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MAXIMAL SIZES OF PLANAR DIGRAPHS WITHOUT
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PETER KYS — ALOJZ WAWRUCH, Bratislava

The terminology in this paper as well as denotation is based on [7] except for
that given here. An edge uv of a digraph G is called transitive, if there is a directed
u—v-path in G —uv. A minimal digraph is a digraph containing no transitive
edge.

One might ask to find a spanning subdigraph of G without transitive edges and
with the least possible size (i.e. the least possible number of edges). However, as it
is shown in [10], this problem is NP-complete even for planar digraphs with very
restricted degrees. Thus, it is a natural question to determine at least extremal sizes
of minimal digraphs. (Questions of this kind are very frequent in graph theory;
there is even a book [2] on extremal problems in graph theory.) It is well known [3]
that any minimal strong digraph contains vertices with both the indegree and
outdegree equal to one, and there are at least two such vertices (see [1]), which is
the best possible bound on the number of such vertices. The same holds for
minimal strong blocks [5]. In [8] it is proved that any minimal strongly k-connected
digraph contains a vertex of indegree k or a vertex of outdegree k. As follows from
[4], [6], [9] any minimal strong digraph with p vertices has at most 2p —2 edges,
and the bound 2p — 3 is given in [5] for minimal strong blocks. Both these bounds
are sharp. As shown in [6] any minimal digraph of order p has at most
max {2p —2, [p?/4]} edges. In this note we give maximal sizes of minimal digraphs
for various classes of planar digraphs. They are slightly different from the general
bounds.

Theorem 1. Let G be a minimal, acyclic and planar (p, q)-digraph with p =3.
Then q <2p —4.

Proof. Let H be the underlying graph of G. (Since G is acyclic, H does not
contain multiple edges.) The length of every cycle in H is at least four (any
orientation of a 3-cycle in H gives either directed 3-cycle or a transitive edge in G).
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Hence, the length of a boundary of any face of H is at least four, and (from Euler’s
equation) we have: q <2p —4.

Remark 1. If G is a minimal acyclic and planar digraph and the length of
a boundary of any face of G is exactly four, then g =2p —4. The following
construction (Fig. 1) gives a sequence of such digraphs for p =4k, where k is an
integer, k =1. Hence, Theorem 1 is sharp.

Wy

We define a digraph G; for an arbitrary natural number i recursively as

follows :
G: V(Gl) = {xu, X125 X13, xu}
E(Gl) — {xuxu, X11X135 X14X12, xl4x13}
G,(i ?2)2 V(Gi) = V(G.-_l)U{xu, Xi2, Xi3, xu}
E(G) = E(Gi—l)u{xijxi—l,j|j= 1,2,3,4}u

U{xuxiz,‘ Xi1Xi3, XiaXi3, Xuxiz}

It is easy to verify that G, is a minimal acyclic and planar (4i, 8i — 4)-digraph.
Theorem 2. Let G be a minimal planar (p, q)-digraph. Then q <2(p —1).
Proof. (By induction.)

The statement is obvious for p <3.

Let G be a minimal planar (p, q)-digraph. We will distinguish the following

possible cases:
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a) If G is acyclic, then from Theorem 1 it immediately follows that
q<2p—-4<2(p-1). (1)

b) If G contains no directed cycle of the length less or equal to 3, then the
length of a boundary of any face in G is at least 4 and (as it follows from the proof
of Theorem 1) the inequality (1) holds.

c) Let G contains a directed t-cycle with ¢ <3. Assume that G is embedded in
a plane, i.e. G is a plane digraph. We construct a new digraph H by the removal of
all vertices and edges of the t-cycle and the addition of a new vertex w adjacent to
those vertices to which at least one of the vertices of the ¢-cycle was adjacent and
adjacent from those vertices from which at least one of the vertices of ¢-cycle was
adjacent. The illustrations of this operation for t=2 and ¢t =3 are given in Fig. 2

m, "

xS
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Fig. 2

Fig. 3
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and Fig. 3 respectively. A, B, C denote the faces lying out from the 3-cycle and
containing the edges ba, cb, ac respectively. '

From these illustrations it is easy to see that the operation (mentioned above)
saves the planarity of the digraph. Hence H is a planar digraph.

