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REMARKS ON DIAMETERS OF ORIENTATIONS
OF GRAPHS

JAN PLESNIK, Bratislava

The aim of this paper is to give remarks on some problems concerning
orientations of graphs or mixed graphs. In the first section some basic questions are
mentioned (acyclic, strong, and other orientations). The second section is devoted
to minimum diameter orientations of graphs. We present the smallest graph of
diameter 2 whose all strong orientations have diameter at least 6 (which is the
maximum possible value as shown by Chvatal and Thomassen [3]). Further we give
certain bounds on the least possible diameter of an orientation of a complete
k-partite graph or a cube. Thus a result of Boesch and Tindell [2] is extended. In
the last (third) section we extend some results of Chvatal and Thomassen [3] on
orientations of multigraphs to weighted multigraphs. Bounds on the diameter
(radius) of orientations are expressed in terms of the original diameter (radius) and
lower and upper bounds on the edge lengths.

Our terminology is based on [1] or [4]. In fact a translation of that in [9] is
used. A multimigraph (mixed multigraph) contains no loops but multiple undi-
rected or directed edges between two vertices are allowed.

1. On acyclic, strong, and some other special orientations

It is clear that every multigraph has an acyclic orientation. Indeed, supposing
that the multigraph has n vertices v, v, ..., Vs, it is sufficient to orient an edge
joining v; and v; from v; to v; when i<j and from v; to v; otherwise. The same
argument can be used to prove that: A multimigraph G has an acyclic orientation if
and only if the subgraph Gp of G consisting of all vertices and all directed edges is
acyclic (Lambin and Tanaev [5]). Namely, supposing that- Gp is acyclic, one can
denote its vertices by v,, v, ..., v, in such a way that every edge of Gp goes from v;
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to v; if i<j and conversely otherwise. Then one can easily direct the undirected
edges from smaller to greater indices and obtain an acyclic orientation of G.

There is a well known result due to Robbins [10]: A multigraph has a strong
orientation iff it is connected and bridgeless. Robbins also showed an application of
this result to a traffic control problem.

An algorithmic proof of the Robbins theorem based on the depth-first search
procedure can be found in [11]. This problem can be slightly generalized : A strong
multimigraph is looked upon as being the map of a city; its lines are streets or
rooads. When is it possible to introduce a traffic direction in a prescribed street
such that any two points are mutually reachable ? The following result of Boesch
and Tindell [2] solves the problem: An undirected edge e of a strong multimigraph
G can be directed to produce another strong multimigraph if and only if e is not
a bridge of G (i.e. G —e is at least weakly connected multimigraph). The necessity
is clear. A proof of the sufficiency simpler than that in [2] is the following: The
condensation (see e.g. [4]) of G —e must be a directed path S,S, ... S, (k=1) and
in G — e one end of e, say u, belongs to the strong component S, and the other, say
v, to Si. Directing e from v to u, we obtain the desired multimigraph.

If the above problem is modified in such a way that several undirected edges
(streets) are prescribed to be directed, then the preceding assertion can be repeated
and we obtain the following generalization of the Robbins theorem and simultane-
ously a slight generalization of a theorem of Boesch and Tindell [2]: A strong
multimigraph G admits introducing directions on prescribed undirected edges to
produce another strong multimigraph if and only if no prescribed edge is a bridge.
On the other hand, it is sufficient to consider only the case where all undirected
edges have to be directed. Indeed, if every unprescribed undirected edge is
replaced by two multiple edges, then it is sufficient to direct the obtained
multimigraph fully. Namely, we can suppose that no all multiple edges between two
vertices will be directed in the same direction.

Sedlacek [12] has proved the following strenghtened variation of the Robbins
theorem: A 2-connected multigraph G with a prescribed edge e has a strong
orientation D such that D —e is an acyclic multidigraph (i.e. every cycle of D
includes e). We pose the problem to find a necessary and sufficient condition for
the existence of such an orientation of a 2-connected multimigraph.

