

Werk

Titel: Das Schriftmetall Gutenbergs

Autor: Giesecke, Albert

Ort: Mainz Jahr: 1949

PURL: https://resolver.sub.uni-goettingen.de/purl?366382810_1944-49|log14

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

UNIVERSITAS COMENIANA ACTA MATHEMATICA UNIVERSITATIS COMENIANAE XLVIII—XLIX — 1986

APPLICATIONS OF THE CATEGORY METHOD IN THE THEORY OF MODULAR SEQUENCE SPACES

JANINA EWERT, Slupsk — TIBOR ŠALÁT, Bratislava

1. Preliminaries

Let X be a real linear space. A functional $\varrho: X \to \langle 0, +\infty \rangle$ is said to be a convex modular if

- (a) $\varrho(x) = 0$ if and only if x = 0;
- (b) $\varrho(-x) = \varrho(x)$;
- (c) $\varrho(\alpha x + \beta y) \le \alpha \varrho(x) + \beta \varrho(y)$ for $x, y \in X$, $\alpha, \beta \ge 0$, $\alpha + \beta = 1$.

The set

$$X_{\varrho} = \left\{ x \in X : \underset{t>0}{\exists} \varrho(tx) < +\infty \right\}$$

is a linear subspace of X and it is called the modular space determined by ϱ . The formula

$$||x|| = \inf \left\{ t > 0 : \varrho\left(\frac{x}{t}\right) \le 1 \right\}$$

defines a norm on X_{ϱ} (cf. [4], [5]).

In what follows we shall use the following auxiliary result.

Lemma 1.1. Let C be a subset of a modular space X_{ϱ} . If for each $x \in C$ there exists an $\varepsilon > 0$ such that

$$\{y \in X_{\varrho}: \varrho(x-y) < \varepsilon\} \subset C$$

then C is open in X_{ϱ} .

Proof. Let $x \in C$. According to the assumption there exists such an $\varepsilon > 0$ that

$$W_{\varepsilon}(x) = \{ y \in X_{\varrho} : \varrho(x - y) < \varepsilon \} \subset C$$

We can assume that $\varepsilon < 1$. It suffices to prove that

$$K(x, \varepsilon) = \{ y \in X_o: ||x - y|| < \varepsilon \} \subset C$$

Let $y \in K(x, \varepsilon)$. Then according to the definition of the norm we get from $||x-y|| < \varepsilon' < \varepsilon$ the inequality

$$\frac{1}{\varepsilon'} \varrho(x - y) \le \varrho\left(\frac{x - y}{\varepsilon'}\right) \le 1$$

Hence $\varrho(x-y) \le \varepsilon' < \varepsilon, y \in W_{\varepsilon}(x) \subset C$.

A function $f: \langle 0, +\infty \rangle \rightarrow \langle 0, +\infty \rangle$ is said to be an Orlicz function if it is continuous, non-decreasing, convex and $\lim_{t \to \infty} f(t) = +\infty$. If f(t) = 0 for some t > 0, then f is said to be a degenerate Orlicz function (cf. [3], p. 137).

An Orlicz function is said to satisfy the Δ_2 -condition for small t if there exists K > 0 and $t_0 > 0$ such that $f(2t) \le K f(t)$ for each $t \in \langle 0, t_0 \rangle$ (cf. [2], [4]).

Let f be a non-degenerate Otlicz function whose right-derivative P satisfies P(0) = 0 and $\lim_{t \to \infty} P(t) = +\infty$. The right-inverse Q of P given by $Q(u) = \sup_{t \to \infty} P(t)$ $\{t: P(t) \le u\}$ (for $u \ge 0$) is a right-continuous non-decreasing function such that Q(0) = 0 and Q(u) > 0 for u > 0. Put $f^*(t) = \int_0^t Q(u) \, du$ for t > 0. Then f^* is also a non-degenerate Orlicz function. It is called the function complementary to f. We have $(f^*)^* = f$. For any $u \ge 0$, $v \ge 0$ the Young's inequality $uv \le 0$ $\leq f(u) + f^*(v)$ holds (cf. [3], p. 147).

