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ON THE STRUCTURE OF CERTAIN
FUNCTIONAL SPACES WITH BAIRE METRIC

ALBERT MARENCIN, Bratislava

The space of all real-value functions defined on the interval [1, o),
equipped with the Baire metric @, where w(f,g) =0 if f=g and o(f, g) =
= 1/inf {x, f(x) # g(x)} if f # g, see [3, p. 67]. There are several papers dealing
with special spaces of discrete functions with the Baire metric ([2], [4]), which
have given an impetus for investigating the continuous case. In this paper, some
structural questions on spaces of continuous functions defined on [1, o0) with
the above metric are studied from the viewpoint of Category Theory and it is
shown that in such a space there exists a residual set of functions having
a derivative at least in one point, which, in a sense, is a contrary result as in the
space with usual metric.

Structure of the space

Let £ denote the space of continuous functions defined on the interval
[1, 00). On this space, define the metric

of,g)=0 if f=g
off, g) = 1/inf {x, f(x) # g(x)} if f+#g

for all f, ge . Given any & > 0, we can construct the open sphere K(f, €). Then
for ge K(f, ¢), f # g, we have o(f, g) = 1/inf {x, f(x) # g(x)} < ¢, that is, inf
{x, flx) # g(x)} > 1/e. It follows if there is § > 0 that f(x) = g(x) for every
x€[l, 1/e + J), then ge K(f, ).

Theorem 1. The metric space (£2, ) is complete.

Proof. Let a Cauchy sequence {f,};° of functions be given in £2. Then for

every € > 0 there is the least such index m(¢) that for distinct m, n > m(e) we
have
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(o 1) > €.
Obviously, if f,, # f,, then f,(x) = f,(x) for every x€[l, 1/¢]. Put € = 1/x and
define f by
f(X) zfm(e)(x)'

It follows that fe £2. Since for m = m(¢) we have

fn0) =f0),  te[l, 1/é],

fis a limit function of the sequence {f,}}" in the metric w, and thus 2is a complete
space.
Denote by U the set of all functions 4 € 2 with

h@p:fﬂom, feQ (1)

Theorem 2. The set U is closed in €.

Proof. Let {h,}{° be a sequence of functions in U. Assume that s, —» h as
n — 0. We show that he U. Evidently, {,};° is a Cauchy sequence and each of
its elements can be expressed in the form

h,,(x)=Jf,,(t) ds, e (n=1,2, ..).
1
To prove the theorem, it is sufficient to check that

@(hy, h,) = o, 1,) )

ﬁ flt) di = f £0) de 3)

if and only if f,,(z) = £,(z) for every z€[1, x,]. The “if”” part of this assertion is
trivial, the “‘only if” part follows easily from continuity of £, and f,. Now it is
immediately verified that {f,}{° is a Cauchy sequence in €2, and owing to comple-
teness of £2, it converges to some fe £2. Putting

ﬂm=£ﬂom

we have g e U, and since o(h,, g) = o(f,, f), we obtain h, — g. The uniqueness of
a limit implies g(x) = h(x). The proof is complete.

Theorem 3. The set U is nowhere dense in £.

Proof. It is sufficient to show that £ — U is dense in £. Let £ > 0 and
consider and open sphere K(f, €) < 2, fe €. If suffices to find a function ge 2
with ge 2 — U and o(f, g) > £. We may put
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gx) =flx) for x=2/e

g(x) = f(2/€) + (x — 2/¢) cos

for x> 2/e
x —2/e

It is evident that ge £ and it can be proved that g has not a finite variation on
the interval [2/g, 2/e + 1). Since every function he U is absolutely continuous,
it necessarily has a finite variation. Hence we infer that g¢ U and inf {x, f(x) #
# g(x)} = 2/e, which implies o(f, g) < ¢/2 < &. Now choose § with 3/2¢ <
<1/6<2e

Thus 2¢/3 > § > €/2. Construct the open sphere K(g, d) = 2. The above
reasoning yields that Un (K(g, 6) n $2) = (. Therefore, 2 — U is dense in

€. Since by Theorem 2, U is closed in £2, we obtain that U is nowhere dense in
Q.

In the following theorem we prove that U includes a residual subset L of
functions which are unbounded.

Theorem 4. The set L = {fe U, sup |[f(x)| = +00, 1 £ x < o0} is residual
in U.

Proof. Denote A = U — L and put

A,={feU, sup |f(x)| <n, 1 £x < o0}

First we show that 4 = (_J 4,. Obviously, ) 4, c 4.
n=1

n=1

Let fe A, then for some a > 0 we have
sup [f(x)| = a, Il <x<oo0.
Choose n > a, then
sup [f(x)| S a<n, 1 £x< o0,

hence fe 4,. Now we prove that 4, (n=1, 2, ...) is closed in U. Consider
a sequence of functions {f}? in 4,. Let f, — f as k — co. It follows from the
convergence in the metric @ that for every xe[1, co) there exists the least index
k(x) with f,(t) = f(¢) for each t€[l, x] and fi (€ 4, We infer that A4, is closed
in U (n=1,2,...). We are going to prove now that 4 is a first-category set.
Choose £ > 0 and construct, for fe U, the open sphere K(f, &) = U. Define the
function g by

gx)=f(x) if x<2e
g(x) =f2/le) + x —2/e if x=2le

We see that ge U, o(f, g) < £/2 < e and sup [g(x)| = + 00, | = x < 00. Choose
a § with 1/8 > 2/e + f(1/8) + n. Clearly, & < &/2. Now we see that g¢A, Then
A, (K(g, 6) n U) = 0. Thus we have shown that the closed set 4, (n = 1,2,..)
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is nowhere dense in U. Due to 4 = () 4,, the set A4 is of the first category in
n=1

U, and since U is of the second category in itself, U — 4 = L is residual in U.