Another generalization of the Robbins theorem is due to Nash-Williams [7]
and concerns local line-connectivities A(u, v) (this value is equal to the maximum
number of pairwise line-disjoint directed paths from u to v): A multigraph G has
an orientation H such that for any two vertices u and v we have
Au(u, v) Z[Ac(u, v)/2]. Another proof of this result can be found in [6]. Here we
conjecture that the same assertion holds also for multimigraphs.

In the following two sections we deal only with diameters or radii of
orientations.
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2. Diameters of orientations of some special graphs

Given a graph (or multimigraph) G, d(G) denotes its diameter and G*
denotes a strong orientation of G with the least possible diameter. -

One of the quantitative variations of the Robbins theorem is the following
result.

Lemma 2.1 (Chvatal and Thomassen [3]). If G is a bridgeless graph of
diameter 2, then d(G*) <6.

Chvatal and Thomassen have also proved that the Petersen graph G has the
following property:

(P) G is a bridgeless graph of diameter 2 and its every orientation has diameter
at least 6.

They had known no other graph with property (P).

Theorem 2.1. The least number of vertices of a graph G with-property (P)
is 7.

Proof. One can easily verify that the graph of Fig. 1 has diameter 2 and that
any strong orientation of it has diameter 6. Since any digraph of diameter 6 must
have at least 7 vertices, the proof follows. B

Thus we know two graphs with property (P), but it is an open problem to find
fu.ther such graphs. A long case analysis shows that there is no other such graph
w . 7 vertices.

if we insert d — 2 new vertices into every edge at the top vertex of the graph of
Fig. 1, .hen we obtain a bridgeless graph of diameter d such that any strong
orientation of it will have diameter 3d. However, the lower bound d?/2 + d derived
in [3] is better whenever d =5 (see also Section 3).

Fig. 1

Boesch and Tindell [2] have directed complete graphs and proved that
d(K*)=2 whenever n =3, n¥4, and that d(K%) = 3. To see this, it is sufficient to
prove that for every n =3, n#4, there exists a tournament of order n and
diameter 2. As there are such tournaments for n =3 and 6 (see e.g. [8]) and there
is a simple construction giving such a tournament with p + 2 vertices whenever one
with p vertices is known (see e.g. [8], [2]), the proof follows.
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Boesch and Tindell [2] have also directed complete bipartite graphs and
showed that d(K%* ,)=3 for p =2. Here we slightly extend their result.

Theorem 2.2. For any complete k-partite (k= 2) graph K(n,, na, ..., n) with
n,=n=...2 =1 we have

(a) d(K*(n,, ny))) <4 if n,=2,
(b) d(K*(ny, n,, ..., n)) <3 if either k=2 and n,=n,=2 or k=3,
(c) d(K*(ny, ny ..., m)=2if k=3 and n,=n,=...=n=2.

Proof. One can easily verify that any strong orientation of K(n,, 2) has
diameter 4 if n,=3. If n,=4 and n,= 3 we can construct an orientation H of
K(n,, n,) from an orientation G of K(n,—1, n,—1) as follows. Let V, and V, be
the two parts of the vertex set of G. If V(H)=V(G)u{u, v} then we put
E(H)=E(G)u{w,v, uw,, vu|w, € V;, w,e V,}. One can easily see that d(H)<
d(G). The part (a) is proved. If we start from the strong orientation G of K (2, 2)
whose diameter is 3, the first part of (b) follows too.

Let k= 3. As mentioned above, there exists a tournament T, with k vertices
and diameter at most 3. Let V(T,) = {v,, v, ..., v«} and the parts of the vertex set
of K(ny, ny, ..., i) be Vi, Vs, ..., V.. Now we give a proper orientation as follows.
Every edge xy with x € V; and y € V; is directed from x to y iff v,v; € E(T,). The
obtained k-partite tournament has the same distances between two vertices from
distinct parts as the corresponding vertices in T, have. On the other hand, the
distance between two vertices from the same part V; is 3 because there is a 3-cycle
in T, containing v;.

To prove (c) we distinguish two cases.

