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1. Introduction

We shall consider the nonlinear differential system

x"=f(t, x) (1)
and the perturbed functional-differential system belonging to it
y'=f(t, y)+g(t, y, Ty, . (2

Here x, y are n-dimensional vectors. We make the following assumptions about f,
g, T, x, y:

Assumption L. (¢, y), f,(t, y)e C[I X D, R"], where I=[0, ®), DcR" is
a domain;

Assumption IL. g(¢,y,z)eC[IXDXE, R"], where E=C[[-h,0], R"],
h>0;

Assumption IIL. T is a continuous mapping E into itself such that for u,, v, € E
the inequality u, <v, (here and further we consider a natural ordering of E) implies
Tu, < Tv,, where z, denotes the element of E defined by z(s)=z(t+s), —h <s <
<0;

Assumption IV. x(t, t,, xo) will denote the solution of (1) satisfying x(to, o,
Xo) = Xo, (o, Xo) € I X D such that for each x,€ D it exists for any t =t,.

The purpose of this paper is to study the asymptotic relationships between the
solutions of (1) and (2) by means of an analogue of the classical variation of
constants formula introduced by V. M. Alexeev [1] from which it follows that the
equation (2) and the integro-differential equation

‘yvo=P (3)
YO =x(t, to, PO) + | F(t,5, y()a(s, 5(5), Ty) ds
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are mutually equivalent for t=t,, where the derivative matrix x.(t, to, z) =
F(t, to, z) satisfies the variational equation

w'=f.(t, x(t, to, 2))w ,

F(to, to, z) =identity matrix and x,(t, to, z) = —F(t, to, 2)f(to, 2).

We begin by recalling some preliminary results which will be useful in the
proofs of the main theorems. In the previous work [2] the following assertions have
been proved:

Lemma 1. Let p(t), m()eC[[to—h, »), R.], G(t,u,z)eC[IXR, X
X E,, R,], where E, = C[[—h, 0], R.] be nondecreasing in the last two variables
for any t € I. Let T, be a continuous mapping defined on E, into itself satisfying the
Assumption III. Let g € E, be an initial function and let r(t)=r(t, to, q) be an
arbitrary solution of

. 0T (4)
r(6)=p()+ f G(s, r(s), Tur,) ds, t=to

on the interval [t,— A, c), (c < + ). Finally, let

m,<r, (5)
m(6)<p(t) + j G(s, m(s), Tm,) ds, t=1o.
Then the inequality
m(t)<r(t) (6)

holds for every ¢ €[t,, c). _
Lemma 2. Let the assumptions of Lemma 1 be true. Let 7(t) = 7(t, to, q) be
a maximal solution of (4) which exists in I. Let k(¢) € C[[t,— h, ®)R,] be such that

ko<q

A @)
k(t)Sp(t)+L G(s, k(s), T:k,) ds, =1, .

Then the inequality
k(t)<r(t) (8)

holds for every t =1,.

Remark. The maximal solution of (4) is defined as follows: A solution 7(t) is
said to be the maximal solution of (4) if for any other solution r(t) of (4) the
inequality r(¢) <7(¢) holds on the common interval of existence.
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2. Main results.
Theorem 1. Let the assumptions .—IV. be true. Let g€ E be such that
q(0) € D. Let the maximal solution 7(t) = 7(t, to, |q(0)|) of the equation
r.=q(0)|
r(t)=|q(0)| +[ G(s, r(s), Tyr,) ds
to

exist for every t =1, and have finite limit lim #(t) =r., where G and T, have the

t—o
same properties as in Lemma 1 and | .| denote a norm in R" or the maximum norm
in C, respectively. We denote by D° a compact subset of D and Z = {z € C[I, D}}.
Let H(t) be a continuous nonsingular n X n matrix function for ¢t =1, such that

(a) t=t,, ze Z, |H(t)z(t)| <#(t) implies z(t) e D°;

(b) [H(t)F(t, s, 2)g(s, z, Tz,| <G(s, |H(s)z(s)|, T:|Hz|,) for z€Z, t, s =t,;

(c) [H()x(t, to, z0)| <|q(0)| for zo€ D, t=t,, where x(t, to, zo) is a solution of
(1);

(d) toel, t=t, zeZ, z(t) e D° implies that g(t, z, Tz) is a bounded function.
Then the solution y(t, to, q) of (2) exists for every t =1, and for it there exists
a corresponding solution x°(t), t =1, of (1) such that

lim H(e)[y() = x*(8)] =0 . )

Proof. The solution y(t) = y(t, to, q) of (2) also fulfils (3) with x(,) = q(0).
Therefore we have

H@yY@I<IHO) + [ [HOF, 5, y(6)g(s, ¥(s), Ty ds <

<la@©)+ [ G(s. IH@()l, TilHyl,) ds (10)