A sequence $\{f_n\}_{n=1}^{\infty}$ of Orlicz functions is said to satisfy the uniform Δ_2 -condition if there exists K > 0 and n_0 such that we have $f_n(2t) \leq K f_n(t)$ for each $t \in \left\langle 0, \frac{1}{2} \right\rangle$ and $n \ge n_0$ ([3], p. 167).

In what follows denote by s the linear space of all sequences of real numbers. Denote by d the metric on s defined in the following way:

(1)
$$d(x, y) = \sum_{k=1}^{\infty} \frac{1}{2^k} \frac{|\xi_k - \eta_k|}{1 + |\xi_k - \eta_k|}$$
$$(x = \{\xi_k\}_{k=1}^{\infty} \in s, \quad y = \{\eta_k\}_{k=1}^{\infty} \in s).$$

Further denote by l_{∞} and c_0 the linear space of all bounded sequences of real numbers and all sequences of real numbers converging to 0, respectively, each with the norm

$$||x|| = \sup_{k=1, 2, ...} |\xi_k|$$
 $(x = \{\xi_k\}_{k=1}^{\infty})$

2. The modular sequence space determined by a sequence of Orlicz functions

Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of non-degenerate Orlicz functions. For $x = \{\xi_k\}_{k=1}^{\infty} \in s$ we put $\varrho(x) = \sum_{n=1}^{\infty} f_n(|\xi_n|)$ and

$$l\{f_n\} = \left\{ x \in s \colon \exists_{t>0} \varrho(tx) < +\infty \right\}$$

Then ϱ is a convex modular on s and $l\{f_n\}$ is a modular space which is a Banach space ([3], p. 166; [4]). If the sequence $\{f_n\}_{n=1}^{\infty}$ satisfies the uniform Δ_2 -condition, then

(2)
$$l\{f_n\} = \left\{ x \in \mathcal{S}: \ \forall \ \varrho(tx) < +\infty \right\}$$

and

$$(3) l\{f_n\} \subset c_0$$

(cf. [8]).

In general, $f_n(1) \neq 1$. If $f_n(a_n) = 1$ for $a_n > 0$, then we can put $g_n(t) = f_n(a_n t)$. So $g_n(1) = 1$, $\{g_n\}_{n=1}^{\infty}$ is a sequence of Orlicz functions. Moreover, $l\{f_n\}$ and $l\{g_n\}$ are isometric spaces ([8]).

Proposition 2.1. Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of non-degenerate Orlicz functions. If $f_n(1) = 1$ (n = 1, 2, ...) and $\sum_{n=1}^{\infty} f_n(t) < +\infty$ for some t > 0, then $l\{f_n\} = l_{\infty}$.

Proof. Let $x = \{\xi_n\}_{n=1}^{\infty} \in l\{f_n\}, \ \varepsilon > 0$. Then from the inequality

$$\varrho\left(\frac{x}{\|x\|+\varepsilon}\right) \le 1$$

we get

$$f_n\left(\frac{|\xi_n|}{\|x\|+\varepsilon}\right) \leq 1 \qquad (n=1, 2, \ldots)$$

So we have $|\xi_n| \le ||x||$ (n = 1, 2, ...). Hence $x \in l_{\infty}$.

Let $x = \{\xi_n\}_{n=1}^{\infty} \in I_{\infty}$. Then there exists K > 0 such that $|\xi_n| \le K$ (n = 1, 2, ...). According to the assumption there exists a $t_0 > 0$ such that $\sum_{n=1}^{\infty} f_n(t_0) < +\infty$. But then for a suitable $t_1 > 0$ we have

$$|t_1\xi_n| \le t_1K \le t_0$$
 $(n = 1, 2, ...)$

and hence

$$Q(t_1x) = \sum_{n=1}^{\infty} f_n(|t_1\xi_n|) \le \sum_{n=1}^{\infty} f_n(t_0) < +\infty,$$

therefore $x \in l\{f_n\}$.

