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1. Introduction

Answering a question of G. Gritzer [1] (problem 57), T. Katrifidk in [3] gave
a characterization of the congruence lattice of a modular p-algebra in terms of
congruence pairs. One object of this paper is to continue this generalization
characterizing the congruence lattice of the quasi-modular p-algebra. The variety
of quasi-modular p-algebras properly contains the variety of modular p-algebras.
It was shown in [6] that every quasimodular p-algebra L can be uniquely
determined by the triple consisting of the Boolean algebra of closed elements of L,
the lattice of dense elements of L and a suitable homomorphism.

Our second aim in this paper is to discuss the notion of permutability of
congruences of the p-algebra satisfying the identity x = x** A(x v x*), and to show
that the n-permutability of congruences of the p-algebra depends completely on
the n-permutability of their restrictions on the lattice of dense elements.

IL. Preliminaries

A p-algebra is an algebra (L; v, A, *,0, 1) of type (2,2, 1,0,0) where (L;
Vv, A, 0, 1) is a bounded lattice such that for every a € L the element a* is the
pseudocomplement of a, i.e. x <a* iff anx=0.
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13



The following rules of computation (see e. g. [1]) can be used frequently in any
p-algebra

(1) a<b implies b* <a*,

(2) a<<b**,

(3) a*=a***

(4) a*Aa**=0,

(5) (avb)*=a*Ab*.

The relation y defined as a = b(y) iff a* = b* is the Glivenko congruence of L.

A p-algebra is said to be quasi-modular if [(xAy)vz**]ax=
(xAy)v(z**Ax) for all x, y, zeL. This variety properly contains the variety of
modular’ p-algebras and is properly contajned in the variety defined by x =
x**A(xvx*). The standard results on quasi-modular p-algebras can be found in
(4], [5], [6]-

In any p-algebra L, define the set B(L)={x € L ; x = x**} of closed elements.
(B(L); v, A,*,0,1), where av b =(a* Ab*)* forms a Boolean algebra. The set of
dense elements D(L)={x € L ; x*=0} is a filter (dual ideal) in L. For an arbitrary
lattice L the set F(L) of all filters of L ordered under the set inclusion is a lattice.
xvx*eD(L) for every xeL.

In the quasi-modular p-algebra L, consider the mapping @(L): B(L)—~
F(D(L)) such that a@p(L)={xeD(L): x=a*}= [a*)AD(L), aeB(L). The
mapping @(L) is a {0, 1, v} — homomorphism (see [6, Theorem 3]). The triple
(B(L), D(L), ¢(L)) determines uniquely every quasi-modular p-algebra [6,
Theorem 4].

Let L be a quasi-modular p-algebra and 8eCon (L), 65, 6, denote the
restriction of 6 to B(L), D(L) respectively. Evidently (65, 6,) e Con (B(L)) x
Con (B(L)). An arbitrary pair (6, 8,) € Con (B(L)) X Con (D(L)) will be called
a congruence pair iff a e B(L), ue D(L), u=a and a=1(6,) imply u=1(6,).

In [5, Theorem 1] the following result has been proved.

Theorem A.

Let L be a quasi-modular p-algebra. Then every congruence relation 6 of L
determines a congruence pair (g, 6p). Conversely, every congruence pair (6, 6,)
uniquely determines a congruence relation 8 on L with 65 =6, and 6p =6, such
that the following conditions are equivalent:

(a) x=y(6) (x,yeL)

(b) () x**=y**(6:) and (i) xvx*=yvy*(6,);

(o) (i) x*=y*(6,) and (ii) xvd=yvd(6,)

for all d e D(L).
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III. A characterization of the congruence lattice
of the quasimodular p -algebra

In the sequel A,, V., will denote the identical and the universal congruence of
L respectively.

Theorem 1.

