

Werk

Label: Article **Jahr:** 1985

PURL: https://resolver.sub.uni-goettingen.de/purl?312901348_46-47|log23

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

UNIVERSITAS COMENIANA ACTA MATHEMATICA UNIVERSITATIS COMENIANAE XLVI—XLVII—1985

ON THE THEOREM OF POINCARÉ FOR STOCHASTIC TRANSFORMATIONS (MARKOV CHAINS)

IVAN MIZERA, Bratislava

The notion of transformation from X to Y may be generalized in the following way: instead of assigning a "definite" element y from Y to each element x from X, we assign an "indefinite" one, namely a probability measure on Y. We call such a transformation stochastic; an exact definition will be given below. An equivalent concept had already been introduced some time ago, in connection with the theory of Markov chains with the general state space (cf. [1], [3], [4], papers [7], [8]). Our approach is slightly different in motivation; it deals with the problems of ergodic theory and was for the first time used in the thesis [5] of P. Maličký. We use his definition of the stochastic transformation, which was inspired by the notion of polymorphism of Lebesgue space (in the sense of Rohlin [6]) introduced in the A. N. Vershik's paper [9]. Similar to our concept is also G. Choquet's one of diffusion [2]. In this paper we study some recurrence properties of stochastic transformations, namely the recurrence theorem of Poincaré.

Let E be a set; E^c denotes a complement of E in some suitable space X. By χ_E we understand an indicator (characteristic function) of E. The set of all nonnegative integers is denoted by N; real interval (0, 1) by I. A measurable space is a couple (X, \mathcal{S}) , where X is a set and \mathcal{S} is a σ -algebra of subsets of X. A probability space is a triple (X, \mathcal{S}, m) , where (X, \mathcal{S}) is a measurable space and m is a probability measure defined on \mathcal{S} . We shall frequently omit the word "probability" in the expression "probability measure"; almost all measures considered are probability measures.

The symbol $\int_A f(x)m$ (dx) is used in the usual sense; when A = X, it reduces to $\int f(x)m$ (dx) or m(f), the latter in the Bourbaki fashion. By ε_x we denote a Dirac measure, concentrated with unit mass in the point x from X. A symbol (X^N, \mathcal{S}^N) will denote a measurable space consisting of all sequences with the elements from A; σ -algebra \mathcal{S}^N is generated by \mathcal{S} -measurable cylinders.

Considering the set X and two measures m_1 , m_2 defined on it, in general the

 σ -algebras \mathcal{S}_1 , \mathcal{S}_2 — the domains of m_1 , m_2 — may be distinct: but we suppose that all measures on X are defined on the same (and usually rich enough) σ -algebra \mathcal{S} . Under this assumption we introduce a symbol $M^1(X, \mathcal{S})$, abbreviated to $M^1(X)$, for the set of all (probability) measures on X (with the domain \mathcal{S}).

The set of all measurable functions from (X, \mathcal{S}) to I is denoted by $M(X, \mathcal{S})$ or shorter by M(X).

Let (X, \mathcal{S}) and (Y, \mathcal{T}) be measurable spaces. By a stochastic transformation (mapping) from X to Y (denoted $\Phi: X \Rightarrow Y$) we call a diagram

$$\Phi: (X, \mathcal{S}) \stackrel{F}{\to} (Y, \mathcal{T}),$$

where F is an ordinary mapping from X to $M^1(Y)$. F is called the associated mapping with the stochastic transformation Φ . The value of the mapping F in the point x is denoted Fx. If $f \in M(Y)$, then we introduce a notation $\Phi^{-1}f$ for the function from M(X), such that $(\Phi^{-1}f)(x) = Fx(f)$. Specially, when $E \in \mathcal{T}$, then we define a function $\Phi^{-1}E$ from M(X) by the relation $\Phi^{-1}E = \Phi^{-1}\chi_E$.

A stochastic transformation Φ is called measurable (according to (X, \mathcal{S}) , (Y, \mathcal{T})), iff for every $f \in M(Y)$ is $\Phi^{-1}f \in M(X)$. Clearly, stochastic transformation Φ is measurable, iff for every $E \in \mathcal{T}$ is $\Phi^{-1}E$ from M(X), because every measurable function is the limit of linear combinations of characteristic functions of measurable sets, and the integral is linear.