In the following theorem the set s is considered as a metric space with the metric d defined in (1).

Theorem 2.1. Let the sequence $\{f_n\}_{n=1}^{\infty}$ of non-degenerate Orlicz functions satisfy the uniform Δ_2 -condition. The set $l\{f_n\}$ is a dense F_{σ} -set of the first Baire category in s.

Proof. According to Theorem 2,1 from [1] the set $c_0 \subset s$ is a set of the first Baire category in s. Using the inclusion (3) we see that $l\{f_n\}$ is a set of the first category in s, too.

For $m, k \in N$ we put

$$A_{mk} = \left\{ x = \{ \xi_n \}_{n=1}^{\infty} \in s : \sum_{j=1}^{m} f_j(|\xi_j|) \le k \right\}$$

Then A_{mk} is a closed set in s and

$$l\{f_n\} = \bigcup_{k=1}^{\infty} \bigcap_{m=1}^{\infty} A_{mk}$$

Therefore $l\{f_n\}$ is an F_{σ} -set in s. The density of $l(\{f_n\})$ in s is obvious.

A sequence $\{h_n\}_{n=1}^{\infty}$ of Orlicz functions is said to satisfy the condition (P) if for each t > 0 we have $\sum_{n=1}^{\infty} h_n(t) = +\infty$, further $h_n(1) = 1$ (n = 1, 2, ...) and $\{h_n\}_{n=1}^{\infty}$ satisfies the uniform Δ_2 -condition.

Theorem 2.2. Let the sequences $\{f_n\}_{n=1}^{\infty}$, $\{g_n\}_{n=1}^{\infty}$ of non-degenerate Orlicz functions satisfy the condition (P). If $l\{f_n\} \cap l\{g_n\} \neq l\{f_n\}$, then the set $l\{f_n\} \cap l\{g_n\}$ is a dense F_{σ} -set of the first Baire category in $l\{f_n\}$.

Proof. Denote by ϱ and $\|$ $\|$ the modular and the norm introduced by the sequence $\{f_n\}_{n=1}^{\infty}$ of Orlicz functions.

Each sequence with only a finite number of non-zero terms belongs to $l\{f_n\} \cap l\{g_n\}$. The set of all such sequences is dense in $l\{f_n\}$. Therefore $lf_n\} \cap l\{g_n\}$ is dense in $l\{f_n\}$.

We shall prove that $l\{f_n\} \cap l\{g_n\}$ is an F_{σ} -set of the first category in $l\{f_n\}$. Put

$$C_k = \bigcup_{n=1}^{\infty} \left\{ x = \{ \xi_j \}_{j=1}^{\infty} \in l\{f_n\} : \sum_{j=1}^{n} g_j(|\xi_j|) > k \right\} \qquad (k = 1, 2, ...).$$

Since $l\{f_n\} \cap l\{g_n\} \neq l\{f_n\}$, there exists such an $x = \{\xi_j\}_{j=1}^{\infty} \in l\{f_n\}$ that $x \notin l\{g_n\}$.

Hence (cf. [8]) we have $\sum_{j=1}^{\infty} g_j(|\xi_j|) = +\infty$ and so

$$(4) \qquad \bigcap_{k=1}^{\infty} C_k \neq \emptyset$$

Let $x_0 = \{\xi_j^0\}_{j=1}^{\infty} \in C_k$. Then there exists an n such that

$$\sum_{j=1}^n g_j(|\xi_j^0|) > k$$

Choose $\varepsilon > 0$ such that

$$\sum_{j=1}^{n} g_{j}(|\xi_{j}^{0}|) - \varepsilon > k$$

Since the functions $g_1, g_2, ..., g_n$ are continuous, there is a $\delta_1 > 0$ such that

(5)
$$|\xi_j - \xi_j^0| < \delta_1$$
 $(j = 1, ..., n) \Rightarrow \sum_{j=1}^n |g_j(|\xi_j^0|) - g_j(|\xi_j|)| < \varepsilon$

