR.).

but
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In a similar way it is easy to see that the transformations 7, do not have the
property (a).

Remark 2. Denote by £ the family of all Lebesgue measurable subsets of
the space E,. Let the transformations 7,; ¥ — % be induced by suitable point
mappings g, E,— E, Then these transformations are known to have the
property (x), and hence for then the conditions (I)—(III) are equivalent tc
(a)—(c).

Remark 3. As shown by the following example, there exist transformaticns
of the type T, having the property (*) which are not induced by point mappings.

Example 2. Let 2 = E, with the Euclidean metric. If E€ % and we Q then

EifO¢FE

T(E) =
Eu(-o, +w)if 0eE.

Evidently for any E€ % and each we Q2 we have T,(E) e . The transformations
just defined have evidently also the property (*) and if we put @, = 0 they will
have properties (I)—(11I), too.

In the case of spaces E, (n = 1, 2, ...) we can state the following proposition
which improves the previous results for certain types of transformations.

Corollary 2. Let T, (we £2) denote transformations which are induced by
suitable point mappings or have the property () and satisfy the conditions (I),
(IT), (ITI). Let Ae &, |[A|=a, 0 <a< + o and let {w,};°_, be a sequence
converging to @, in £2. Then to overy ye (0, ) there exists N, such that for all
n > N, we have

AN T, (A)] > 7.

Proof. In view of Theorem 3, the hypotheses of Corollary 1 are satisfied and
hence our proposition follows immediately.

As can be immediately seen, for transformations induced by point map-
pings or those enjoying property (x), our Corollary 2 is stronger than the
assertion of Theorem B (and therefore also stronger than Theorem A) in
Introduction.

The assertion of Corollary 1 can be strengthened in the following way.

Theorem 4. Let 2 be a metric space and (X, %) a Hausdorff topological
space. Let & be a o-algebra of subsets of X containing all open sets and let u be
a regular measure on <. Let {w,};"_ | be a sequence converging to @, in £ and
let T, be transformations satisfying (a), (b) and (c). Let Ec ¥, u(E) = a,
0<a< .

Then for every ye(0, @) there exists a subsequence {w,}i"_ , of {@,}*_, such
that

#( 6 (En TW(E))> > 7.
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Proof. Let {w,},;’_ , be a sequence converging to o, € £2. Let T, satisfy (a), (b)
and (c). Let Ee ¥ and 0 < y(E) = @ < + 0. Then Corollary 1 there is N, such
that for all » > N, we have

WENT,(E) > 3“: Y e u(E- T,(E)) < “; v

Now choose @, with n, > N,.
Similarly, Corollary 1 guarantees the existence of some N, > n, such that
for all n > N, we have

WENT,(B) > 1217

ie. wE-—T,(E)< “; Y,

Choose ,, such that n, > N,. _
Suppose that we have already found points w,,, ®,, ..., ®, such that for
eachi=1, 2, ..., k we have

a—vy
2i+l'

H(E — T,,(E)) <

Then the point w,, ,, can be found as follows.
By Corollary 1 there exists N, , , > n, such that for all n > N, ., we have
@*2—Da+y

. a—y
HENT,(E)) > e ie. wE-T,(E)) < ey

It is sufficient now to choose w,, , , with n, ., > N, , ;. In such a way, a subsequ-
ence with the claimed properties can be constructed by induction.
Since a o-algebra is closed under taking countable unions, we may write

From
u(E - b. (En T,,,,k(E))) = u(E) — u( ﬁ (En Tw(E))) <

a—-v
2

we obtain

u(ﬁ (En TM(E») zat—t>y

K=1

The theorem is proved.
Corollary 3. In case X = E,, the preceding theorem can be reworded as
follows.
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Let {®,},"_ | be a sequence converging to w, in L. Let 7, be transformations
induced by a suitable point mapping or having the property (). Let T, satisfy
(I), (IT), (IIT). Let 4 be a measurable set with u(4) = @ > 0 (a < + o). Then for
any y€(0, a) there exists a subsequence such-that

HANT, (AN T, (A)n...0T, (A)n..) > 7.