Examples. If $X = Y = \{1, ..., n\}$, then stochastic transformation Φ is expressed by the transition matrix of the homogenous Markov chain with the finite state space (cf. [1]).

If $f: X \to Y$ is an ordinary mapping, then we define stochastic transformation $\Phi_f: X \Rightarrow Y$ by defining the value of its associated mapping F_f to be $F_f x = \varepsilon_{f(x)}$. In this way we obtain a natural insertion of the set of all mappings from X to Y to the set of all stochastic transformations from X to Y. This insertion has functorial properties in the sense of the corresponding categories; moreover, all properties defined below are well-defined in the sense that this insertion preserves the analogical property for the ordinary transformations (e.g. when the mapping f is ergodic in the usual sense, then Φ_f is ergodic according to our definition of ergodicity of stochastic transformations), or are at least "almost-well-defined", i.e. the property is preserved with the probability 1.

Namely the notion of measurable stochastic transformation has been already introduced under different names in the theory of Markov chains with a general state space ([1], [4]).

Let (X_1, \mathcal{G}_1) , (X_2, \mathcal{G}_2) , (X_3, \mathcal{G}_3) be measurable spaces, let $\Phi_1: X_1 \Rightarrow X_2$, $\Phi_2: X_2 \Rightarrow X_3$ be stochastic transformations. Then a composition Φ of stochastic transformations Φ_1 , Φ_2 (denoted by $\Phi = \Phi_2 \Phi_1$) is a stochastic transformation with an associated mapping F, defined by

$$Fx(E) = \int_{X_2} F_2 y(E) F_1 y(dy)$$
 for all $E \in \mathcal{S}_3$.

The correctness of the definition and the associativity of the operation of composition is obvious.

In the following we shall assume that (X, \mathcal{S}, m) is a probability space, $\Phi: X \Rightarrow X$ is a measurable stochastic transformation; expressions "almost every", "almost everywhere" will be connected with the measure m. Stochastic transformation Φ is called measure-preserving with the invariant measure m iff

$$m(\Phi^{-1}f) = m(f)$$
 for every $f \in M(X)$.

By the same argument as in the case of measurability, stochastic transformation Φ is measure-preserving iff $m(E) = m(\Phi^{-1}E)$ for every $E \in \mathcal{S}$. In the following we shall suppose that Φ is measure-preserving, with the invariant measure m.

We define iterations of Φ in a natural way: $\Phi^1 = \Phi$, $\Phi^k = \Phi \Phi^{k-1}$. Moreover, we define Φ^0 as Id_X , where Id_X is the stochastic equivalent of the ordinary identity mapping on X. The space (X^N, \mathcal{S}^N) equipped with a probability P, defined consistently due to Kolmogorov theorem, such that

$$P(X \times X \times ... \times X \times E_1 \times E_2 \times ... \times E_k \times E_{k+1} \times X \times ...) =$$

$$= \int_{E_1} \int_{E_2} ... \int_{E_k} Fx_k(E_{k+1}) ... Fx_1(dx_2) m(dx_1)$$

holds, is called the space of trajectories of Φ ; this construction is well-known from the literature ([1], [3], [4]). We shall use the following conventions to simplify the notation of the sets from \mathcal{S}^N : instead of $E_1 \times ... \times E_k$ we shall write $(E_1, ..., E_k)$, instead of $E \times ... \times E$ (n times) we shall write nE, ∞E instead of $E \times E \times ... \times E \times ..., P(E)$ instead of $P(nX, E, \infty X)$. The fact that m is an invariant measure implies that P(nX, E) = P(E); hence the preceding convention is justificated. Clearly P(E) = m(E). When we denote by F^k an associated mapping with Φ^k , then the following holds:

$$P(E_1, (n_1-1)X, E_2, (n_2-1)X, E_3, ..., E_{k+1}) =$$

$$= \int_{E_1} \int_{E_2} ... \int_{E_k} F^{n_k} x_k(E_{k+1}) ... F^{n_1} x_1(dx_2) m(dx_1) ,$$

what can be easily seen from the corresponding definitions.

We call the set $E \in \mathcal{S}$ almost invariant, iff $\Phi^{-1}E = \chi_E$ almost everywhere. Measure-preserving stochastic transformation Φ is called ergodic, iff the measure of every almost invariant set is 0 or 1.

