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ON THE THEOREM OF POINCARE
FOR STOCHASTIC TRANSFORMATIONS
(MARKOV CHAINS)

IVAN MIZERA, Bratislava

The notion of transformation from X to Y may be generalized in the following
way : instead of assigning a ‘““definite” element y from Y to each element x from X,
we assign an “indefinite”” one, namely a probability measure on Y. We call such
a transformation stochastic; an exact definition will be given below. An equivalent
concept had already been introduced some time ago, in connection with the theory
of Markov chains with the general state space (cf. [1], [3], [4], papers [7], [8]). Our
approach is slightly different in motivation; it deals with the problems of ergodic
theory and was for the first time used in the thesis [5] of P. Malicky. We use his
definition of the stochastic transformation, which was inspired by the notion of
polymorphism of Lebesgue space (in the sense of Rohlin [6]) introduced in the
A. N. Vershik’s paper [9]. Similar to our concept is also G. Choquet’s one of
diffusion [2]. In this paper we study some recurrence properties of stochastic
transformations, namely the recurrence theorem of Poincaré.

Let E be a set; E denotes a complement of E in some suitable space X. By x&
we understand an indicator (characteristic function) of E. The set of all nonnega-
tive integers is denoted by N; real interval (0, 1) by I. A measurable space is
a couple (X, ¥), where X is a set and & is a o-algebra of subsets of X. A
probability space is a triple (X, &, m), where (X, ¥) is a measurable space and m
is a probability measure defined on ¥. We shall frequently omit the word
“probability” in the expression ‘‘probability measure”; almost all measures
considered are probability measures.

The symbol [ Af(x)m (dx) is used in the usual sense ; when A = X, it reduces
to [f(x)m (dx) or m(f), the latter in the Bourbaki fashion. By &, we denote a Dirac
measure, concentrated with unit mass in the point x from X. A symbol (X~, V)
will denote a measurable space consisting of all sequences with the elements
from A ; g-algebra ¥V is generated by ¥-measurable cylinders.

Considering the set X and two measures m,, m, defined on it, in general the
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o-algebras ¥, ¥, — the domains of m,, m, — may be distinct : but we suppose that
all measures on X are defined on the same (and usually rich enough) o-algebra &.
Under this assumption we introduce a symbol M'(X, &), abbreviated to M'(X),
for the set of all (probability) measures on X (with the domain ¥).

The set of all measurable functions from (X, &) to I is denoted by M(X, &) or
shorter by M(X).

Let (X, ¥)and (Y, J) be measurable spaces. By a stochastic transformation
(mapping) from X to Y (denoted @: X = Y) we call a diagram

D: (X, %) = (Y, ),

where F is an ordinary mapping from X to M'(Y). F is called the associated
mapping with the stochastic transformation @. The value of the mapping F in the
point x is denoted Fx. If fe M(Y), then we introduce a notation @~'f for the
function from M(X), such that (@7'f)(x) = Fx(f). Specially, when E€ 7, then we
define a function @'E from M(X) by the relation @ 'E =@ 'yg.

A stochastic transformation @ is called measurable (according to (X, ¥),
(Y, 7)), iff for every fe M(Y) is @~ 'f € M(X). Clearly, stochastic transformation
@ is measurable, iff for every E€J is @'E from M(X), because every
measurable function is the limit of linear combinations of characteristic functions of
measurable sets, and the integral is linear.

Examples. If X=Y={1, ..., n}, then stochastic transformation & is ex-
pressed by the transition matrix of the homogenous Markov chain with the finite
state space (cf. [1]).

If f: X— Y is an ordinary mapping, then we define stochastic transformation
®;: X = Y by defining the value of its associated mapping F; to be Fix = g). In
this way we obtain a natural insertion of the set of all mappings from X to Y to the
set of all stochastic transformations from X to Y. This insertion has functorial
properties in the sense of the corresponding categories ; moreover, all properties
defined below are well-defined in the sense that this insertion preserves the
analogical property for the ordinary transformations (e.g. when the mapping f is
ergodic in the usual sense, then @ is ergodic according to our definition of
ergodicity of stochastic transformations), or are at least “almost-well-defined”, i.e.
the property is preserved with the probability 1.

Namely the notion of measurable stochastic transformation has been already
introduced under different names in the theory of Markov chains with a general
state space ([1], [4]).

Let (X,, %), (X;, &), (X5, ¥5) be measurable spaces, let @,: X, > X,
®,: X, > X, be stochastic transformations. Then a composition @ of stochastic
transformations @,, @, (denoted by @ = @,P,) is a stochastic transformation with
an associated mapping F, defined by
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Fx(E) = J Foy(E)F.y(dy) forall Ee%;.
X2

The correctness of the definition and the associativity of the operation of
composition is obvious.