Theorem 5. Suppose the hypotheses of Theorem 4 are fulfilled. Then for
every ye (0, a) there exists a subsequence {®,,};°_, and a measurable set 4 = E
such that u(4) > yand T,,,(A) < E for every o, (k =1, 2, ...).

Proof. The hypotheses of Theorem 4 being fulfilled, a seubsequence {w,,};"_
of {m,}_, can be choosen to satisfy the proposition of Theorem 4. Put 4, = E
and 4, =4, nT,(E)fork=1,2,.. Then 424, >... 54, >... and

moreover
K

A4,=En (m T,m,(E)) = ((EAT(E)).

i=1

We are going to show that the set A = (") A4, has the claimed properties. A is
K=1

measurable because it is a countable intersection of measurable sets. Its measure
is

© K
H(A) = #(I(ﬂl Ak) = Jim p(4,) = lim ﬂ(ﬂ (En Tah,-(E))> =

i=1

- u(ﬁ (En Twn..(E») > 7,

which follows from Theorem 4.
Thus the theorem is proved.

In the special case X = E, we obtain the following corollary to the last
theorem.

Corollary 4. Let transformations 7,; & — & satisfy the assumtions (1), (I D),
(IIT) and be induced by point mappings or satisfy (x). Let {w}r_, be any
sequence converging to w,€ £2and let 4 € & be a set with 0 < u(A4) = a < + 0.
Let ye (0, a). Then there exists a subsequence {w,}¢-, and a measurable set
B < A such that u(B) > yand for each {e B and every w,, (k = 1,2, ...) we have
L) < A,ie. T, (B) = A for every w, (k=1, 2, ...).

Proof. It follows from Theorem 3 and Remark 2 that the transformations
T,, considered in the Corollary satisfy (a), (b) and (c). Therefore the Corollary
follows immediately from Theorem 5.

Remark 4. For certain classes of transformations, Corollary 4 contains

under weaker assumptions an essentially stronger statement than Theorem 3 of

(2]
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Theorem 6. Let (X, ||) be a T,-space. Let {w,} _, be a sequence converging
to @, in £ and set transformations T,, satisfy (a). Let G = X be an open subset
of X. Then for every fe G there is n, such that T, ({g}) = G whenever n > n,.

Proof. Let ge G. Then {g} = G and {g} is a closed and compact subset of the
open set G. The proposition of the theorem now follows directly from the
property (a).
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SUHRN
ISTE TYPY TRANSFORMACIT MERATELNYCH MNOZIN
Jaroslav Cerveriansky, Bratislava
V praci sa Studuje savis istych tried transformacii merateInych mnozin v jednorozmernom

euklidovskom priestore E;. Zaroveii je tu ukazané, Ze ak uvazujeme o transformaciach podobného
typu v topologickych priestoroch, dostaneme silnejSie a vieobecnejsie tvrdenia.

PE3IOME
HEKOTOPBIE TUITbI TPAHC®OPMALIMA U3MEPBIMbIX MHOXECTB
Mapocnas Uepsenanckei, Bpatucnasa
B pa6oTe u3yueHa CBA3b HEKOTOPHIX KJIACCOB TpaHCHOPMAIIHii H3MEPHMBIX MHOXECTB B OJI-

HopasMepHoM EBkinaoBoM npoctpanctse E,. 31ech Takxke MOKa3aHo, YTO KOIAa Mbl pacCMaTphl-

BaeM TpaHchopMaLUHH MOAOOGHOrO THNA B TOMOJOTHYECKMX NMPOCTPAHCTBAX, MOXHO MOJIy4HTh
6ounee cuibHbIE U GoJiee O6IIHe YTBEPXKACHHS.
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