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THE EXISTENCE AND STABILITY
OF CERTAIN FUNCTIONAL-DIFFERENTIAL SYSTEM

VLADISLAV ROSA, Bratislava

In this paper a functional-differential equation will be investigated. It can be
considered to be a perturbation of some ordinary nonlinear differential equation.
The existence theorem will be proved and some sufficient conditions for the
stability of solutions will be formed.

Let D be a region in R", let f be a continuous function from I=[0, ) x D
into R" such that f,(¢, y) exists and is continuous on I X D, let g be a continuous
function from I X D X E into R", where E is a family of continuous functions on
[—h, 0] for some h>0 and let T be a continuous mapping defined on E into itself
such that for u,, v, € E the inequality u, <v, implies Tu, <Tv,. (Here and further we
consider the natural ordering of E). For a continuous function y(t) defined for
t=—h and each h>0, y, denotes the element of E defined by y.(s) =y(t+s),
—h<s5s<0.

We consider a nonlinear differential system

dx
T =f(t.x) (1)
and a perturbed functional-differential system
d
d—f=f(t, y)+g(t,y, Ty) . 2

Let x(t, to, xo) denote the solution of (1) passing through the point
(t0, Xo0) €[0, ) X D. It will be always assumed that for arbitrary t, =0 and x,€ D
the solution x(t, t, x,) of (1) exists (i.e. is defined) for every t =t,.
dx(t, to, Xo)

We know [1] that under above conditions the matrix F(t, to, Xo) = i
0

is the fundamental matrix solution of the variational system

u' =f[t, x(t, to, x0)]u 3)
such that F(t,, to, Xo) is the identity matrix.
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A solution y(t) of (2) given by an initial function p € E for t=t, we shall
denote y(t, to, p). Vertical bars will denote any appropriate vector and compatibile
matrix norms, respectively. For every z € E we define norm by ||z]| = sup |z(s)|.

—h

<s<0
Let D, be a convex subset of D. For any ¢ for which there exist x(t, t,, xo),
x(t, to, yo) respectively, where xo, y, € D, by [2] the inequality

Ix(tv lo, x0)—x(t’ to, Yo)l s'_)’o_xol sup IF(I’ lo, U)l (4)
veD

holds.
Let E be a family of continuous functions on [—A, 0] into D. If p € E then the
solution y(t, to, p) of (2) satisfies by [4] the functional-integral equation

. ylo=p (5)
YOy =x(t, to, pO)+ [ Pt 5, y(s)g(s, (5), Ty.) ds

for any t =t, such that x(t, to, p(0)), y(¢, to, p) exist.

Combination of (4) and (5) yields our first preliminary result.

Lemma 1. Let x,e D,, p € E, p(0) € D,. Then for every t =t, for which there
exist x(t, to, Xo) and y(t, to, p) respectively, we have

ly(t, to, p) — x(t, to, x0)| <|p(0) — xo| sup |F{(¢, t,, v)| +
veD
, (6)
+ [ 1RG5, y(s. to P (s, ¥(s, top), Ty ds

Now we give some lemmas which embody suitable conclusions for the
investigation of the relations between the solutions of (1) and (2) and which will be
useful in the proof of main theorems below.

Lemma 2. Let p(t) be a continuous function from [#,— h, ©) into R, and
G(t, u, z) be a continuous function from I X R, X E, into R,, where E,cE is
a space of continuous functions from [—h, 0] into R.. Let T, be a continuous
mapping defined from E, into itself such that for w, v, € E, the inequality u <v,
implies T u, <T,v,. Let q € E, be an initial function.

Then there exists a positive number d such that the initial value problem

S (7
r(6) = p() + j G(s, r(s), Tur,) ds, t=1o

where q(0)=p(t), has a solution r(t, t, q) on the interval [t,— h, to+d].
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Proof. Let a, b, M be such positive constants that for
to<t<to+a, p(t)<r(t)<p(t)+b, p=r.<p,+b,
where

o~ [q(t—t), to—h<t<t
p(t)_{ p(t), t<t<t+a

the inequality
G(t,r, T\r) <M

holds. We denote by B the space of continuous functions from [t,— h, t,+ d] into
R., where d =min (a, b/M). If for any re B we define norm |.|s by relation

|[rls= sup r(t), B is a Banach space.
= to—hStSto+d
We define a set Sc B as follows:
! r(t)=q(t—to), to—h <t <t
S={reB: p)<r(t)sp(t)+b,
oS b, } to<t<ty+d

It is easy to see that S is a convex and closed set. Now we define an operator Z on S
by Zr =gq, where

q()=q(t—t), to—h<t<'ty

t (8)
q(t)=p(t)+f‘ G(s, r(s), Tyr,) ds, to<t<to+d .