Now we can state a theorem of Poincaré for the stochastic transformations. In the classical theory of dynamic systems, Poincaré's theorem states, that if we have some moving incompressible fluid in a space with a finite volume, then the particle from a set with the positive volume returns to it infinitely often (cf. [4]). Our theorem states nothing but the same about stochastic transformations.

Theorem. Let (X, \mathcal{G}, m) be a probability space, let $\Phi: X \Rightarrow X$ be a measure preserving stochastic transformation with invariant measure m, let (X^N, \mathcal{G}^N, P) be a space of trajectories of Φ . If $E \in \mathcal{G}$ and $M \in \mathcal{G}^N$,

(1) $M = \{\{x_i\}_{i=0}^{\infty} \in X^N : x_0 \in E, x_i \in E \text{ for infinite number of } i \in N\}$, then P(M) = m(E). Moreover, if Φ is ergodic and $M' \in \mathcal{S}^N$,

 $M' = \{\{x_i\}_{i=0}^{\infty} \in X^N : x_i \in E \text{ for infinite number of } i \in N\}, \text{ then } P(M') = 1.$

The theorem will be proved by a sequence of lemmas.

Lemma 1. Let $\Phi: X \Rightarrow X$ be a measure preserving stochastic transformation with an invariant measure m. If E does not contain an almost invariant set with nonzero measure, then for almost all $x \in E$ such n exists that $F^n x(E) < 1$.

Proof. Let $B = \{x \in E: F^n x(E) = 1 \text{ for all } n = 1, 2, ...\}$. We shall show that B is almost invariant. Define sets N_n , n = 1, 2, ... in the following way:

$$N_n = \{x \in E - B: F^i x(E) = 1 \text{ for } i < n, F^n x(E) < 1\}$$
.

Clearly, $\bigcup_{n=1}^{\infty} N_n = E - B$. We shall prove that $P(B, N_n) = 0$ for all n = 1, 2, ... Let n = 1 be fixed. If $m(N_n) = 0$ or m(B) = 0, the proof is completed. Suppose that $m(N_n) > 0$, m(B) > 0 and $P(B, N_n) > 0$. Then $\int_B Fx(N_n)m(dx) > 0$ and since m(B) > 0, then $Fx(N_n) > 0$ for all $x \in C \subset B$, m(C) > 0. If m(X - E) = 0, then

$$\int_{E} (Fx(E) - 1)m(dx) = \int_{X} Fx(E)m(dx) - 1 > m(E) - 1 = 0.$$

and then Fx(E) = 1 almost for every $x \in E$, therefore E is almost invariant, with measure 1, which is in contradiction with the assumption. Hence m(X-E) > 0. But then

$$P(B, N_n, (n-1)X, X-E) = \int_B \left(\int_{N_n} Fy^n(X-E)Fx(dy) \right) m(dx) .$$

According to the assumption $F^n y(E) < 1$ for all $y \in N_n$, hence $F^n y(X - E) > 0$. Since for all $x \in C \subset B$, m(C) > 0, is $Fx(N_n) > 0$, then $\int_{N_n} F^n y(X - E) Fx(dy) > 0$ for all $x \in C$. But then $P(B, N_n, (n-1)X, X - E) > 0$, therefore P(B, nX, X - E) > 0 and $\int_B F^n x(X - E) m(dx) > 0$. Again there exists a set $A \subset B$, m(A) > 0, (because m(B) > 0) that for all $x \in A$ is $F^n x(X - E) > 0$, hence $F^n x(E) < 1$, and since A is nonvoid subset of B, we have the contradiction with the definition of B. Hence $P(B, N_n) = 0$ for all n = 1, 2, Since the sets N_n are pairwise disjoint, we have $P(B, E - B) = P(B, \bigcup_{n=1}^{\infty} N_n) = \sum_{n=1}^{\infty} P(B, N_n) = 0$; $P(B, E) = \int_{B} Fx(E)m(dx) = \int_{B} 1m(dx) = m(B) \text{ due to definition of } B;$ m(B) = P(B, E) = P(B, B) + P(B, E - B) = P(B, B) due to additivity: $m(B) = \int_{X} Fx(B)m(dx) = \int_{B} Fx(B)m(dx) + \int_{X-B} Fx(B)m(dx) = P(B, B)$ $+ \int_{X-B} Fx(B)m(dx) = m(B) + \int_{X-B} Fx(B)m(dx).$