Applying Lemma 2 from the last inequality we obtain
[H()y(8)| <#(t), to<t<T (< + ), (11)

where [#, T) is maximal interval of existence of the solution y(¢) of (2). Thus, by
(a) in the assumptions we have y(t) € D°, therefore g(t, y(t), Ty,) is a bounded
function. If T< + o, also the function f(t, y(¢)) is bounded, so that by (2)
y'(t) is bounded for t, <t<T. This implies that there exists a finite limit

l'in; y(t), hence the solution y(¢) of (2) can be extended up to the point T and

thus on the interval [t, T + d), d >0 which is a contradiction. Hence it follows
that T= + @, so as y(t) exists for every t =1, and it is a solution of (2); from
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the assumptions of Theorem it also follows that I G(s, 7(s), T\F,) ds < + oo,

Thus, for an arbitrary £>0 there exists u =t, such that for each t,, t,=u
(t:<t,) the inequality

{H(r) [Pt 5, v(Da6s, y5), T s

SI 2G(s, r(s), T,r) ds<e

is satisfied. Therefore with respect to the regularity and continuity of H(t) the
improper integral

[R5, vDats, v(5), T.) ds (12)

converges uniformly for ¢ on each compact subinterval from [t,, ©).
From (3) we see that for ¢ =t,

H(O)y(0)= HOLX(t, o aO) + [ F(t, 5, y(s)a (s, ¥(s), Ty) ds] -
—HO [ F(t, 5, y(s)a(s, (s), Ty.) ds
from where by (11) we obtain
HOW(O) ~x(t, 6, a(0) = [ Flt, 5, y(s)g(s, ¥(5), Ty,) ds]] <
sfc;(s, 7(s), TR, ds = ra— i(2) .

Moreover, in accordance with the assumptions we have lim [r.. — 7(1)] =0.
t—®

Thus, the (9) is proved.
To finish the proof it remains to show that

X0 =x(t, o gO)+ [ Flt, 5, y(5Da(s, (5, Tw) ds (13)
is a solution of (1).

The relation x(t, u, y(u)) + fﬁF(t, s, y(8))g(s, y(s), Ty,)ds—x°t)=

=fu % x(t, s, y(s)) ds is valid. Quite so % x(t, s, y(s)) =
= F(t, s, y())y'(s) = f(s, y)|=F(2, 5, y(s))g (s, y(s), Ty.)
holds, so that we obtain

Lu% x(t, s, y(s)) ds =I‘: F(t, s, y(s))g(s, y(s), Ty,) ds (14)
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from which with respect to (12) it follows
lim x(t, u, y(u)) =x°(t)

uniformly for ¢ on each compact subinterval from [¢, ©). Because of

35 Tt 50,5, YN = Flt, x(0, 5, Y, 5, YY) =15, ¥(s)] =
=Lt x(0, 5, YOIF(, 5, ¥()g(s5, ¥(5), Ty.)
and
Fe, 2°(0) = flt, 1t o, qO)] =lim [* 5 it x(0, 5, ¥ ds
we have
Fe: X3(8) = flt, x(8, X(t, 1o, 9(O))] =
=lim [*£1e, x(t, 5, YOIF(, 5, y()g(s, y()Ty.) ds

uniformly for ¢ on each compact subinterval from [t,, ©). Therefore, by differen-
tiating (13) we obtain that

) x®(£)=f[t, x(t, to, q(0))] +
+L flt, x(t, s, y(s)IF(t, 5, y(s))g(s, y(s), Ty,) ds =
=f(t, x°(1))

which completes the proof.
Theorem 2 below investigates the converse problem to that considered in
Theorem 1.
Theorem 2. Let the assumptions of Theorem 1 hold. Then for any solution
x(t) =x(¢, to, xo) of (1) which exists for each t =t, where x,€ D° there is
a t, =1, such that a solution y(¢) of (2) exists for every ¢t =¢, and the relation (9)
remains valid.

Proof. We suppose that (2) does not reduce itself to (1). Then, let 0<c<
I — Xo, choose t; =1, so large that Jn G(s, 7(s), Tit,) ds <c. For any integer n
such that n=t, we define the set )

Z,={zeC[[t, n], R"):|z(¢) <|H(t)x(t)| + c} .

First of all we show that under above conditions (2) has a solution z,(t) in Z,.
In view of (3) and (9) it is suitable to define the operator S on Z, as follows:

