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The following systems are considered

x'=f(t, x) (a)

and

y'€F(t, y), (b)

where f is such that it guarantees the existence of solutions of (a) on the infinite
interval (0, ®); F(t, y) is a nonempty compact convex subset of E, for each (¢, y)
from (0, ©) X E, and F also guarantees the existence of solutions of (b) on the
infinite interval (0, ).

By a solution of (b), we mean an absolutely continuous function on some
nondegenerate subinterval of (0, ®) which satisfies (b) almost everywhere (a.e.).

Definition 1. Let y(¢) be a positive continuous function on an interval (to, ®)
and let p>0. We shall say that two systems (a) and (b) are (v, p)-integral
equivalent on (o, ) iff for each solution x(t) of (a) there exists a solution y(t) of
(b) such that

V(O x(1) — y(D)] € Ly (to, ®) (©)

and conversely, for each solution y(¢) of (b) there exists a solution x(t) of (a) such
that (c) holds.

By a restricted (v, p)-integral equivalence between (a) and (b) we shall mean
that the relation (¢) is satisfied for some subsets of solutions of (a) and (b), e.g. for
the bounded solutions.

We shall say that a function z(¢) is y-bounded on the interval (t,, ) iff

sup l[y~(D)z(1)| < .

Next we shall consider special systems

205



x' e A(t)x + F(t, x) (1)
and

y'=A(t)y, (2)

where A(t) is an n X n matrix-function defined on (0, ») whose elements are
integrable on compact subsets of (0, ©); x and y are n-dimensional vectors, and
F(t, x) is a nonempty compact and convex subset of E, for each (¢, x) € (0, ©) X
E,.

Analogues of our result in ordinary differential equations may be found in [2],
[4] and [7].

Now we shall fix notations, introduce notions and state lemmas which will be
needed in the sequel:

We shall write |.| for any convenient matrix (vector) norm in E,. If A is
a subset of E,, we shall denote

|A|=sup {|al:aeA}.

Ln(J) will denote the n-th Cartesian product of L,(J). B(t,) will denote the space
of continuous functions from (f, ©) to E,. Let y(t) be a positive continuous
function on (1, ©). For ze B(t), we denote |z|,=sup |y z(t)|. Let B, =

{z€B(t): |z]y <}. Then B, with norm |.|, is a Banach space. For ¢ >0, we
denote B, ,={z€B(t): |z|, <o}. For a topological vector space Y let cf(Y)
denote the set of all closed convex nonempty subsets of Y.

Let X and Y be topological spaces.

Definition 2. A mapping F: X—2Y is said to be upper-semicontinuous at the
point x € X, if for arbitrary neighbourhood U of the set-image F(x) there exists
such neighbourhood V of the point x that F(V)c U, where F(V) = |J F(z). This

zeV
mapping is said to be upper-semicontinuous if it is upper-semicontinuous in each
point x € X.

Defimition 3 (Definition 4, W. Sobieszek [5]).

We say that the mapping F: X —2Y is upper semicompact at the point x € X if
from the assumptions x,—x, x.€X, y.€F(x,) it follows that there exists
a subsequence of the sequence {y,}, convergent to some y € F(x).

Definition 4 (Definition 3', W. Sobieszek, P. Kowalski [6]). The map F is
upper semicompact at a point x € X iff F is i) upper semicontinuous at the point x
and ii) the set F(x) is compact.

Lemma 1 (W. Sobieszek, P. Kowalski [6]). Let X fulfil the first axiom of
countability and Y fulfill the second axiom of countability. Then F is upper
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semicompact at a point x in the sense of Definition 3 if and only if it is upper
semicompact at a point x in the sense of Definition 4.

Lemma 2. Let p =1 and g(¢), f(¢) be nonnegative functions for ¢ =0. Then

([ o ([ e as)"a) ™ <([ ) ([ 9oy ae) ™ as

Proof. Let x(o,,, be the characteristic function of the interval (0, s). Then
using the Minkowski inequality we get

([oo ([ foras) a))™= .