Put $\delta = \min_{1 \le j \le n} f_j(\delta_1)$ and let $x = \{\xi_j\}_{j=1}^{\infty}$ be such that $\varrho(x - x_0) < \delta$, i.e. $\sum_{j=1}^{\infty} f_j(|\xi_j - \xi_j^0|) < \delta$. Then for each j = 1, ..., n we have $f_j(|\xi_j - \xi_j^0|) < f_j(\delta_1)$ and so we get $|\xi_j - \xi_j^0| < \delta_1$ (j = 1, 2, ..., n). Then according to (5) we have

$$\sum_{j=1}^{n} |g_j(|\xi_j|) - g_j(|\xi_j^0|)| < \varepsilon$$

and

$$\sum_{j=1}^{n} g_{j}(|\xi_{j}|) \geq \sum_{j=1}^{n} g_{j}(|\xi_{j}^{0}|) - \sum_{j=1}^{n} |g_{j}(|\xi_{j}^{0}|) - g_{j}(|\xi_{j}|) > \sum_{j=1}^{n} g_{j}(|\xi_{j}^{0}|) - \varepsilon > k$$

Hence $x \in C_k$. Thus we have proved that

$$\{x \in l\{f_n\}: \varrho(x-x_0) < \delta\} \subset C_k$$

According to Lemma 1.1 the set C_k is open.

We shall show that the set $C = \bigcap_{k=1}^{\infty} C_k$ is a dense set in $l\{f_n\}$.

Let $x = \{\xi_j\}_{j=1}^{\infty} \in l\{f_n\}$ and $0 < \varepsilon < 1$. We shall show that there is a $z \in C$ such that

$$(6) ||x-z|| < \varepsilon$$

Choose a $y = {\eta_j}_{j=1}^{\infty} \in C$ (see (4)). Then there is an n such that

$$\sum_{j=n+1}^{\infty} f_j\left(\frac{2|\xi_j|}{\varepsilon}\right) < 1, \quad \sum_{j=n+1}^{\infty} f_j\left(\frac{2|\eta_j|}{\varepsilon}\right) < 1$$

Put $z = \xi_1, ..., \xi_n, \eta_{n+1}, \eta_{n+2}, ..., \eta_{n+k}, ...$ It is easy to see that $z \in C$. Further we have

$$\varrho\left(\frac{x-z}{\varepsilon}\right) = \sum_{j=n+1}^{\infty} f_j\left(\frac{|\xi_j - \eta_j|}{\varepsilon}\right) \le \frac{1}{2} \sum_{j=n+1}^{\infty} f_j\left(\frac{2|\xi_j|}{\varepsilon}\right) + \frac{1}{2} \sum_{j=n+1}^{\infty} f_j\left(\frac{2|\eta_j|}{\varepsilon}\right) < 1$$

From this we get (6).

Thus C is a G_{δ} -set dense in $l\{f_n\}$. Therefore C is a residual set in $l\{f_n\}$ (cf. [7], p. 49). Hence

$$l\{f_n\} \cap l\{g_n\} = l\{f_n\} \setminus \bigcap_{k=1}^{\infty} C_k$$

is an F_n -set of the first Baire category in $l\{f_n\}$. This ends the proof.

If $f_n = f$ (n = 1, 2, ...), then $l\{f_n\}$ is an Orlicz sequence space and we denote it by l_f . In particular, if $f_n(t) = t^p$ $(p \ge 1)$ for n = 1, 2, ..., we have $l\{f_n\} = l^p$. Moreover, in this case the norm given by the modular on $l\{f_n\}$ coincides with the classical norm on l^p . Therefore from Theorem 2.2 the following results follow:

Corollary.