In the following we shall assume that (X, ¥, m) is a probability space,
@: X > X is a measurable stochastic transformation; expressions “almost every”,
‘“almost everywhere”” will be connected with the measure m. Stochastic transfor-
mation @ is called measure-preserving with the invariant measure m iff

m(®@7'f)=m(f) forevery fe M(X).

By the same argument as in the case of measurability, stochastic transformation @
is measure-preserving iff m(E)=m(®'E) for every E € ¥. In the following we
shall suppose that @ is measure-preserving, with the invariant measure m.

We define iterations of @ in a natural way: @'= @, ®*= dP*! Moreover,
we define @° as Idx, where Idy is the stochastic equivalent of the ordinary identity
mapping on X. The space (X™, ¥) equipped with a probability P, defined
consistently due to Kolmogorov theorem, such that

P(XXXX .. XXXEXEX. . XEXEuwXXX..)=
=j j v | Fxi(Egsy) ... Fxi(dxz)m(dx,)
E; JE; Ex

holds, is called the space of trajectories of @ ; this construction is well-known from
the literature ([1], [3], [4]). We shall use the following conventions to simplify the
notation of the sets from ¥V: instead of E, X ... X E, we shall write (E,, ..., E),
instead of E X ... X E (n times) we shall write nE, ©E instead of EXE X ... X E X
..., P(E) instead of P(nX, E, ©X). The fact that m is an invariant measure implies
that P(nX, E)=P(E); hence the preceding convention is justificated. Clearly
P(E)=m(E). When we denote by F* an associated mapping with @*, then the
following holds:

P(E,, (n, — I)X, Ez, (ﬂz— l)X, Eg, . soy Ek+1) =
=J' J. J’ F“"xk(Ek”) viae P“lxl(dX2)m(dxl) N
Ey; JE; Ex .

what can be easily seen from the corresponding definitions.

We call the set Ee ¥ almost invariant, iff &®~'E =y almost everywhere.
Measure-preserving stochastic transformation @ is called ergodic, iff the measure
of every almost invariant set is 0 or 1.

Now we can state a theorem of Poincaré for the stochastic transformations. In
the classical theory of dynamic systems, Poincaré’s theorem states, that if we have
some moving incompressible fluid in a space with a finite volume, then the particle
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from a set with the positive volume returns to it infinitely often (cf. [4]). Our
theorem states nothing but the same about stochastic transformations.

Theorem. Let (X, ¥, m) be a probability space, let @: X = X be a measure
preserving stochastic transformation with invariant measure m, let (X~, ¥~, P) be
a space of trajectories of @. If E€e ¥ and M e ¥V,

(1) M={{x;}2oe X": x,€E, x;€eE for infinite number of ie N}, then
P(M)=m(E). Moreover, if @ is ergodic and M’ € #~,

M' = {{x;}izo€e X": x; € E for infinite number of i € N}, then P(M')=1.

The theorem will be proved by a sequence of lemmas.

Lemma 1. Let @: X 5 X be a measure preserving stochastic transformation
with an invariant measure m. If E does not contain an almost invariant set with
nonzero measure, then for almost all x € E such n exists that F"x(E)<1.

Proof. Let B={x€eE: F'x(E)=1 for all n=1, 2, ...}. We shall show that B
is almost invariant. Define sets N,, n=1, 2, ... in the following way:

N,={xeE—B: Fix(E)=1fori<n, F'x(E)<1} .

Clearly, D N, =E — B. We shall prove that P(B, N,)=0foralln=1,2,....Letn
n=1
be fixed. If m(N,)=0 or m(B)=0, the proof is completed. Suppose that
m(N,)>0, m(B)>0 and P(B, N,)>0. Then f Fx(N.)m(dx)>0 and since
B

m(B)>0, then Fx(N,)>0 for all xe Cc B, m(C)>0. If m(X—E)=0, then
L (Fx(E) - 1)m(dx) = I Fx(E)m(dx)—1>m(E)—1=0..

and then Fx(E) =1 almost for every x € E, therefore E is almost invariant, with
measure 1, which is in contradiction with the assumption. Hence m(X — E)>0.
But then

P(B, N,, (n—1)X, X—E)= L ( an Fy"(X—E)Fx(dy))m(dx) :