([ (] a0 rtsixnt as)” ar) ™
=["([ @ 0f)xonm) a) " as=

®

=), 7 (Lm(g(’)Xw.v(t) de)e ds =
= [ ([ awa) " as.

Corollary 1. Let p =1 and f(¢) be nonnegative function for ¢ =0. Then

(Lm (J:wf(S) ds)" dt) UPsJ:S’”’f(S) ds |

Lemma 3. (Lemma 3, A. Ha3éak, M. Svec [4].)

Let y(t) and ¢(t) be positive functions for ¢t =0, Y(¢) a nonsingular matrix
and P a projection.

Further, suppose that

IA

[ L Y (O Y(OPY (s)g(s)]? ds] <k

for t=0, K>0, p>0 and

J:exp (—-K"’L' e*(s)y(s) ds) di<o,
Then
lim y~'(¢)| Y(t)P| =0 as t— o
and
[v=' () Y(1)P| € L, (0, ») .
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We assume throughout this paper that F: (0, ©) X E, —cf(E,) satisfies the
following conditions :

(c1) forevery fixed ¢ € (0, ») the function F(¢, x) is upper — semicontinuous,

(cz) for each measurable function x: (0, ®)— E,, there exists a measurable
function f,: (0, ©)—> E, such that f,(t) e F(z, x(t)) a.e.on (0, ®).

Given a function x € B, denote by M(x) the set of all measurable functions

y: (to, ¥)—> E, such that
y(t) e F(t, x)) a.e.on (to, ®).

Theorem 1. Let y(¢) and @(¢) be a positive continuous functions for ¢ =0.
Suppose that there exists g: (0, ®) X {0, ©)— (0, ®) such that

(i) g(¢, u) is monotone nondecreasing in u for each fixed re(0, ») and
integrable on compact subsets of (0, ) for fixed u € (0, ),

(ii) ng"(s, ¢) ds < for any constant ¢ =0, p' =1
0
(iii) for each x € E,
|F(t, x)| <@(t)g(t, y~'(¢)|x]) a.e.on (0, »).

Then the correspondence x— M(x) defines a bounded mapping of B, , into
cf(Lp. o) where

L:'.¢={y: 1¥lp. 0= U:Iw“(S)y(S)I"' dS]<°°} :

Proof. We have to show that for every x € B, ,: (a) M(x) is not empty, (b) M(x) is
convex, (c) M(x) c L}. , (d) M(x) is closed, (e) for every positive constant K there
is a constant N such that |x|, <K implies |y|,. ,<N for every y € M(x). (a) and
(b) are trivial, (e) follows from the assumption (ii) and (iii) and obviously implies
(c).

Thus we have to prove (d) only. Let {y.}, y. € M(x) be the sequence such that
[y» = y|,.e—0 as n— . By Riesz theorem there is a subsequence {y,,} of the
sequence {y,} such that {y,.(t)} converges a.e. on (t,, ©) to y(t) as n— . Since
yin(t) € F(t, x(t)) a.e. on (t, ©), we have y(t)e F(t, x(1)) a.e. on (t, ) i.e.
y(t) e M(x).

Definition 5. Let X be a topological space and let Y be a normed linear space.
A mapping F: X—2Y is weakly upper semicompact at a point x € X iff from the
assumptions x, € X, x,— X, y, € F(x,) it follows that there is a subsequence of the
sequence {y,} which weakly converges to some y e F(x).