Case 1. n,=...=n, =2. Consider a digraph G with the property that V(G)
can be decomposed into two sets W, and W, such that for every x € W, there is an
arc xy with y e W, for every y € W, there is an arc yx with x € W, and the distance
between two vertices of the same part is at most 2. If we add to G two new vertices
u and v and the arcs uw;, w,v, w,u and vv, for all w, € V, and w, € V,, we clearly
obtain a new digraph H with d(H)=2. Letting G to be the 4-cycle K* (2, 2),
H becomes an orientation of K (2, 2, 2) with diameter 2. Generally if we have
constructed an orientation G =K*(2, 2, ...,2) (of the complete (k — 1)-partite
graph) with 2-vertex parts V,; V,, ..., V._,, we put W,=V, and W,=
Vou...uV,_, and receive a k-partite digraph K*(2, 2, ..., 2) of diameter 2.

Case 2. my=n,=...=n.=s5s=3. Let V,, V,, ..., Vi be the k parts (i.e.,
maximal independent subsets of vertices) of G = K(n,, ..., n.). Denote the vertices
of V, by vy, vi, ..., v fori=1, 2, .., k.

Note that for every k =3, k# 4 there is a k-vertex tournament T, such that its
every arc lies in a 3-cycle. (Namely, this is true for k=3 and 6 and a simple
construction ensures such a (p + 2)-vertex tournament whenever such one with p
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vertices is known; see e.g. [8].) Let V(T.)={u,, uy, ..., uy}. Using Ti, we now
direct the edges of G as follows. For every two vertices u; and u; such that wy; is an
arc of T, we direct the edges vi,v;,, ViV, ..., Vsv; in the direction from V; to \'%,
and all other edges between V, and V; are directed oppositely. The simple
verification that the resulting orientation of G has diameter 2 is left to the reader.

It remains to consider the case k=4. In this case there is a unique strong
tournament T.. One sees that there is a unique arc, say u,u,, which does not belong
to any 3-cycle but every other arc lies in a 3-cycle. Now we can direct the edges of
G as above with the exception when i =1 and j =2, in which case the edges v1;V2,,
V12V23, ..., VU1,5-1V2s, U1,U2; are directed from V, to V, and all other edges between
Vi and V, are directed oppositely. And again, it is a routine matter to verify that
the obtained digraph is of diameter 2. This completes the proof. W

It is an open problem to determine d(K*(ny, n,, ..., n)) in general, even the
simple case when k =2 remains unsolved. Note, however, that d(K*(ny, ny)) =4
whenever n, is sufficiently large relative to n, (because if two vertices from the first
part have equal out- or in-neighborhoods, then their distance is at least 4). For
example, K(4,3) has no orientation of diameter 3, but d(K*(5,4))=3 and
consequently d(K*(q +1, q))=3 for any q =4.

The final result of this section deals with cubes.

Theorem 2.3. Let k >2 be an integer. Then for the k-dimensional cube Q,
we have d(Q%) <2k —1.

Proof. Noting that the assertion is trivial for k =2, we proceed by induction
on k. The cube Q. (k =3) consists of two copies H, and H, of Q,_, and a set M of
2%=1 edges each of which joins a vertex v, of H; and a corresponding vertex v, of
H,. To direct the edges of Q, we simply change H, to H* and H, to H%} (the
corresponding copy of H¥) and the edges of M are directed as follows. Choose
a vertex (as a root) u, of H, and determine distance sets S,(j) = {v | de(u, v)=j}
for 0<j<2(k —1)—1. The corresponding sets in H* are denoted by S.(j). Every
edge v,v, between H, and H, is directed from v, to v, iff v, € Sy( J) where j is odd.
The digraph obtained is denoted by H.