According to the assumption F"y(E)<1 for all y € N,, hence F"y(X—E)>0.
Since for all xe Cc B, m(C)>0, is Fx(N,)>0, then f Fy(X — E)Fx(dy) >0
for all xeC. But then 'P(B,N,, (n— l)X:‘"X —E)>0, therefore
P(B, nX, X—E)>0 and L Fx(X — E)m(dx)>0. Again there exists a set A c

B, m(A)>0, (because m(B)>0) that for all xe A is F'x(X—E)>0, hence
F"x(E) <1, and since A is nonvoid subset of B, we have the contradiction with the
definition of B. Hence P(B, N,)=0 for all n=1, 2, .... Since the sets N, are

pairwise disjoint, we have P(B, E — B) =P(B, U) N,.) =S P(B,N,)=0;
n=1

n=1
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P(B, E)= f Fe(E)m(dx) = f 1m(dx) =m(B) due to definition of B:
m(B)=P(B, E)=P(B, B)+ P(B, E— B)=P(B, B) due to additivity :
m(B) = f Fx(B)m(dx) = j Fx(B)m(dx) + j _ Fx(B)m(dx) = P(B, B)

+ f __ Fx(B)m(dx) = m(B)+ f _ Fx(B)m(dx).

Hence Fx(B) =0 for almost all x € B. Conversely, 0 Sf (1-Fx(B))m(dx)=
B

=0, hence Fx(B)=1 for almost all xeB.We have shown that B is almost
invariant. Hence m(B)=0. O

Lemma 2. Let A;c A;c...c A,c... be a countable system of sets from &,
A=UA., P(®A,)=0forall n=1,2, ... Then P(xA)=0.

n=1

Proof. Clearly ©A = O ©A, and ®A; c © A, for i <j. The statement follows

n=1
from the lower semicontinuity of P. O

Lemma 3. Let A € ¥ and suppose that A does not contain an almost invariant
subset of nonzero measure. Then P(©A)=0.

Proof. Consider again the system N, of sets, n=1,2,... N,=
{xeA: Fx(A)=1 for all i<n, F"x(A)<1}. We construct a new system B, =
UN Let B= O B, = Lj N,, m(B) =m(A)( according to Lemma 1) and Ba A.

n=1

i=1 n=1

We shall prove that for all n=1, 2, ... is P(*B,)=0. Let n be fixed. For every
r=1,2, ... there exist sets Nji,..., Ni, such that N;cN,, F‘x(A)<1—-’1; for

xeNi,i=1,2, ..., n. Denote B =L"JN.?. We have Fix(A)<1forxeN,, i=1,2,

i=1

..., n, hence l:lB,’.=CJ L"JN,T=L"J ON;=DN,-=B,.. For xeN; we have
r=1

r=1 i=1 i=1r=1 i=1

1-1/r>Fx(A)=Fx(N;) =Fx(N}), due to corresponding inclusions and the
monotonicity of the measure. Consider £¢>0 and k positive integer, such that
k(1—-1/r)*<e/(n(n+1)m(B;)) holds. This can be always done, because if
c¢=(1-1/r)"'>1, then, according to L’'Hospital rule k(1—1/r)*=k/c* tends to
zero, when k tends to + . Let K=k(n+1). We shall show that for an arbi-
trary finite sequence {i}{,, je€(1,...,n} for j=1,.., K, is PN}, ..., N)<
(1-1/r)* m(B;), and, while we have nK of all these sequences, the subadditivity
of the measure implies

P(B., ..., B;)=P(KB;) <nK(1—1/r)m(B})=n(n+1)k(1—1/r)*m(B;)<e¢ .
Hence for arbitrary £>0 there exist K such that P(KB;)<¢ and P(»B;)<
221



P(KBy,) for every K ; hence P(»B;)<¢ for every €>0; and so P(»B;)=0. We
have Bic By, for q <r, CJB,'.=B,., therefore P(B,)=0 due to Lemma 2. By

r=1
repeated use of Lemma 2 we get P(»B)=0. Hence P(©A)=0, because Bc A,
m(A)=m(B).
Now we have only to do the crucial part of the proof. Let {i},, € {1, ..., n},
j=1,..,K, is an arbitrary sequence of the length K. If (N7, ..., Ni) is
a corresponding set from &, then we consider a set

(Nl'n(jl—l)x 129(]2 I)X’ Ni'a’ ) lk’(]k I)X’ N;un qX) >
which contains the previous one and is constructed as follows:

f1=i1

j2=il+i, .
J3= Lisjieiz
generally
i, =i|+il*‘i2+»~+is—l7 for §= 1, sway k N
and jis1=irsjaipsio §=K—1—ji—...—jc.
Clearly, for all s=1, ..., k+1, j,e{l,...,n};
g=K-1—-ji—...—ji=k(n+1)—kn—-1=k—-1=0.