Theorem 2. Let the hypotheses of Theorem 1 be satisfied. Then the mapping
M: B, (—cf(L} ;) is weakly upper semicompact.
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Proof. Let x,, x€ B, ,, |x,—x|,—0 as n—® and y, € M(x,). Since

© , 1/p’
IYnlp’.w$C=(f‘ gp(s’ Q) ds) )

there is a subsequence {y,,} of the sequence {y.}, which weakly converges to some
y €L} o. We only have to prove that y e M(x) .By Banach—Saks Theorem, there
is a subsequence {y,,} of the sequence { Yin} such that

{ &

_22)7211—)' —0 for n> o,
R i= rhe
Because of
1 n—1 1 n24+n—1
—_— ka —)0 — 2k '—)0
nz IZ—I P, ’ n2 k=n2+ly .o
as n— %, we have that
1 n24+n—1
- z Yok —Yy —0 as n—o> o,
n k=n P.®

Now, by Riesz Theorem, there is a sequence { 0.}, 0, €N, 0, =n such that

a:+o,‘—l
D ya(t)—> y(t) a.e.on (t,, ®) for n— oo .
n k=0,

On the other hand, by the assumption (c1), for almost every fixed ¢ € (1o, ©) and
any £>0 there is an integer N(&, t) such that

F(t, xi(t)) c F(t, x()) + K. = {u+ v: u e F(1, x(1)), [v|=¢€)

for i =N(e, t).
Thus y,«(t) € F(t, x(t)) + K., 2k =N(e, t) and by convexity of F(t, x(t))

2
o,to, —1

5 > yueF(t x(0)+K., 20,>N(e, 1)

so that
y(t) € F(t, x(t)) a.e. on (&, ).

Theorem 3. Let the hypotheses of Theorem 1 be satisfied. Let Y(t) be
a fundamental matrix of (2), let there exist supplementary projectors P,, P,, a
- constant K>0 and 1<p < such that

(iv) [ 19 @Y0PY-()p(s) | ds +

+ [0 YR Ys)e o)l as] <k
for all ¢ =0.
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Then the operators LM: B, ,—cf(B), i =1, 2, defined by
L Mx(t)= {z: z =J:' Y()P,Y '(s)f.(s)ds,xeB, ,an f, € M(x)}
and
LMx(t)={z: 2= [ Y(OP.Y~'(5)fi(s) ds, x€ By, pand f. € Mo

are upper semicontinuous. ‘
Proof. Because of Lemma 1, it suffices to prove that the operators LM
i=1, 2, are upper semicompact. We shall show this for the operator L,M only. In
the same way we can prove that L,M is also upper semicompact.
Let |x, — x|, —0, x., x e B, , and z, € L,Mx,. We have to show that there is
a subsequence of {z,} which converges to some z € L,Mx (in the norm | . |,) as
n— o,

Let z= j " Y()P,Y(5)yi(s) ds, yi € M(x))

(existence of Jm Y(t)PY'(s)yi(s) ds is guaranteed by (iii) and (iv)).

Since M(x) is weakly upper semicompact, there is a subsequence {y,;} of {y;}
which weakly converges to some y e M(x), i. e.

2u(0>2(0)= [ Y(OP,Y(5) y(s) ds € L;Mx(1)

a.e. on (to, ©) as i— o,
Further, using the Holder inequality (iv) and (iii) we get

2= [w(0) [ 97O YOP.Y(5)0(5)e ™ ()yu(s) ds| <
<vK [ o i)l ds] " <

<vK [(o" G oras] ",

Ll

thus the functions z,;, i=1, 2, ...,, are uniformly vy-bounded and by virtue of
J2ut) = 2] = | [ YOPY )y 05| <

ty 1/p t , 1/p’
<v)| [T OYOPY el ds] [ [*a76, 00 5] <

t 1/p'
sw(z)KU g"'(s,g)ds] . h<t,

210



they are also equicontinuous on every compact subinterval of (t,, ®). By Ascoli
Theorem, as well as Cantor’s diagonalization process; the sequence {z,;} contains
a subsequence {z}, which is uniformly convergent on every compact subinterval
of (t, ). This fact together with the inequality

guarantees the convergence of {z} on (t,, ©) in the norm |.|,.

Now we are able to prove some theorems concerning the (v, p) — integral
equivalence of the systems (1), (2).