- a) Let f and g be Orlicz functions satisfying the Δ_2 -condition for small t and $l_f \cap l_g \neq l_f$. Then $l_f \cap l_g$ is a dense F_{σ} -set of the first Baire category in l_f .
- b) If $1 \le p < q$, then l^p is a dense F_{σ} -set of the first Baire category in l^q (see [6]).
- c) If a sequence $\{f_n\}_{n=1}^{\infty}$ of Orlicz functions satisfies the uniform Δ_2 -condition, then it follows from [8] (Proposition 3.2) that $l\{f_n\} \subset l^p$ for some p > 1. Hence if $\{f_n\}_{n=1}^{\infty}$ satisfies the condition (P), there exists $p_0 > 1$ such that $l\{f_n\}$ is a dense F_{σ} -set of the first Baire category in l^p for each $p \ge p_0$.

Theorem 2.3. Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of non-degenerate Orlicz functions. Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of positive real numbers with $\limsup_{n\to\infty} a_n = +\infty$. Then the set

$$A = \{x = \{\xi_k\}_{k=1}^{\infty} \in l\{f_n\}: \lim_{n \to \infty} \sup \alpha_n |\xi_n| < +\infty\}$$

is a dense F_{σ} -set of the first Baire category in $l\{f_n\}$.

Proof. Put

$$C_k = \bigcup_{n=1}^{\infty} \{ x = \{ \xi_j \}_{j=1}^{\infty} \in l \{ f_n \}: \ \alpha_n | \xi_n | > k \} \qquad (k = 1, 2, \ldots).$$

We shall prove that C_k (k = 1, 2, ...) is an open set in $l\{f_n\}$.

Let $x_0 = \{\xi_j^0\}_{j=1}^\infty \in C_k$. Then there exists an n such that $\alpha_n |\xi_n^0| > k$. Choose $\varepsilon > 0$ in such a way that $\alpha_n |\xi_n^0| - \varepsilon > k$. Put $\delta_1 = \frac{\varepsilon}{\alpha_n}$, $\delta = f_n(\delta_1)$. Let us suppose that $x = \{\xi_j^0\}_{j=1}^\infty \in l\{f_n\}$ satisfies the condition $\varrho(x - x_0) < \delta$. Then $\sum_{j=1}^\infty f_j(|\xi_j - \xi_n^0|) < \delta$. From this we get $f_n(|\xi_n - \xi_n^0|) < \delta = f_n(\delta_1)$ and therefore $|\xi_n - \xi_n^0| < \delta_1$. Hence $\alpha_n |\xi_n - \xi_n^0| < \varepsilon$ and so

$$\alpha_n |\xi_n| \ge \alpha_n |\xi_n^0| - \alpha_n |\xi_n - \xi_n^0| > \alpha_n |\xi_n^0| - \varepsilon > k.$$

So we have proved that $\{x: \varrho(x-x_0)<\delta\}\subset C_k$. According to Lemma 1.1 the set C_k $(k=1,2,\ldots)$ is open in $l\{f_n\}$.

We shall show that the set $C = \bigcap_{k=1}^{\infty} C_k$ is a dense set in $l\{f_n\}$.

At first we shall show that $C \neq \emptyset$. Since $\limsup_{n \to \infty} \alpha_n = +\infty$ and $\lim_{t \to 0+} f_j(t) = 0$ for each j = 1, 2, ..., we can choose a sequence $n_1 < n_2 < ... < n_k < n_{k+1} < ...$ of positive integers such that $\alpha_{n_k} > k^2$ (k = 1, 2, ...) and

$$\sum_{k=1}^{\infty} f_k((\sqrt{\alpha_{n_k}})^{-1}) < +\infty$$

Put $\xi_{n_k}^0 = (\sqrt{\alpha_{n_k}})^{-1}$ (k = 1, 2, ...) and $\xi_j^0 = 0$ for $j \neq n_k$ (k = 1, 2, ...). Then $x_0 = \{\xi_j^0\}_{j=1}^{\infty} \in C$.