Let (B; A, v,’, 0, 1) be a Boolean algebra. Let (D: v, A, 1) be a lattice with
unit, and let A be a subset of Con (B)X Con (D). Then A is the set of all
congruence pairs of a quasi-modular p-algebra L with B(L)=B and D(L)=D if
and only if the following conditions are fulfilled :

(i) A is a join complete sublattice of Con (B)X Con (D) containing
(As, Ap); ‘

(ii) For every a € B there exists a filter F, € F(D) such that (6[(a]], ®) € A iff
P e[0[F.], Vol;

(iii) F,AT, is a principal filter for every a € B;

(iv) The map a—F, is a {0, 1, v} — homomorphism of B into F(D);

(v) For elements a, b, ¢, geB and x, y, zeD let anb=c and
let (F.v[x))A(F,v[y))2F.v[z] in F(D). Then (F,v[x))A(F,v[y))A
(FyvFEv[2))=((F.v[x)A(Fs v[y))AF,) v F.v(2).

Before proving Theorem 1 we shall estiblish the following:

Lemma 1.

Let A, B, D have the same meaning as in Theorem 1. Then the conditions (i)
and (ii) of Theorem 1 imply:

(ii)" For every weCon (B) there exists a filter F,e€F(D) such that
(y, @) e A iff ®e[0[F,], Vo]. Moreover, if y=0[J], J is an ideal of B, then
F,=v(F,:a€l).

The proof is the same as that given in the first part of proving the sufficiency of
the conditions of Theorem 1 in [3].

Proof of Theorem 1.

Since the proof of Theorem 1 is essentially the same as that of [3, Theorem 1],
We shall omit the details.

Necessity. Let A(L) be the set of all congruence pairs of a quasi-modular
p-algebra L with B(L)=B and D(L)=D. Let {(y;, ®): ieI} c A(L) for I+,
conditions (i), (ii) and (iii) can be proved similarly as those of [3, Theorem 1]. For
(iv), it is proved in [6, Theorem 3] that the map ¢(L): B—F(D) is
a {0, 1, v }-homomorphism. For (v), it is proved in [6, 6.3] that every quasi-modul-
ar p-algebra satisfies condition (v).
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Sufficiency. We need to show the existence of a quasimodular p-algebra L
such that B(L)=B and D(L)=D. Let B be non trivial. By (iii), (iv) and (v)
(B, D, @) form a quasi-modular triple in the sense of [6], and by [6, Theorem 4]
there exists a quasi-modular p-algebra L such that B(L)=B, D(L)=D and
@(L)=@. Let A(L) denote the lattice of all congruence pairs of L, then similar to
[3, Theorem 1] we get A(L)=A.

Definition 1.

A quasi-modular p-algebra is said to be a quasi-modular s-algebra if it
satisfies the identity x*vx**=1.

Corollary 1.

Let B be a Boolean algebra, D a lattice with 1, A a subset of Con (B) X
Con (D). Then A is the set of all congruence pairs of a quasi-modular s-algebra L
with B(L)=B, D(L)=D if and only if (i), (ii), (iv) and (v) from Theorem 1
together with the condition:

(iii)’ F,AF, =[1) for every aeB;
are fulfilled.

Theorem 2.

The following systems of conditions are independent.
1) (i)—(v) from Theorem 1.
2) (i), (ii), (iii)’, (iv), (v) from Corollary 1.

Proof.

In order to prove the independence of (i)—(iv) and (iii)’ it is enough to take
examples from the proof of [3, Theorem 2]. One only have to verify that the
examples satisfy condition (v). But this is straightforward. Now, we shall construct
two examples, the first satisfies (i)—(iv) but not (v), and the second satisfies (i), (ii),
(iii)’, (iv) but not (v).

Example 1. Let B denote the eight-element Boolean algebra {0, a, b, c, a’,
b', ¢’, 1} and let D be pentagon {v, x, y, z, 1},i.e. v<x<y<1, v<z<]1. First
we define a map m—F,, from B onto F(D) as follows:

F,=F, =F, =[v), F,=F.=[x), F, =[y), F.=[z) and F,=[1), where a, b,
c are atoms of B. It is easily checked that m—F,, is a {0, 1, v }-homomorphism
from B onto F(D). Since D is finite, F,, AF,, is principal. Thus we have verified
(iii) and (iv). Define now A cCon (B)X Con (D) as follows: A = {(6[(m]],
@) e Con (B) X Con (D): ® €[6O[F,], Vo]}. Clearly, (As, Ap)=(6[(0]], Ap)€ A.
Moreover, (0[(m]], ®,)v(0[(n]], ®.)=(6[(mvn]], ®,vP,). But &,vd,=
0[F.]v 6[F,] = 6|F,. v F,]=0[F...] for elements from A. In the same way one can
show that A is closed with respect to the meet, because F,...<F,AF,. Hence A
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satisfies also (i) and (ii). The condition (v) fails, because F(D) is non-modular and
mw—F,, maps B onto F(D).