Theorem 4. Let Y(t) be a fundamental matrix of (2), y(t) and ¢(t) are
positive continuous functions for ¢ =0.

Suppose that

a) there exist supplementary projections P;, P, and constant K>0 and
2<p <o such that

|| v 0 Y@P Y- (sl ds +
+ [Tl 0 YORYs)p (o)l ds| <K
for all 1 =0,

b) there exists g: (0, ©) X (0, ©)— (0, =) such that (i) g(¢, u) is monotone
nondecreasing in u for each fixed ¢ € (0, ©) and integrable on compact subsets of

(0, =) for fixed u € (0, =), (ii) Jms”"g"'(s, c¢) ds < = for any constant ¢ =0, where
0
1/p+1/p' =1, (iii) for each x € E,
|F(t, x)| < @(1)g(t, ~'()|x]) a.e.on (0, ),

c) Lmexp {—K"’J: @°(s)y(s) ds} dt<oo

) [T 1P Y )9()lgGs. o) ds<oo
0
Then the set of y-bounded solutions of (1) and (2) are (y, p)-integral equivalent.
Proof. Let y(t) be a y-bounded solution of (2) on (t,, ®), t,=0. Then there

is 0 >0 such that ye B, ,.
Define for x € B,, ,, the operator

Tx(t)={zeBw_2,: ) =y(0)+ f " Y()P, Y- '(5)f.(s) ds —
- [ YOP:Y(5)£(s) s, fre M)}
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The existence of

f " Y()P,Y(5)f.(s) ds

is guaranteed by a) and b).
For each x € By, 2, is M(x) equipped with the norm |.|, , defined by

e[ [ to R as]

By Theorem 2 LM = (L, — L,)M maps B,, 5, into cf(B,) and is upper semicontinu-
ous on By, ;.. Because y € B, is fixed, we have that also Tx ecf(B,) and T is upper
semicontinuous on B, ,,.

Further for each z € Tx, x € B, ,,, it is valid

[y~'(D)z(r)| <
$|W“‘(t)y(t)+fm [y~ () Y()P, Y '(s)@(s)| g(s, 20) ds +

+.[mIw—l(')y(‘)sz_'(s)‘P(S)l g(s, 20) ds <
<o+|[ W @YWP Y o)l as| - [[ 905,20 as)” +
* Uw""_'(’)Y(‘)PZY“(S)w(s)I" ds] [ f “g7'(s, 20) ds] "<

o 1/p’
$Q+K[I g°'(s, 20) ds] .

If we choose t, such that

© 1/p’
K{ f g7 (s, 20) dS} <o,

we have that T maps B, ,, into itself. )
Let x € By,;, and z € T(x). Then there is f, e M(x) such that
2'=A(t)z+f.(t) a.e.on (1, ©).
Therefore by b) (iii) for t, <t, <t,

l2(6) =2 <[ "|AG) [2(5)] ds + [ [£u(5)] ds <
<2 A@Iw(s) ds+ [ “g(s)g(s, 20) ds .

Thus the functions in TB,, ,, are equicontinuous on every compact subinterval of
(to, ). ’
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Then K. Fan’s fixed point theorem (K. Fan [1]) yields the existence of
X € By, 2, such that x € T(x). Clearly this fixed point x(¢) is a y-bounded solution of
(1).

Conversely, let x(t) be a y-bounded solution of (1). Define for ¢ =t,=0

*

i) =xs) = f Y(6)P,Y-'(5)f.(s) ds + j Y ()P, Y-(s).(s) ds ,
where
f:()=x'(t) — A(t)x(t) e F(¢, x(t)) a.e.on (to, ®).

It is easy to prove that y(t) is a ¢-bounded solution of (2). Now we have to proves
that

W“(t) |x(2) = y(8)| € L, (0, ) .
We have
VO~ y(0)] =
= f Y ()Y ()P, Y '(s)fc(s) ds — f Y (O Y(O)PY'(s)fo(s) ds .