Hence Fx(B) = 0 for almost all $x \in B$. Conversely, $0 \le \int_B (1 - Fx(B))m(dx) = 0$, hence Fx(B) = 1 for almost all $x \in B$. We have shown that B is almost invariant. Hence m(B) = 0. \square

Lemma 2. Let $A_1 \subset A_2 \subset ... \subset A_n \subset ...$ be a countable system of sets from \mathcal{S} , $A = \bigcup_{n=1}^{\infty} A_n$, $P(\infty A_n) = 0$ for all n = 1, 2, Then $P(\infty A) = 0$.

Proof. Clearly $\infty A = \bigcup_{n=1}^{\infty} \infty A_n$ and $\infty A_i \subset \infty A_j$ for $i \le j$. The statement follows from the lower semicontinuity of P. \square

Lemma 3. Let $A \in \mathcal{S}$ and suppose that A does not contain an almost invariant subset of nonzero measure. Then $P(\infty A) = 0$.

Proof. Consider again the system N_n of sets, n = 1, 2, ... $N_n = \{x \in A: F^ix(A) = 1 \text{ for all } i < n, F^nx(A) < 1\}$. We construct a new system $B_n = \bigcup_{i=1}^n N_i$. Let $B = \bigcup_{n=1}^\infty B_n = \bigcup_{n=1}^\infty N_n$, m(B) = m(A) (according to Lemma 1) and $B \subseteq A$. We shall prove that for all n = 1, 2, ... is $P(\infty B_n) = 0$. Let n be fixed. For every r = 1, 2, ... there exist sets N_1^r , ..., N_n^r , such that $N_1^r \subset N_i$, $F^ix(A) < 1 - \frac{1}{r}$ for $x \in N_1^r$, i = 1, 2, ..., n. Denote $B_n^r = \bigcup_{i=1}^n N_i^r$. We have $F^ix(A) < 1$ for $x \in N_i$, i = 1, 2, ..., n, hence $\bigcup_{r=1}^\infty B_n^r = \bigcup_{i=1}^\infty \bigcup_{i=1}^n \sum_{r=1}^\infty \bigcap_{i=1}^n \sum_{r=1}^\infty N_i^r = \bigcup_{i=1}^\infty N_i = B_n$. For $x \in N_1^r$ we have $1 - 1/r > F^ix(A) \ge F^ix(N_i) \ge F^ix(N_i^r)$, due to corresponding inclusions and the monotonicity of the measure. Consider $\varepsilon > 0$ and k positive integer, such that $k(1 - 1/r)^k < \varepsilon/(n(n+1)m(B_n^r))$ holds. This can be always done, because if $c = (1 - 1/r)^{-1} > 1$, then, according to L'Hospital rule $k(1 - 1/r)^k = k/c^k$ tends to

 $P(B_n^r, ..., B_n^r) = P(KB_n^r) \le nK(1 - 1/r)^k m(B_n^r) = n(n+1)k(1 - 1/r)^k m(B_n^r) < \varepsilon$. Hence for arbitrary $\varepsilon > 0$ there exist K such that $P(KB_n^r) < \varepsilon$ and $P(\infty B_n^r) \le \varepsilon$

of the measure implies

zero, when k tends to $+\infty$. Let K = k(n+1). We shall show that for an arbitrary finite sequence $\{i_j\}_{j=1}^K$, $i_j \in \{1, ..., n\}$ for j = 1, ..., K, is $P(N'_{i_1}, ..., N'_{i_K}) < (1-1/r)^k m(B'_n)$, and, while we have nK of all these sequences, the subadditivity

 $P(KB'_n)$ for every K; hence $P(\infty B'_n) < \varepsilon$ for every $\varepsilon > 0$; and so $P(\infty B'_n) = 0$. We have $B''_n \subset B'_n$ for $q \le r$, $\bigcup_{r=1}^{\infty} B'_n = B_n$, therefore $P(\infty B_n) = 0$ due to Lemma 2. By repeated use of Lemma 2 we get $P(\infty B) = 0$. Hence $P(\infty A) = 0$, because $B \subset A$, m(A) = m(B).