Let $x = \{\xi_i\}_{i=1}^{\infty} \in l\{f_n\}, \ \varepsilon > 0$. Since $x, x_0 \in l\{f_n\}$, there exists an m such that

(7)
$$\sum_{j=m+1}^{\infty} f_j \left(\frac{2|\xi_j|}{\varepsilon} \right) < 1, \quad \sum_{j=m+1}^{\infty} f_j \left(\frac{2|\xi_j^0|}{\varepsilon} \right) < 1$$

Choose $y = {\eta_j}_{j=1}^{\infty}$ in the following way: $\eta_j = \xi_j$ for $j \le m$ and $\eta_j = \xi_j^0$ for j > m. Then $y \in C$ and on account of (7) we have

$$\sum_{j=1}^{\infty} f_j \left(\frac{|\xi_j - \eta_j|}{\varepsilon} \right) = \sum_{j=m+1}^{\infty} f_j \left(\frac{|\xi_j - \xi_j^0|}{\varepsilon} \right) \le \sum_{j=m+1}^{\infty} f_j \left(\frac{1}{2} \frac{2|\xi_j|}{\varepsilon} + \frac{1}{2} \frac{2|\xi_j^0|}{\varepsilon} \right) \le$$

$$\le \frac{1}{2} \sum_{j=m+1}^{\infty} f_j \left(\frac{2|\xi_j|}{\varepsilon} \right) + \frac{1}{2} \sum_{j=m+1}^{\infty} f_j \left(\frac{2|\xi_j^0|}{\varepsilon} \right) < 1$$

Hence $||y - x|| \le \varepsilon$. The density of C in $l\{f_n\}$ follows.

The set C is a G_{δ} -set dense in $l\{f_n\}$, therefore it is a residual set in $l\{f_n\}$ ([7], p. 49).

It is easy to check that $A = l\{f_n\} \setminus C$. Hence A is an F_{σ} -set of the first Baire category in $l\{f_n\}$. The density of A in $l\{f_n\}$ is evident. This ends the proof.

Let $x = \{\xi_i\}_{i=1}^{\infty} \in l\{f_n\}, y = \{\eta_i\}_{i=1}^{\infty} \in l\{f_n^*\}, f_n^*$ being the function complementa-

ry to f_n . Then it follows from the Young's inequality $\sum_{j=1}^{\infty} |\xi_j \eta_j| < +\infty$. For a sequence which does not belong to $l\{f_n^{*}\}$ we have the following result.

Theorem 2.4. Let $a = \{a_j\}_{j=1}^{\infty} \notin l\{f_n^*\}$. Then the following assertions hold:

a) For all points $x = \{\xi_j\}_{j=1}^{\infty} \in l\{f_n\}$ excepting points of a certain F_{σ} -set of the first Baire category we have

(8)
$$\lim_{m \to \infty} \inf_{j=1}^{m} \alpha_j \xi_j = -\infty, \quad \lim_{m \to \infty} \sup_{j=1}^{m} \alpha_j \xi_j = +\infty$$

b) The set

$$M = \left\{ x = \left\{ \xi_j \right\}_{j=1}^{\infty} \in l \left\{ f_n \right\} : \sum_{j=1}^{\infty} |\alpha_j \xi_j| < + \infty \right\}$$

is an F_{σ} -set of the first Baire category in $l\{f_n\}$. Moreover, if $a \in l_{\infty}$, then M is a dense set.

Proof.

a) Put

$$C_k = \bigcup_{m=1}^{\infty} \left\{ x = \{ \xi_j \}_{j=1}^{\infty} \in l \{ f_n \} : \sum_{j=1}^{m} \alpha_j \xi_j > k \right\} \qquad (k = 1, 2, ...), \quad C = \bigcap_{k=1}^{\infty} C_k.$$

Every continuous linear functional φ on $l\{f_n\}$ is of the form $\varphi(x) = \sum_{j=1}^{\infty} \xi_j \eta_j$, where $y = \{\eta_j\}_{j=1}^{\infty} \in l\{f_n\}$ (cf. [8]). Since $a \notin l\{f_n\}$, there exists a point $x = \{\xi_j\}_{j=1}^{\infty} \in l\{f_n\}$ such that $\sum_{j=1}^{\infty} \alpha_j \xi_j = +\infty$. Therefore the set C is non-empty.