It is sufficient to show that the terms on the right-hand side belong to L,(t,, ).
By the assumptions of the theorem and the Holder inequality we get

<

[ v YR Y619 as
[ 1o YOPY(5)| ¢()g(s, 20) ds <

<|y~(0) Y(1)P,| - f |P.Y'(5)@(s)g (s, 20)| ds .

Since (from Lemma 3)

lw= () Y(O)Pi| € L, (to, )

and d) holds, it is evident that this first term belongs to L,(t,, ®). For the second
term we have

J’,wlw—l(’) Y(OP,Y'(s)| |fu(s)] ds <
s,[m lp (DY ()P Y'(5)|@(5)g(s, 20) ds <
s(F|14"‘(t)Y(t)PzY-l(s)q,(s)p» ds) e (J:“g"(s, 2) ds) v
<k([ o, 200 05) " .
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Thus from b) (ii) and Lemma 2 we get that also this term belongs to L,(t,, ®). The
proof of the theorem is complete.
Remark 1. If we substitute in Theorem 4 the condition b) (ii) by the condition

([‘”gp,(s, c) ds)"*" e L,(0, )

and for p we assume that 1 <p <, then the conclusion of Theorem 4 holds.
Corollary 2. Let p=1 (and p'=®). Assume that the assumptions of
Theorem 4 are satisfied except b) (ii) which is substituted by conditions

lim y.(¢t)=0 for each ¢=0

and

Ye(t) € Ly(0, ),

where v.(t) =sup g(s, c).
Then the conclusion of Theorem 4 holds.
Corollary 3. Let p=x (and p'=1). Let condition a) of Theorem 4 be
replaced by
sup |y~ () Y()P,Y'(s)e(s)| +

tpSs <t

+ sup |y~ H()Y()P.Y'(s)g(s)| <K

<s<o

and

[~ (t) Y(¢)P,| € L,(0, ©), v>1

and all the other assumptions of the Theorem 4 hold.

Then the sets of y-bounded solution of (1) and of (2) are (y, v)-integral
equivalent.

In the same way as in Theorem 4 we can prove

Theorem 5. Assume that .the following hypotheses from Theorem 4 are
satisfied : a), b) (i), (iii). Instead of b) (ii) let

[orwwwy =

be satisfied.
Finally, let the left side of the inequality a) belong to L,(0, ©). Then the
conclusions of Theorem 4 are still valid.
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SUHRN
INTEGRALNA EKVIVALENCIA DIFERENCIALNYCH RELACIf
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V préci je zavedeny pojem multifunkcie slabo polokompaktnej z hora. Vyuzitie tohto pojmu
umoziiuje pouZif Ky Fanovu vetu o pevnom bode. Jej vyuZitim sii zov§eobecnené niektoré doterajsie
vysledky o integrilnej ekvivalencii diferencidlnych systémov pre systémy tvaru: x'e F(t,x) a y'=
f(, y)-
PE3IOME
UHTETPAJIBHASL 3KBUBAJIEHTHOCTh OU®®EPEHILIMAJIBHBIX BKIIIOYEHUN
AnekcaHpep Xaumak, Bpatucnasa
B pa6oTa BBOAMTCH NMOHATHE MYJIbTHHYHKIHH 1260 NMONYKOMNAKTHOH CBEPXY, HCMONbL30BaHHE
KOTOpPOrO JaeT HaM BO3MOXHOCTb NMPHMEHHTHL TeopeMy Kbl ®aHa o HenopsikHo# Touke. C ee

noMoLIbi0 060GIIEHEI HEKOTOPBIE 10 ITOTO BPEMEHH H3BECTHBIE PE3yNbTAaThl O MHTErpaNbHOH 3K-
BHBaNleHTHOCTH M depeHuHaNbHbIX CHCTEM AN cucTeM BHaa: x' € F(t, x) u y' =f(t, y).
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