In the following we shall show the minimality of H. Let at first t =2, and xy be
a transitive edge in H. Then there exists a directed (x — y)-path x=n,, n,, ...,
n.=y in H(k =1 is an integer), containing the vertex w, but not containing the
edge xy. Let w=n,, where i € (1, k). Then there would be a directed (x — y)-path
X=ny, Mgy ooy Ricyy Uy U, Rigy, ..., k=Y in G (O1 u, v, Ny, ..., =y for i=1),
which is contradiction.

Let t=3, and xy be a transitive edge in H. Then there exists a directed
(x —y)-path P: x=m,, m,, ..., m,=y containing w, but not containing the edge
xy. Analogously to the previous case it can be shown that the transitivity of xy in H
implies the transitivity of the same edge in G, too. To prove this, it is sufficient to
take into account all possible replacements of w by a 3-cycle in P. Thus H is
minimal.

For t=2 the digraph H is a (p —1, g —2)-digraph. From the induction
hypothesis it follows that:

q-2<2p-1)-2,

i.e.
q<2p-2.

For t =3 the digraph H is a (p —2, q — 3)-digraph. In this case the induction
hypothesis gives:

q-3<2[(p-2)-1]

hence
q<2p-3<2p-2.

This completes the proof.

Remark 2. Let F be a tree with p vertices. We construct a digraph G by
replacement of any edge uv by two directed edges uv and vu. Obviously, G is
minimal and planar (p, 2p —2)-digraph. This construction gives a minimal planar
(p, q)-digraph for any integer p =2, with g=2(p —1).

Theorem 3. Let G be an outerplanar minimal and acyclic (p, g)-digraph
(p =2). Then

q sngj : (2)

Proof. Let H be underlying graph of G. It can be embedded in the plane so

that all its vertices lie on the same (exterior) face. Since G is acyclic and minimal, H
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has no multiple edge and does not contain any 3-cycle. Thus the length of
a boundary of any interior face in H is at least four. Then

2q=p+dr, 3)
where r denotes the number of all the interior faces of H. From Euler’s equation
we have

r+l1+p—q=2,
that is

r=q—p+1. (4)
Substituting (4) into (3) gives:

2q=p+4q—4p +4

hence

gttt
2

This completes the proof.
Remark 3. Let us define a (44, 6i —2)-digraph as follows (Fig. 4):

Gi: V(Gl) = {xn, X12, X13, x14}
E(G1) = {Xlzxu, X11X14, X12X13, xmxu}
Gi(i=2): V(G) = V(Gi_)U{xi1, Xiz, Xis, Xia}
E(Gi) = E(Gi—l)u{xi—l,z, Xi2, Xi-1,3, Xi1,
Xiz2Xi1, XizXi3, Xi1Xia, Xiaxm}

Yo \x'll

ay
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All the required properties of G; can be easily verified. Hence for any natural i G; is
an example of an outerplanar minimal and acyclic (p, q)-digraph with p =4i and

_3p—4
q= 2 3

Remark 4. Since (as follows from Remark 2) for any natural p there is an

outerplanar and minimal (p, q)-digraph with g =2(p —1), the estimation for
outerplanar digraphs is in general the same as for planar digraphs.
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PE3IOME

MAKCHUMAIJIBHAA PABMEPHOCTDH TUIAHAPHBIX TUI'PA®OB
BE3 TPAH3UTHUBHBIX PEBEP

IMetep Kuii—Auoii3 BaBpyx, BpaTucnasa

ABTOpbl B paboTe MOKa3bIBAalOT BEPXHbIE OTPAaHMYEHHs KOJIMYECTBa pebep MHHMMalbHBIX
aurpacdoB [N Pa3nHYHLIX KJIAaCCOB MIAaHAPHBIX rpacdoB.
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SUHRN

MAXIMALNY ROZMER PLANARNYCH DIGRAFOV
BEZ TRANZITIVNYCH HRAN

Peter Ky§—Alojz Wawruch, Bratislava

Autori v préci podévaji horné ohranic¢enia po¢tu hran minimélnych digrafov pre roézne triedy

planarnych digrafov.
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