To prove that d(H) <2k — 1 we consider two arbitrary vertices x, y and verify
that du(x, y) <2k —1. If both x and y belong to the same H, (i=1, 2) then the
induction hypothesis applies. Therefore let x=x,e Ht and y = y,e H}. If x, € S:(j)
with odd j, then there is an arc x,x, in H and an x,— y2 directed path in H% of
length at most 2(k —1)—1, where x, belongs to H% and corresponds to x,. If
x1 € $,(j) with j even, then there are an arc x,v, in H¥, the arc v,v, (from H%* to
H?) and a v, -y, path of length at most 2(k —1) —1 in H%. (Note that v, €8S:(p)
with p odd, because Q is a bipartite graph.) The other cases are symmetric. Thus
in each case there is a directed x —y path in H of length at most 2k—1. W

As the diameter of Q is k, k<d(Q%)<2k—1. However, it is an open
problem to determine the exact value of d(Q%) for each k.
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Note added in proof: The exact values of d(K*(n,, n,)) and d(Q?%) have now
been found for all parameters by my student L. Soltés.

3. Diameters and radii of orientations of weighted multigraphs

Chvatal and Thomassen [3] have established certain bounds on the diameters
or radii of orientations of multigraphs. In this section we generalize some of their
results to multigraphs where every edge has a length (positive weight).

Theorem 3.1. Let G be a bridgeless multigraph where every edge length is
between 1 and L. If the radius of G is r, then G admits an orientation of radius at
most r’+rL.

Proof. We shall follow a proof of Chvatal and Thomassen [3] and proceed by
induction on r. If r =0, it is nothing to prove and therefore assume that r >0. Let u
be a central vertex of G (i.e. dg(u, v) <r for every v). For any v € Vg(u) (v is
a neighbour of u) define k(v) to denote the length of a shortest cycle containing
a shortest edge uv. Clearly,

k(v)<2r+L. (1)

A multidigraph A which is an orientation of some submultigraph of G is called
admissible if there is a set S of neighbors of u together with a directed cycle C(v)
for each v €S such that

(i) each C(v) has length k(v) and contains either an arc uv or an arc vu or both,
(ii) A is the union of all these cycles C(v) (v €S).

Now we are going to prove that

Every maximal admissible multidigraph contains all the neighbors of u. (2)

Assume the contrary, so that there exists a maximal admissible multidigraph A
and a vertex w e Vs(u) — V(A). Consider a k(w)-cycle of G: wow, ... w,, where
wo=u=w, and w,=w. Let i be the smallest subscript such that 2<i and w;
belongs to A. Thus there exists a vertex v € S with w; € C(v) and we can assume
that C(v) contains an arc uv. The cycle C(v) consists of two directed paths: u —w;
path P, and w; —u path P,. We distinguish two cases.

Case 1: The length of P, is less than or equal to the length of P,. Then we add
to A the directed path P=ww;_, ... w,w,. The required directed cycle C(w)
consists of the paths P, and P. We assert that the length of C(w) is k(w).
Otherwise the length is greater than k(w) and then the path P' =ww,, ... w, is
shorter than P;. In that case, the submultigraph of G consisting of P;, P and P’
would produce a cycle containing uv of length less than k(v), a contradiction.
Adding C(w) to A, we obtain a larger admissible multidigraph which contradicts

the maximality of A.
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Case 2: P, is longer than P,. Then we add to A the directed path P=
wow ... w; and the required cycle C(w) will consist of the paths P and P,. Adding
C(w) to A, we obtain a contradiction again.

Hence (2) is proved. Consider a maximal admissible digraph A. By (1) we see
that

da(u, w)<2r+L-1,

da(w, u)<2r+L -1 (3)

for every vertex w of A.
In the multigraph G, contract all the vertices of A into a new vertex i and cail
the resulting multigraph G. Clearly, G is bridgeless and

de(ti, v)<r—1 (4)

for every vertex v of G.

Thus the radius of G is at most r — 1 and by the induction hypothesis there is
an orientation H of G such that

da(d, v)<(r—1)*+(r—1)L, (5)
da(v, 2)<(r—1)*+(r—1)L

for every vertex v of H.
If we expand the vertex @ to V(A), then the edges of A together with those
corresponding to the edges of H will form an orientation H, of a submultigraph of

G. Directing all the remaining edges of G arbitrarily, we obtain an orientation H of
G. By (3) and (5) we have

du(u, v)<(r—=1+(r—=1)L+2r+L—1=r*+rL
and analogously
du(v, u)<r*+rL

for every vertex v of H.