Example 2. Let B be the four-eslement Boolean algebra {0, a, a’, 1}, and let
D be the pentagon {v, x, y, z, 1}, where x <y. Define a map m+— F,, from B into
F(D) as follows: F,=[y), F, =[z), Fo=[1), Fi=[v). This mapping satisfies
conditions (iii)’ and (iv). Define

A ={(0[(m]], ) eCon (B) X Con (D): ® €[6[F.],Vo]} .

It can be checked that A is a sublattice of Con (B) X Con (D) with (Ap, Ap) €A.
Thus (i) and (ii) are satisfied. Condition (v) is not satisfied, since if we take
elements b, c, h, g from B suchthat b=c=h=a, g=a’ and elements ¢, p, f from
D witht=p=x,f=y,then bac=h and (F, v[t))A(F.v[p)) 2 F. v{f). Moreover,
(Fo vID)A(Fvp)A(F,vFuvif))=[x) and [(F, v[D)A(Fev[p)) AF,]vF,v[f) =
[y) but [x)#[y) which means that the condition (v) is not satisfied.

IV. Permutability of congruences of p-algebras

The product 6. ® of two congruences 6, @ of an algebra A is defined by the
following rule : a = b(6. ®) iff there exists an element c € A such that a = c(0) and
c¢=b(®P). Two congruences 0, ® are said to be permutable iff 6. P = P.0. Two
congruences 6, and 0, are n-permutable iff 0,00:00,06;0...= 60,00,00;00;0...,
where on both sides there are n-factors. An algebra is n-permutable if every two
congruences in A are n-permutable. It is well known that an n-permutable algebra
is (n + 1)-permutable, (see [2], [7]).

Lemma 2.

Let 8 and @ be congruences on a p-algebra L, Then
(l) (OQ(DOGO(DO...)B=990¢Boego... (ﬂ times)
(Il) (eod)oeo...)p=epo¢poepo... (n times)

Proof.

(i) Since 0s, D5 are restrictions of 8, @ with respect to B(L), we see that
BsoPpobpo...c(0oPobo...)s. Conversely, take a, beB(L) such that a=
b(0o®00,...),i.e.a=b((0.P-0o...)s), then there exist elements ¢y, ..., c,—1€L
such that a=c¢,(0), c;=cP), ..., c.-1=b(0), if n is odd or c,_,=b(P) if n is
even. Therefore a =a**=ct*(0), ct*=c4*(P), ..., c**,=b**=b(0) or ci*, =
b**=b(®), for n odd or even. Hence a=b(60p0oPsoBso...) and (Ao Pobo...)s =
(6s0Pgobso...).

(ii) Again as above we have only to prove (8c®00s...)p S OpoPpobpo....
Take a, beD(L), assume a=b(0.P.0....), i.e. a=b((0.Po6o...)p). Then
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there exist ¢y, ..., c._; € L such that a = ¢,(0), ¢c;=c(®P), ..., c.-1=b(0) if n is odd
or ¢c,.y,=b(®) if n is even. Therefore, a=ava*=c,vci(0), c,vci=
c;vel(P), ..., caovet_=bvb*=b(0) for n odd or ¢,_,vci ,=bvb*=b(P)
for n even. This means a=b(0p0Ppobpo...), because c;vcte D(L) for every
i=1,..,n-1.

Lemma 3.

Let @ and @ be congruences on a p-algebra L. Let T denote the relation
8o®PoBo... (n-times). Then a=b(t) and c=d(t) imply anc=bAd(T), avc=
bvd(t) and a*=b*(1).

Proof.

