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In this article we shall investigate two questions on domatic number of graphs.
The first one is concerned with questions introduced in [2], where Harary and
Kabell investigated the change of a given graphical parameter 7(G) in a specified
direction by taking a finite sequence of positive integers which is monotone
nondecreasing a, <a; <...<a, (or monotone nonincreasing a, =da; =...= a,) and
constructing a graph G with distinguished points v, v, ..., v, such that 7(G) =a,
and A(G —v,—v,—...—v;)=a; for 1 <i<n. They have shown the existence of
such graphs for some graphical parameters such as the point and line connectivity,
the minimum and maximum degree, the diameter, the chromatic number, etc. In
this paper we shall investigate this problem for the domatic number of a graph. In
the second part we deal with a conjecture of Zelinka [3] on domatic numbers of
cubes. We give a counterexample to his conjecture for one special case. All the
terminology is taken from [1] except for the given here.

1. Let G=(V, E) be an undirected graph without loops and multiple lines.
A subset Rc V is called a dominating set in G if to each point x e V—R there
exists a point y € R adjacent to x. A domatic partition of G is a partition of V, all
classes of which are dominating sets in G. The maximal number of classes of
a domatic partition of G is called the domatic number [4] of G and denoted by
d(G). Given two subsets A =V Bc V we will say that A is covered by B if for
every point x € A there exists an adjacent point y € B.

Theorem 1. For every sequence of positive integers which is monotone
nondecreasing, a, <a, <... <a,, there exists a graph G =(V, E) with distinguished
points v,, vz, ..., v, such that d(G)=a, and d(G—v,—v,—...—v;)=ga; for
1<i=sn.

Proof. Let us consider a graph G consisting of a complete graph K, with the
point set X = {x;, X2, ..., Xag-1, ---, Xa, } and of other points v,, v, ..., v., Where v; is
adjacent to a;_, — 1 first points of X. Put Gi=G —v,—v,—...—v; fori=1,..,n
and Go=G. As it follows from [4] d(G.) <d; + 1, where §; = a; — 1 is the minimum
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Fig. 1

degree of Gi. Thus d(G;) <a;. To prove that d(G;) = a; we construct the following
partition of V:

A)={x), k=1,2, .., a—1
A ())=V(G) - {x1, ..., Xa1}

Since all the sets A.(i), k=1, ..., a; are dominating in G; we have d(G;) =a;.
This completes the proof.

One can prove very easily that by deleting a point (or a line) the domatic
number reduces at most by one.

Theorem 2. For every sequence of integers a,=a,=...= a, with a, —a,;,, <1
for i=0, 1, ..., n —1 there exists a graph G =(V, E) with distinguished points v,
V2, ..., U, such that d(G)=a, and d(G —v,—v,—...—v;)=a,.

Proof. The number of pairs (a;.,, a;) for which a;,, =a; is denoted by k. Let
K, be the complete graph, t,e€ V(K,). Let us construct a graph G as follows
(Fig. 2):

V(G)= V(K )u{t}t ¢ V(K,)
E(G)=E(K.,)u{tx|texe E(K,), i=1,2,...,k}.
It defined the sequence of vertices v,, v, ..., v, in the following manner:

if @, —a;,,=0 we take v; from {t,, 5, ..., &} and otherwise we take v; € V(K,,),
vi# to. One can easily see that the assertions of the theorem hold. This completes
the proof.

Theorem 3. For every sequence of integers ao=a,= ... =a, which is mono-
tone nonincreasing and a; —a;,, <1 for i=0, 1, ..., n—1 there exists a graph
G=(V, E) with distinguished lines e,, e,, ..., e, such that d(G)=a, and
d(G—e,—e;—...—e)=a.
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Proof. Let us construct G by taking Ky with N=n +a, and a poin't x which
is adjacent to any a,— 1 points f,, b, ..., .- Of the complete graph Ky (Fig. 3).