We shall prove that C_k (k = 1, 2, ...) is an open set in $l\{f_n\}$. For x = 1

We shall prove that C_k (k = 1, 2, ...) is an open set in $l\{f_n\}$. For $x = \{\xi_j\}_{j=1}^{\infty} \in C_k$ there exists an integer m such that $\sum_{j=1}^{m} \alpha_j \xi_j > k$. Choose numbers $\varepsilon > 0$, $\delta > 0$ such that

$$\sum_{j=1}^{m} \alpha_{j} \xi_{j} - \varepsilon > k, \quad \delta \sum_{j=1}^{m} |\alpha_{j}| < \delta$$

Put $\delta_1 = \min_{1 \le j \le m} f_j(\delta)$. For each $y = \{\eta_j\}_{j=1}^{\infty}$ satisfying $\varrho(y - x) < \delta_1$ we have $|\xi_j - \eta_j| < \delta \ (j = 1, 2, ..., m)$. Therefore,

$$\sum_{j=1}^{m} \alpha_j \eta_j = \sum_{j=1}^{m} \alpha_j \xi_j + \sum_{j=1}^{m} \alpha_j (\eta_j - \xi_j) > \sum_{j=1}^{m} \alpha_j \xi_j - \varepsilon > k$$

Hence $\{y: \varrho(y-x) < \delta_1\} \subset C_k$ and according to Lemma 1.1 the set C_k is open in $l\{f_n\}$.

We shall show that the set $C = \bigcap_{k=1}^{\infty} C_k$ is dense in $l\{f_n\}$.

Let $x = \{\xi_j\}_{j=1}^{\infty} \in l\{f_n\}$ and $\varepsilon > 0$. Choose a fixed $y = \{\eta_j\}_{j=1}^{\infty} \in C$. Then there exists p such that

(9)
$$\sum_{j=p+1}^{\infty} f_j \left(\frac{2|\xi_j|}{\varepsilon} \right) < 1, \quad \sum_{j=p+1}^{\infty} f_j \left(\frac{2|\eta_j|}{\varepsilon} \right) < 1$$

Put $t = \{\tau_j\}_{j=1}^{\infty}$, where $\tau_j = \xi_j$ for $j \le p$ and $\tau_j = \eta_j$ for j > p. Then $t \in C$ and using (9) we get

$$\varrho\left(\frac{x-t}{\varepsilon}\right) = \sum_{j=1}^{\infty} f_j\left(\frac{|\xi_j - \tau_j|}{\varepsilon}\right) \leq \sum_{j=p+1}^{\infty} f_j\left(\frac{|\xi_j| + |\eta_j|}{\varepsilon}\right) \leq \frac{1}{2} \sum_{j=p+1}^{\infty} f_j\left(\frac{2|\xi_j|}{\varepsilon}\right) + \frac{1}{2} \sum_{j=p+1}^{\infty} f_j\left(\frac{2|\eta_j|}{\varepsilon}\right) < 1.$$

Hence $||t - x|| \le \varepsilon$ and so C is a dense G_{δ} -set in $l\{f_n\}$. Therefore C is a residual set in $l\{f_n\}$.

Analogously we can show that also the set $D = \bigcap_{k=1}^{\infty} D_k$ is residual in $l\{f_n\}$, where

$$D_k = \bigcup_{m=1}^{\infty} \left\{ x = \{ \xi_j \}_{j=1}^{\infty} \in l \{ f_n \} : \sum_{j=1}^{m} \alpha_j \xi_j < -k \right\} \qquad (k = 1, 2, ...,).$$

Using the foregoing results we see that the set $C \cap D$ is a residual set in $l\{f_n\}$. It is obvious that this set coincides with the set of all $x = \{\xi_j\}_{j=1}^{\infty} \in l\{f_n\}$ for which (8) holds.

b) Let

$$H_k = \bigcup_{m=1}^{\infty} \left\{ x = \{ \xi_j \}_{j=1}^{\infty} \in l\{f_n\} : \sum_{j=1}^{m} |\alpha_j \xi_j| > k \right\} \qquad (k = 1, 2, ...).$$

Using analogous arguments as in the part a) of the proof we can show that H_k (k = 1, 2, ...) are open sets in $l\{f_n\}$ and $H = \bigcap_{k=1}^{\infty} H_k$ is a dense set in $l\{f_n\}$. Since $M = l\{f_n\} \setminus H$, we see that M is an F_{σ} -set of the first category in $l\{f_n\}$.