Now we have only to do the crucial part of the proof. Let $\{i_j\}_{j=1}^K$, $i_j \in \{1, ..., n\}$, j = 1, ..., K, is an arbitrary sequence of the length K. If $(N_{i_1}^r, ..., N_{i_K}^r)$ is a corresponding set from \mathcal{S}^N , then we consider a set

$$(N'_{i_1}, (j_1-1)X, N'_{i_2}, (j_2-1)X, N'_{i_3}, ..., N'_{i_k}, (j_k-1)X, N'_{i_{k+1}}, qX)$$

which contains the previous one and is constructed as follows:

$$\begin{aligned} j_1 &= i_1 \\ j_2 &= i_{1+j_1} \\ j_3 &= i_{1+j_1+j_2} \\ &\text{generally} \\ j_s &= i_{1+j_1+j_2+...+j_{s-1}}, \text{ for } s = 1, ..., k, \\ \text{and } j_{k+1} &= i_{1+j_1+j_2...+j_k}, q = K-1-j_1-...-j_k. \end{aligned}$$

Clearly, for all $s = 1, ..., k + 1, j_s \in \{1, ..., n\}$;

$$q = K - 1 - j_1 - \dots - j_k = k(n+1) - kn - 1 = k - 1 \ge 0$$
.

Now we evaluate the measure P of this new set:

$$\int_{N'_{i_1}} \dots \int_{N'_{i_{k-1}}} \int_{N'_{i_k}} F^{i_k} x_k(N'_{i_{k+1}}) F^{i_{k-1}} x_{k-1}(\mathrm{d} x_k) \dots F^{i_2} x_2(\mathrm{d} x_3) F^{i_1} x_1(\mathrm{d} x_2) m(\mathrm{d} x_1) \leq \\ \leqslant \int_{N'_{i_1}} \dots \int_{N'_{i_{k-1}}} (1 - 1/r) F^{i_{k-1}} x_{k-1}(N'_{i_k}) \dots F^{i_1} x_1(\mathrm{d} x_2) m(\mathrm{d} x_1) \leq \\ \leqslant \int_{N'_{i_1}} \dots \int_{N'_{i_{k-2}}} (1 - 1/r)^2 F^{i_{k-2}} x_{k-2}(N'_{i_{k-1}}) \dots F^{i_1} x_1(\mathrm{d} x_2) m(\mathrm{d} x_1) \leq \dots \leq \\ \leqslant \int_{N'_{i_1}} (1 - 1/r)^{k-1} F^{i_1} x_1(N'_{i_2}) m(\mathrm{d} x) \leq (1 - 1/r)^k m(N'_{i_1}) \leq (1 - 1/r)^k m(B'_n) .$$

The statement holds due to the monotonicity of the measure. \Box

The proof of our Theorem will be based on the following weaker (but in fact equivalent) result.

Lemma 4. Let (X, \mathcal{S}, m) be a probability space, $\Phi: X \Rightarrow X$ a measure-preserving stochastic transformation with m as an invariant measure, let $E \in \mathcal{S}$, (X^N, \mathcal{S}^N, P) be the space of trajectories, associated with the stochastic transformation Φ .

Let
$$M \in \mathcal{G}^N$$
,
 $M = \{\{x_i\}_{i=0}^{\infty} \in X^N : x_0 \in E, x_i \in E \text{ at least for one } n = 1, 2, ...\}$.

Then P(M) = m(E).

Proof. Suppose $A = \{x \in E: F^n x(E) = 1 \text{ for all } n = 1, 2, ...\}$. We know from

Lemma 1 that A is almost invariant and E-A does not contain an invariant set with nonzero measure. Then $P(A, A) = \int_A Fx(A)m(\mathrm{d}x) = \int_A 1m(\mathrm{d}x) = m(A)$, therefore the statement holds for almost all $x \in A$ and we can restrict our considerations only to the set E-A and the corresponding restriction of the stochastic transformation Φ to this set (defined in a natural way as a stochastic transformation with restricted associated mapping F); m(A) = P(A, X) = P(A, A) + P(A, E-A); hence P(A, E-A) = 0. Thus in the following, we suppose that E has not an almost invariant subset of nonzero measure. By the same argument, if E is maximal almost invariant subset of E has not an almost invariant subset of nonzero measure. (Fenomenologically, trajectory gets into and from the almost invariant set with probability zero.) Applying the statement of Lemma 3 to the set E, we get $P(E, \infty E^c) \leq P(X, \infty E^c) = P(\infty E^c) = 0$, hence $P(M) = P(E) - P(E, \infty E^c) = P(E) = m(E)$. \square