Kn
t, ta

N\

X
Fig. 3

Obviously d(G) <a,. We can sonstruct a partition {f,}%* and {x}u V(Ky) — {t:,
tay ..., tag-1} Of V into a, dominating sets. Thus d(G) = a,. We define the required
sequence of lines as follows: if a,,, = a; then we put e, = uv, where u, v € V(Kxy),
otherwise we take e; = xt,, 1 <s <a,— 1. This sequence satisfies the assertions of
the theorem. This completes the proof.

2. Let k be a positive integer. In [3] Zelinka proved that the graph of the cube
of the dimension 2* — 1 and the graph of the cube of the dimension 2* both have
the domatic number 2*. Let Q, be the graph of n-dimensional cube, where n is
a positive integer such that n +1 is not a power of 2. Author conjectured that in
this case it holds : d(Q,) = n. The next assertion shows that the conjecture does not
hold for n =5.
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Assertion 1. d(Q;)=4.

Proof. Let us consider a partition of V(Qs) into four sets A ={a}},
B={b;}1, C={c:}}, D={d;}} with the property that the induced subgraphs (A ),
(B), (C) and (D) are 3-dimensional cubes and E(Qs)=
E({A))UE(B))UE({C))UE({D))u{ab;}} U {bc}} U {cd}} U {da)’.

Let R be a dominating set in Qs. We shall show that | R| > 6. In order to obtain
a contradiction let us assume that |R| <6. Then the intersection of R with each of
the sets A, B, C, and D is nonempty and there exists at least one of these sets for
which this intersection contains exactly one point. With respect to the symmetry we
can assume ANR = {a,}. Since N(a,) = {a,, as, a,} (see Fig. 4), the points a, a,
as, a; must be covered by the points of BuD. Thus S =(BuD)NR = {bs, b, bs,
bs, de, d;, ds, d;} and, at the same time, |(BuUD)nR|=4.

a, d,
- y*]

& O
aq aJ
d1 dz
— y *)

¢
dq dJ

Fig. 4

If IBAR|>2, (|DNR|>2) then there exists such a point in D, (B), which is
not covered by the points of R, respectively. Hence we have |[BNR|=|DnR|=2.
No choice of the two points from BNR and two points from DR can cover the
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points ¢y, cs, Cs, C,. Since |R| <6 we have ¢, € R. One can easily verify that for any
two points from BNS belonging to R there exists a point from B which is not
covered by R. Hence |R|>6 and d(G) <4. Since V can be partitioned into four
dominating sets we have d(G)=4. This completes the proof.

We suppose that the conjecture does not hold also for n>5.
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SUHRN
POZNAMKY O DOMATICKOM CISLE
Peter Kys, Bratislava

Pre dani monoténnu postupnost prirodzenych Cisel {a, }§ je v praci vySetrovana otazka existencie
grafu G s postupnostou vrcholov {v;}; (vi#v; pre i#j), pre ktory plati: d(G)=a,,
d(G —v,—v;—...—v;) =a; (1<i<n). V druhej Casti price autor na priklade Qs ukazuje, Ze hypotéza
([3]): d(Q.)=n pre n ktoré nie je mocninou 2, neplati (Q, ozna¢uje graf n-rozmernej kocky).

PE3IOME
3AMETKH O NOMATUYECKOM YHCIIE

IMeTep Kb, BpaTucnasa

Ilns paHHO# MOHOTOHHOHM MOCNENOBATENLHOCTH {ax}; B paboTe paccMaTpHBAaeTCs BONPOC
cyuwectBoBaHus rpadpa G ¢ nocnegopaTensHocTio BepumH { Vi}i (vi#v; ans i#j), ans koroporo:
d(G)=ao, d(G—v,—v,—...—v)=a;, (1<i<n).

Bo BTOpo# 4acTh pa6oThi aBTOp noka3sbiBaeT, 4To ans Qs HenpasunbHa runotesa ([3]), cornacHo
koTopoit d(Q,)=n Anf n He ABAKIOLWIETOCA CTENEHbL NBYX.
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