Continuous functions without a derivative

Banach and Mazurkiewicz have proved that, in the space C(a, b) with the
usual metric, the set of functions having a derivative at least in one point is of
the first category. In other words, the set of functions f€C(a, b) which have
a derivative at no point of the interval (a, b) is a residual set of the second
category in C(a, b). The question arises whether this is the case also in the space
equipped with the Baire metric. The following theorem gives a negative answer.
Denote by N the set of functions fe 2 having a derivative at no point of their
domain.

Theorem 5. The set N is nowhere dense in 0.

Proof. First we prove that N is closed in €. Let {f.} be a sequence of
functions in N. Let f, - f as n — 0. It follows from the convergence that for
every xe[l, oo) there is the least index n(x) with

Juo®) =f0),  te[l, x].

Since £, € N for any n(x), we get fe N and so N is closed in £2. Now it is sufficient
to prove that £2 — N is dense in £. Choose £ > 0 and construct, for any fe £,
the open sphere K(f, ). Now construct g€ with o(f, g) < eand ge N by

gx) =f(x) if x<2e
g8(x)=fQ2le) + ex/2 -1 if x2=2/e

Itisevident that ge Qand w(f, g) < &. Choosing d with 2/e < 1/8 < 3/e, we have
€3 <6< 2 and we may construct the open sphere K(g, 6) < £. Since g'(x)
exists for every x > 2/¢, we get N N (K(g, 0) N ) = (. Hence by N being closed
in £ we obtain the assertion of the theorem.

Corollary. The set of all functions having a derivative at in least one point
of the interval (1, ) is residual in Q.

Structure of the space X

So far, we have considered only continuous functions on the interval [1, c0).
Now let us study the functions bounded on C,n (1, x], xe[1, o) for which the
set of discontinuity points is of Lebesgue measure 0. Denote this set of functions
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by Z. Further, let C; and Dy stand for the sets of continuity points or disconti-
nuity points, respectively, of a function fe X. A pseudometric o can be introdu-
ced on X as follows. Let f, ge X, then

o(f,g) =0 if f=g almost everywhere
o(f, g) = l/inf {xe C;n C,, f(x) #g(x)} if f+#g
on a set of positive measure.

The following theorem generalizes some results already proved for the space
£ (see [2)).

Theorem 6.

a) The pseudometric space (Z, o) is complete.

b) Theset V = {he)?, h(x) = f f(t) dt, fe 2} is closed and nowhere dense
1
in X.
¢) The set K = {fe V, sup |[f(x)| = + o0, x€ Cj is residual in V.,
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SUHRN
O STRUKTURE NIEKTORYCH FUNKCIONALNYCH PRIESTOROV
Albert Marenéin, Bratislava

Z hladiska tedrie kategorii sa vy3etruje Struktira niektorych mnoin spojitych funkcii v pries-
tore €2 vSetkych spojitych realnych funkcii definovanych na intervale (1, o) s Baireovou metri-
kou o. Niektoreé vysledky platia aj vo vieobecnejsom priestore X skoro viade spojitych, ohranice-
nych redlnych funkcii definovanych na intervale (1, o) s presudometrikou o, Dalej je
v tomto &lanku dokazana veta, Ze v priestore 2 je riedka mnoZina funkcii, ktoré nemaju derivaciu
v Ziadnom bode intervalu {1, o).
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PE3IOME
O CTPYKTYPE HEKOTOPBIX ®YHKLIMOHAJIbHbIX MPOCTPAHCTB
An6ept Mapenunn, Bpatucnasa

C TOuKHM 3peHHS TEOPHH KaTErOPHH HCCIIEAYETCH CTPYKTYPa HEKOTOPHIX MHOXECTB Hemnpe-
PbIBHBIX YHKUMI B NPOCTPaHCTBE £2, BCEX HEMPEPHIBHbIX, BELIECTBEHHBIX QYHKIIHi, onpeaeneHHbIX
Ha unTepBane <1, o) ¢ MeTpukoii ¢ THNa Bipa. HexoTophie pe3yabTaThl HMEIOT CHILY B IPOCTPaH-
cTBe X BCEX MOYTH BCIOJA HETPEPHIBHLIX, OFPAHHYEHHbIX BEILIECTBEHHBIX (byHKLMIH, onpeneeHHbIX
Ha HHTepBase {1, c0) ¢ NcayAOMETPHKOI 0. B nanbiieM 10Kka3aHO, YTO MHOXECTBO dyHKuuit He
UMEIOLLMX IEPHBALIHIO B HUKAKOM TOYKe MHTepBasa 1, 0c0) HHKJE He TUIOTHO B MPOCTPAHCTBE 2.
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