Sz(t) = H()x(1) + f "H(O)F(1, 5, H-(s)2(s))g(s, H-'(s)2(s), Ty(H-'z),) ds ,

L<t<sn.
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We notice that
1S2() = Hx(0)] <[ Gls, [H-(5)2(s)], TulH2].) ds <

sf G(s, 7(s), T\F,) ds <c, thus SZ, c Z,. It is easy to see that all assumptions of

the Schauder’s fixed point theorem are fultilled. Thus, for any considered
integer n there exists a fixed point z, € Z, such that Sz, =z,.
The function y,(t) = H™'(t)z.(t) satisfies

ya(0) = f(t, x(6)) + g (¢, yu(2), Tyn) +
+£ felt, x(t, 5, ya(SHIF(t, 5, yu(5))9(s, ya(s), Tys) ds (15)

and since
At 3D = (e, 2(0) = [ 511, x(0, 5, ya(s)] ds =
= [ £t 265, 3 WIFCE, 5, (DY) = 5, (DT 05 (16)
we obtain
w(t)= = [ £t x(t, 5, ya(DIF(E, O, yu(5)w(s) ds

where w(t)=y.(t) —f(t, y.(t)) — g(t, y.(t), Ty.,). The last relation implies w(t) =
0, thus y,(t) is the solution of (2) on [t, n].
Let k be an integer larger than t,. We consider the sequence {z.}, n=k,
k+1, ... of fixed points obtained above. Clearly this sequence is uniformly
bounded and equicontinuous on the interval [t,, k]. By Ascoli—Arzela’s
theorem there is a subsequence {z,} which is for n,=k+1 defined on
[ti, k+1] and is uniformly bounded and equicontinuous.
Proceeding inductively we obtain a function z(¢) on [t;, ©) and a chain of
subsequences {z,} that {z,} converges uniformly to z on every [, n +k].
Subsequence {z,.,} obtained by the diagonal choice converges uniformly to
z(t) on any compact subinterval of [¢,, ).
Because y, (t)=H'(t)z,(t) are solutions of (2), the limit function y(t)=
=H"'(t)z(¢) is also a solution of (2) on [t, ). With respect to the .
assumptions it is easy to see that the improper integral

[ HOFG, s, B 6)2()ats, Hs)2(0), T(H2),) ds

.converges and since it is equal to H(¢)[y(¢) — x(¢)] we conclude that (9) is fulfilled,
which completes the proof.

186



REFERENCES

[1] Alexeev, V. M.: Ob odnoj ocenke vozmuséenij reSenij obyknovennych differencialnych uravne-
nij, Vest. Mosk. Univ. Ser. I Mat. Mech. No. 2 (1961), 28—36;

[2] Rosa, V.: The Existence and Stability of Certain Functional-differential System, Acta Math. Univ.
Comenian., 46—47 (1985), 169—180.

[3] Rab, M.: Asymptotic Relationships Between the Solutions of Two Systems of Differential
Equations, Ann. Pol. Matem. XXX (1974), 119—124;

[4] Cooke, K. L.: Asymptotic Equivalence of an Ordinary and a Functional Differential Equation, J.
math. anal. and appl. 51 (1975), 187—207;

[5] Marlin, J. A.—Strable, R. A.: Asymptotic Equivalence of Nonlinear Systems, JDE 6 (1969),
578—596;

[6] Fennel, R. E.—Proctor, T.: On Asymptotic Behaviour of Perturbed Nonlinear Systems, Proc.
Amer. Math. Soc. 31 (1972) No. 2, 499—504;

Received: 29.7. 1983

Author’s address :

Vladislav Rosa

Katedra matematickej analyzy
MFF UK

Milynské dolina

842 15 Bratislava

SUHRN
ASYMPTOTICKE CHOVANIE PERTURBOVANYCH NELINEARNYCH SYSTEMOV
Vladislav Rosa, Bratislava
V préci sa vySetruje nelinedrny diferencidlny systém (1) x' =f(t, x) a perturbovany funkcional-

no-diferencidlny systém (2) y'=f(t, y) +g(¢, y, Ty.).
Skidmaju sa asymptotické vztahy medzi rieSeniami (1) a (2). Su stanované podmienky existencie

takého riesenia y(t) (2) a k nemu prislichajiceho riesenia x(¢) (1), Ze plati (3) lim H()[y(t) —x(1)] =0,

kde H(t) je reguldrna matica danych vlastnosti a tieZ podmienky pre existenciu rieSeni obriteného
problému pri zachovani (3).

PE3IOME
ACHUMITTOTUYECKOE INOBEJIEHHUE BO3MBIIMEHHBIX HEJIMHEMHBLIX CUCTEM
Bnapucnas Poca, Bpaticnasa

B craTtbe M3y4aeTcs HenuHelHas nuddepeHunanbHas cucreMa (1) x' =f(t, x) ¥ Bo3MylIeHHas
cdynxkuuonansHonudd. cucrema (2) y'=f(¢, y)+g(t, y; Ty,). HccnegoBaHo acHMOTOTHYECKOE
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nosefienue pemennit 1) u (2). OnpeneneHs! ycaoBHs 151 CYLIECTBOBaHMs TaKoro peweHus y(t) (2) u
cooTBeTcTBylouiero pewenus x(t) (1), uro (3)

lim H(0)[y(1) = x(1)] =0,

rae H(t) — naHHas HeBBIPOX[EHHas MaTpHUa. TakXke YCTAHOBIEHBI YCIOBUs [Nl CYLIECTBOBAHMS
pelIeHHit 3afauy, nonyyawouencs nepectaioskoit x(t), y(t), npu coxpanenuu (3).
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