Assume a=b(t) and c=d(t). Then there exist a,, ..., @n_1, 1, ..., Caor EL
such that a=a,(0), a;=a)P), ..., a,-,=b(0) for n odd or a,_,=b(P) for n
even. Similarly, ¢ = ¢,(0), c;=c)(®P), ..., c.-,=d(0) for n odd or ¢,_,=d(®) for n
even. Therefore, anc=a;Aci(0), asnci=a,Ac( D), ..., an_yAC._1=b Ac(8) for
noddor a,_yana,-,=bAad(®P) for n even. Thus aAc=b Ad(t). Similarly avc=
bvd(t) and a*=b*(1), c*=d*(7).

Theorem 3.

Two congruences 6, @ on a p-algebra L satisfying the identity x=
x**A(xvx*), are n-permutable if and only if their restrictions 6,, @, on the
lattice D(L), are n-permutable.

Proof.

Necessity. Follows from Lemma 2, because 0po®pobpo...=(0cPobo...)p
= (¢oao¢o...)p = (ppoepo¢po....

Sufficiency. Assume a=b(0.P-0,...) therefore a**=b**((0.P-0o...)s)
and ava*=bvb*((6oPo6o...)p) by Lemma 3. Applying Lemma 2 we get:
a**=b**(0goPpobpo...) and ava*=bvb*(0poPpobpo...). It is known that
a Boolean algebra is permutable (i.e. 2-permutable) and consequently, n-permuta-
ble. Therefore, a**=b**(PpolOsoPpo...). By assumption 6OpoPpobpo...
= @PpobpoPpo... (n-times), we obtain ava*=bvb*(PpobOpoPpo...). Using
Lemma 2 we get a**=b**((Po0.Po...)p) and ava*=bvb*((PoO.Po...)p).
Now, by Lemma3 and the hypothesis, a=a**A(ava*)=b
= b**A(bvb*)(Po00oPo...). Thus BoPoBo... < PoBOoPo... Similarly, one can
obtain the converse inclusion.

Since 2-permutablility means permutability, we get:
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Corollary 2.

Two congruences 6, @ on a p-algebra L, satisfying the identity x =
x**A(x v x*), are permutable if and only if 6, @p, are permutable in Con (D(L)).

Corollary 3.

A p-algebra L satisfying the identity x = x** A(x v x*) has permutable congru-
ences if D(L) is a relatively complemented lattice.

Proof.

If D(L) is a relatively complemented lattice, then every two congruences are
permutable, (see [2]). Thus 6p, ®p permute for every 6, @ e Con (L), which
means that 6, & are permutable.

Rlemark.

Let L be a p-algebra satisfying the identity x = x** A(x v x*). The Glivenko
congruence y € Con (L) permuts with every element of Con (L), since ys = Ag and
Yp = VD.

REFERENCES

[1] Gritzer, G.: Lattice theory, first concepts and distributive lattices, Freeman (1971).

[2] Gritzer, G.: Universal Algebra (second edition), Springer-Verlag New York (1979).

[3] Katrifidk, T.: On a problem of G. Griitzer, Proc. Amer. Math. Soc. (1) (1976),19—24.

[4] Katrifidk, T.: Congruence pairs of p-algebras with a modular frame, Algebra Universalis (8)
(1978),205—220.

[S] Katrifidk, T.: Essential and strong extentsions of p-algebras, Bull. de la Soc. Roy. (3—4) (1980),
119—124.

[6] Katrifidk, T. and Mederly, P.: Construction of p-algebras, Algebra Universalis (to appear).

[7] Schmidt, E. T.: On n-permutable equational classes, Acta Sci. Mat. (Szeged) (33) (1972),29—30.

Received: 6. 6. 1983
Author’s address :
Sanaa El-Assar
Department of Mathematics
Faculty of Science
Tanta University
Tanta, Egypt

SUHRN
DVE POZNAMKY O ZVAZE KONGRUENCIf p-ALGEBIER
Sanaa El-Assar, Bratislava

V préci je dand charakterizdcia zvizu kongruencii pomocou kvizimoduldrnych p-algebier
19



PE3IOME
IOBE 3AMETKHW OB PEUWIETKE KOHIPYEHIIUM n-AJITEBP
Canaa EJI-Accap, Bpatucnasa

B pa6ore naHa xapakTepH3aluMs PELIETKH KOHTPYEHUHMHA ¢ MOMOUIBIO KBAa3MMOJYNAPHBILX
p-anrebp.
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