Now we evaluate the measure P of this new set:

f o . L P (N, ) Pt s(d2) .. Frxa(ds) Foxs(dx)m(dx;) <
IN,, o (1= VNP (NG . Pxi(de)m(dn) <
< j " f U PR (N - Pro(dxm(dx) <. . <
< (1 —1/r)*'Fhx, (N )m(dx) <(1-1/r)m(N;) <(1-1/r)*m(By) .
The statement holds due to the monotonicity of the measure. O

The proof of our Theorem will be based on the following weaker (but in fact
equivalent) result.

Lemma 4. Let (X, ¥, m) be a probability space, @: X = X a measure-pres-
erving stochastic transformation with m as an invariant measure, let Ee ¥,
(XN, &M, P) be the space of trajectories, associated with the stochastic transforma-
tion .

Let Me ™,

M={{x}iwoe X"; x,€E, x.€ E atleastforone n=1,2, ...} .

Then P(M)=m(E).
Proof. Suppose A={xeE: F'x(E)=1 for all n=1, 2, ...}. We know from
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Lemma 1 that A is almost invariant and E — A does not contain an invariant set
with nonzero measure. Then P(A, A)=J Fx(A)m(dx)=f 1m(dx)=m(A),
A A

therefore the statement holds for almost all xe A and we can restrict our
considerations only to the set E— A and the corresponding restriction of the
stochastic transformation @ to this set (defined in a natural way as a stochastic
transformation with restricted associated mapping F); m(A)=P(A, X)=
P(A, A)+P(A,E—A); hence P(A, E—A)=0. Thus in the following, we
suppose that E has not an almost invariant subset of nonzero measure. By the same
argument, if B is maximal almost invariant subset of E, then P(X—B, B) =0,
P(B, B) =1, hence we also suppose that E° has not an almost invariant subset of
nonzero measure. (Fenomenologically, trajectory gets into and from the almost
invariant set with probability zero.) Applying the statement of Lemma 3 to the set
Ec, we get P(E,xE°)<P(X,»wE) = P(xE°)=0, hence P(M)=
=P(E)—P(E, »E°)=P(E)=m(E). O

Proof of the Theorem. Let the assumptions of the Theorem hold. Then also
satisfied the assumptions of Lemma 4 are. Let M be a set defined by (1). Denote
(for n=0,1,2,...)

M, ={{x:}oe X": xo€ E, x, € E, ;¢ Efori>n} .
We obtain P(M,) <P(E, (n—1)X, E, ®E) <P(nX, E, ®E*) = P(E, ®E*) =0
From Lemma 4 it follows that P(E, °°X)=P(Mu0 M,.) If n>k, then

n=0

M,nM; =0, therefore M, are pairwise disjoint and D M,.) = i P(M,)=0.
n=0

n=0
Hence m(E) = P(E, » X) = P(M). The remainder of the statement for the ergodic
stochastic transformations follows from Lemma 3. O
Remark. The assumption of ergodicity is too strong for the particular case ; it
is sufficient to suppose that E< does not contain an almost invariant subset of
nonzero measure.
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SUHRN

O POINCAREHO VETE PRE STOCHASTICKE INFORMACIE
(MARKOVOVE RETAZCE)

Ivan Mizera, Bratislava

V ¢lanku sa formuluje a dokazuje Poincarého rekurencnd veta, zndma z ergodickej tedrie, pre
stochastické transformdcie, ktoré sii zov§eobecnenim obyc¢ajnych bodovych zobrazeni a maji tizky vztah
k Markovovym refazcom so v§eobecnym stavovym priestorom.

PE3IOME

O TEOPEME ITYAHKAPE IJIS1 CTOXACTUYECKHUX TPAHC®OPMALIMM
(LIETTIEM MAPKOBA)

HWBan Musepa, BpaTtucnasa

B craTbe popMynupyeTcs H fOKa3biBaeTcs TeopeMa [Tyankape o Bo3BpallieHHH. OHa H3BECTHA H3
3ProgH4YecKoi TEOPHH, B YaCTHOCTH I CTOXaCTHYECKHX TpaHCOpMalMii, KOTOpbIE ABIAIOTCH 0606-
[ieHHEM O6bIYHbIX TOYEUHbIX OTOGPaXKeHHH H HAXONATCA B TECHOM CBSI3H C LenssMH MapkoBa ¢ 061muM
MPOCTPAHCTBOM COCTOSIHHH.
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