If $a \in l_{\infty}$, then $l^1 \subset M$. According to Theorem 2.2 the set l^1 is dense in $l\{f_n\}$, which completes the proof.

Corollary. Let $a = \{\alpha_j\}_{j=1}^{\infty} \notin l^q, \frac{1}{p} + \frac{1}{q} = 1$. Then the following assertion hold:

a) The set

$$\left\{ x = \{\xi_j\}_{j=1}^{\infty} \in l^p: \sum_{j=1}^{\infty} |\alpha_j \xi_j| < + \infty \right\}$$

is a dense F_{σ} -set in l^{p} .

b) For all points $x = \{\xi_j\}_{j=1}^{\infty} \in l^p$ excepting the points of a certain F_{σ} -set of the first Baire category we have

$$\liminf_{m\to\infty}\sum_{j=1}^m \alpha_j\xi_j = -\infty, \quad \limsup_{m\to\infty}\sum_{j=1}^m \alpha_j\xi_j = +\infty$$

([3], Theorem 3.1).

REFERENCES

- [1] Legéň, A.—Šalát, Т.: О некоторых применениях метода категорий в теории пространств последовательностей. Mat.-fyz. čas. SAV 14 (1964), 217—232.
- [2] Lindberg, K.: On subspaces of Orlicz sequence spaces. Studia Math. 45 (1973), 119-146.
- [3] Lindenstrauss, J.-Tzafriri, L.: Classical Banach Spaces. Sequence Spaces I. Springer--Verlag, Berlin—Heidelberg—New York, 1977.
- [4] Musielak, J.: Przestrzenie modularne. Universytet I M. Adama Mickiewicza. Poznań,
- [5] Musielak, J.: Modular Spaces and Orlicz Spaces and Their Generalizations. Univ. A. Mickiewicza. Komunikaty i Rozprawy. Poznań, 1977.
- [6] Šalát, T.: A remark on IP spaces. Acta Fac. Rer. Nat. Univ. Com. Mathematica 36 (1980), 69-73.
- [7] Kuratowski, C.: Topologie I. PWN, Warszawa, 1958.
- [8] Woo, J. Y. T.: On modular sequence spaces. Studia Math. 48 (1973), 271-289.

Authors' addresses:

Tibor Šalát

Janina Ewert Zaklad matematiky WSP

MFFUK, Katedra algebry a teórie čísel

Received: 15, 10, 1984

Arciszewskiego 22,

Matematický pavilón

76-200 Slupsk

Mlynská dolina

Polska

842 15 Bratislava

ČSSR

SÚHRN

APLIKÁCIE METÓDY KATEGORIÍ V TEÓRII MODULÁRNYCH PRIESTOROV **POSTUPNOSTÍ**

Janina Ewert, Slupsk — Tibor Šalát, Bratislava

V práci sa študuje štruktúra modulárnych priestorov postupností z hľadiska Baireových kategórií množín. Niektoré výsledky práce zovšeobecňujú skoršie výsledky druhého z autorov.

РЕЗЮМЕ

ПРИМЕНЕНИЯ МЕТОДА КАТЕГОРИЙ В ТЕОРИИ МОДУЛЯРНЫЦХ ПРОСТРАНСТВ ПОСЛЕДОВАТЕЛЬНОСТЕЙ

Янина Эверт, Слупск — Тибор Шалат, Братислава

В работе исследована структура модулярных пространств последовательностей с точки зрения беровских категорий множеств. Некоторые результаты работы обобщают нредыдущие результаты второго из авторов.