Thus the radius of H does not exceed r>+rL. B

It is well known that rad(G) <diam(G) <2 rad(G) and thus we have the
following corollary of Theorem 3.1.

Theorem 3.2. Let G be a bridgeless multigraph with all edge lengths be-
tween 1 and L. If the diameter of G is d, then G admits an orientation of diameter
at most 2d*+2dL.

We conjecture that Theorems 3.1. and 3.2 remain valid also for
multimigraphs.

The following result shows that Theorem 3.1 is in some sense the best possible
but as for Theorem 3.2, there is a gap which remains unsolved (see Theorem 3.4
below).
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Theorem 3.3. For every positive integer r and any real number L =1 there is
a bridgeless graph G, with every edge length equal to 1 or L and such that G, has
radius r and every orientation of G, has radius at least r?+ rL.

Proof. At first we construct a certain sequence H,, H,, ... of rooted graphs.
H, is a triangle with one of its vertices designed as the root u, ; the opposite edge
has length L and the remaining 2 edges are of length 1. If H,, H,, ..., H,_, (r=2)
are known, then H, is constructed as follows. Take a cycle with 2r +1 vertices,
designate one of its vertices as the root u, and assign edge length L to the opposite
edge and length 1 to every other edge. Let u, v be the two neighbors of the root u,.
Amalgamate the cycle with two copies of H,_, by identifying the root of the first
copy with u and the root of the second copy with v. The resulting graph, rooted at
u,, is H,.

Now, G, is obtained by taking two copies of H, identifying their roots. Fig. 2
shows the graph G;. One can easily verify that rad (G,) = r (u, is the unique central

Fig. 2

vertex). In any strong orientation (all are isomorphic) of G, each cycle of G,
becomes a directed cycle. Thus the radius will be equal to

(2r=1+L)+@2r-3+L)+...+(B3+L)+(1+L)=r*+rL. B

Theorem 3.4. For every integer d =2 and any real number L =1 there is
a bridgeless graph G with every edge length equal to 1 or L and such that the
diameter of G is d and every strong orientation of G has diameter d%/2 + dL if d
is even and diameter d*/2+dL+3/2—d if d is odd.

Proof. If d is even, then put r =d/2 and consider the graph G, from the proof
of Theorem 3.3. We see that diam(G,)=2r=d and any strong orientation of G.
has diameter 2(r*>+ rL) =d?/2+ dL. Thus we can take G* = G,. Now let d be odd.
Then d =2r +1 with r =1 and we construct G as follows. Consider the graph G,
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again and denote by x one of the 2"*! peripheral vertices lying in triangles. Add to
G. two new vertices y and z and three new edges: xy and xz with lengths equal to
1, and yz with length L. This gives a graph G* with diameter d =2r + 1. Clearly,
every strong orientation of G* has diameter 2(r>+rL)+1+L = d?/2+dL +
+3/2—-d.m

If highly connected graphs are required, we can give at least the following
result.

Theorem 3.5. (a) For all integers r=1, k=1 and any real number L =1
there is a k-vertex-connected graph G, , with every edge length equal to 1 or L
and such that the radius of G, . is r and its every orientation has radius at least
r}/2+r(L +1)/2.

(b) For all integers d =2, k=1 and any real number L =1 there is
a k-vertex-connected graph G* * with every edge length equal to 1 or L and such
that the diameter of G** is d and its every orientation has diameter at least
d*/4+d(L+1)/2.

Proof. We shall use “a branch” H, of the graph H, constructed in the proof of
Theorem 3.3. H, consists of r cycles Cs,+1, Ca,-y, ..., C; properly amalgamated as
shown in Fig. 3, where Hj is depicted. Clearly, the distance d(u,, v) <r for each

Fig. 3

vertex v of H,. Now to every vertex x of H,, x# u,, k — 1 new vertices are added
such that x is substituted by a set M(x) of k vertices ; we put M(uo) = {uo}. Every
edge xy# uuiss (i=0, 1, ..., r—1) of H, is substituted by |[M(x)| [M(y)| edges of
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the same length, i.e. each v € M(x) is joined to each w € M(y). Moreover, we join
u; to every other vertex of M(u,). Between M(u;) and M(u,,,) it remains the
unique edge wu;.,. Call the resulting graph F, , (for F; , see Fig. 3).