Proof of the Theorem. Let the assumptions of the Theorem hold. Then also satisfied the assumptions of Lemma 4 are. Let M be a set defined by (1). Denote (for n = 0, 1, 2, ...)

$$M_n = \{\{x_i\}_{i=0}^{\infty} \in X^N : x_0 \in E, x_n \in E, x_i \notin E \text{ for } i > n\}$$
.

We obtain $P(M_n) \leq P(E, (n-1)X, E, \infty E^c) \leq P(nX, E, \infty E^c) = P(E, \infty E^c) = 0$. From Lemma 4 it follows that $P(E, \infty X) = P(M \cup \bigcup_{n=0}^{\infty} M_n)$. If n > k, then $M_n \cap M_k = \emptyset$, therefore M_n are pairwise disjoint and $P(\bigcup_{n=0}^{\infty} M_n) = \sum_{n=0}^{\infty} P(M_n) = 0$. Hence $m(E) = P(E, \infty X) = P(M)$. The remainder of the statement for the ergodic stochastic transformations follows from Lemma 3. \square

Remark. The assumption of ergodicity is too strong for the particular case; it is sufficient to suppose that E^c does not contain an almost invariant subset of nonzero measure.

REFERENCES

- [1] Feller, W.: An introduction to probability theory and its applications 1, 2, New York, John Wiley, 1968.
- [2] Choquet, G.: Lectures on analysis 1, 2, 3, New York, Benjamin, 1969.
- [3] Kornfeld, I.—Sinai, Ya. G.—Fomin, S. V.: Ergodic theory (in Russian), Moscow, Nauka, 1980.
- [4] Loeve, M.: Probability theory 1, 2, New York, Springer, 1978.
- [5] Maličký, P.: Continuous multi-valued mappings of compact spaces and their invariant measures (thesis in Slovak), Bratislava, MFF UK, 1981.

- [6] Rohlin, V. A.: On fundamental notions of measure theory (in Russian), Mat. Sbornik, 25/1/1949, 107—150.
- [7] Šidák, Z.: Classification of Markov chains with a general state space, Trans. 4th Prague Conf. Inf. Theory, Praha, Academia, 1967, 547—571.
- [8] Šidák, Z.: Miscellaneous topics in Markov chains with a general state space, Trans. 7th Prague Conf. Inf. Theory, Praha, Academia, 1977.
- [9] Vershik, A. M.: Multi-valued mappings with an invariant measure (polymorphisms) and Markov operators (in Russian), Zap. Nauch. Sem. LOMI 72(1977), Prob. teorii veroyat. raspredel. IV. Academy of Sciences U.S.S.R., 26—61.
- [10] Walters, P.: Ergodic theory introductory lectures, Lecture Notes, Berlin, Springer, 1975.

SÚHRN

O POINCARÉHO VETE PRE STOCHASTICKÉ INFORMÁCIE (MARKOVOVE REŤAZCE)

Ivan Mizera, Bratislava

V článku sa formuluje a dokazuje Poincarého rekurenčná veta, známa z ergodickej teórie, pre stochastické transformácie, ktoré sú zovšeobecnením obyčajných bodových zobrazení a majú úzky vzťah k Markovovým refazcom so všeobecným stavovým priestorom.

РЕЗЮМЕ

О ТЕОРЕМЕ ПУАНКАРЕ ДЛЯ СТОХАСТИЧЕСКИХ ТРАНСФОРМАЦИЙ (ЦЕПЕЙ МАРКОВА)

Иван Мизера, Братислава

В статье формулируется и доказывается теорема Пуанкаре о возвращении. Она известна из эргодической теории, в частности для стохастических трансформаций, которые являются обобщением обычных точечных отображений и находятся в тесной связи с цепями Маркова с общим пространством состояний.

Received: 5.11.1982

Author's address:
Ivan Mizera
Katedra teórie pravdepodobnosti
a matematickej štatistiky MFF UK
Mlynská dolina
842 15 Bratislava