Now we are prepared to prove the desired assertions. First we give the proof
for radius and for even diameter. Take two copies F; , and F', of F, .. Identifying
their sets M(u;) and M(u?), we obtain a graph G, ,, which is obviously k-vertex-
-connected. The graph G; , is roughly depicted in Fig. 4. One sees that G, , has
radius r (with the central vertex u,=u’) and diameter d =2r (d(us, ul) =2r).

G : 1 v
M Fm Faa

/3
Us uy =u, U, U U

£.¢

LI

Fig. 4

For every strong orientation of F, , and for any two shortest directed paths P,
going from u, to a vertex of M(u,) and P, going from a vertex of M(u,) to u, we
have: If P, contains the arc u; ,u;, then the section of P, between M(y;) and
M(u;-,) has length at least 2i + L — 1 and conversely. Thus the sum of lengths of P,
and P, is at least

S +(2i+L-D]=r* +r+ L.
i=1

Therefore for any strong orientation H of G, , we have : du(us, ub) + du(ul, up) =
2r’+2r(L+1). Hence the diameter of H is at least r2+ r(L+1)=
=d?/4+ d(L +1)/2 and we can put G *=G, ,. Consequently, the radius of H is
at least r*/2+r(L +1)/2.

Now, let d be odd, i.e. there is a positive integer r with d =2r + 1. Take a copy
F.« of F,, and a copy Fl.ix of F,.y «. Amalgamating F; . and F},,, by
identifying M(u;) and M(u'.,), we obtain a k-vertex-connected graph G**'* of
diameter 2r+1. Reasoning as above, one can easily verify that any strong
orientation of G*"*"* will have diameter at least

[P+r(L+1)+(r+1)*+(r+1)(L+1)]/2=

2
[‘;+ +d(L+1)] 2>dY4+d(L+1)/2. B
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SUHRN
POZNAMKY O DIAMETROCH ORIENTACI{ GRAFOV
Jan Plesnik, Bratislava
Rozsiruji sa niektoré vysledky z pric [2] a [3]. Uvddza sa najmensi graf bez mostov
a s diametrom 2, ktorého kazda orienticia md diameter aspofi 6. Dané si horné ohranicenia na
minimélny diameter orientdcie kompletného k-partitného grafu a k-rozmernej kocky. TieZ sa skiimaji

ohodnotené multigrafy daného diametra alebo radiusa a trochu sa zovSeobecriuji niektoré vysledky
z [3]. V ¢&lénku sa uvadzaji viaceré otvorené problémy a hypotézy.
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PE3IOME
3AMETKH O TUAMETPAX OPUEHTALIMN T'PA®OB
SAu Inecuuk, Bpatucinasa

Pacumpsiiorcs HekoTophle pe3ynstathl pabot [2] u [3]. Ipennaraercs HaumeHblmMi rpad Ge3s
MOCTOB H C THAMETPOM 2, KaXX/asi OPHEHTALMA KOTOPOro UMEET AHAMETP Mo MeHblIed Mepe 6. [laHbl
BEPXHHE OLEHKH [N MHHUMAJLHOTO MaMeTpa OPMEHTALMM MOJHOro k-moibHoro rpada m k-kyGa.
Toxe HCcCIeRyIOTCS B3BEIlIEHHbIE MYJILTHrpadbl C AaHHBIM [HaMETPOM WIH PagHyCOM H B HEKOTOPOH
crenenn o6Go6warorcst pe3ynsTaThl U3 [3]. B paGoTe MPMBOOMTCH HECKONBKO HEpEUICHHBIX 3afay
¥ TIPEeIOXEHHM.
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