Obviously p(t) <Zr(t)<p(t)+Md <p(t)+b, so that ZScS. We have
Zh(t)_zrz(t):(), to"hsts to

| Zr(t) — Zry(t)| =

I‘ [G(s, ri(s), Tir,) — G(s, ri(s), Tarz,)]ds|<  (9)
S,j' IG(S, rl(s)’ T.r,,)—G(s, "2(5), Tlrzs)l ds <

to+d
$f IG(S’ ri(s), Tiry,) — G(s, "2(5), Tlrz,)l ds, t=t,.
to

Since the function G and operator T, are continuous, it follows that for arbitrary
€>0 there exists 6§ >0 such that for {(,<t<t,+d, r, r,eS the inequalities
|ri(2) = ri(t)]|s <8, |1, —ra)1 < imply

|G(t, ri(2), Turw) — G(t, r(t), Tural)| <§ .
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Hence by (9) |Zr.(t) — Zry(t)|s <&, thus the operator Z is continuous on S. Here
|.]: denotes a norm for the space E,. Further for t,, t;€[to, to+ d]

|Z"(tl)"zr(12)| Sl!’(h)—P(tz)I + J:'ZG(Sv r(s), Thr,) ds| <
<|p(t)—p()| + M|t~ 1] .

Since p is the continuous function, for arbitrary € >0 there exists d >0 such that

for [t, — t,| < § the inequality |p(t,) — p(t,)| <§ holds. If we take & =§€ﬁ we obtain

L
2M
also uniformly bounded, applying the Schauder fixed point theorem it follows that
there exists at least one function 7€ S such that Zr=rF, tc—h <t<t,+d from
which we have

| Zr(t)) — Zr(t)] <§+M =g, thus the set ZS is equicontinuous. Since ZS is

F(H)=q(t—to), to—h <t <t

f(t)=p(t)+J’ G(s, F(s), TyF) ds, to<t<t,+d

and therefore 7(t, to, q) is the solution of (7) on [t, — h, t,+ d], which completes the
proof.

Remark 1. If there exists a solution of the integral equation (7) on [t,—h, to+
d], by a well-known property of the Volterra integral equations this solution can be
continued. Indeed, for t =t,+ d we can write the solution in the form

r(t)= [p(t)+f:+dG(s, r(s), Tir,) ds] +J;:+d G(s, r(s), Tyr,) ds,

where in the square brackets the known function is situated and then continue
solving the equation. From this some important properties of the solution r(t) of
(7) follow, first of all:

i) the solution can be continued on some maximal interval of its existence
[to—h, c);

ii) if [to— h, c) is the maximal interval of existence of the solution, then there
cannot exist a proper (finite) limit lim r(t).

t—c”

Lemma 3. Let the assumptions of Lemma 2 be satisfied. Let G be a nondec-
reasing function in last two variables for each ¢t € I. Let m be a continuous function
from [to,—h, ) into R, and let r(t)=r(t, to, q) be an arbitrary solution of (7)
existing on [t, — h, c), (¢ < + ). Then, providing

my<r, (10)
m(t)<p(t)+I G(s, m(s), Tym,) ds, t=t,
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the inequality
m(t)<r(t) (11)

holds for each ¢ €[t c).

Proof. Suppose the opposite. Then the set W={te[t, c): m(t)=r(t)} is
nonempty. We denote t,=inf W. Obviously t,>t and m(t)<r(t), to<t<t,
m(t,)=r(t,). Because of m,<r, it follows m,<r, for t,<t<t, and since T, is
a nondecreasing operator, for f,<t<t, we have Tym,<Tr.. Also, since G is
monotonous, for t, <t <t, we obtain G(t, m(t), Tym,) < G(t, r(t), T,r,). However

by (7) and (8) we have m(t1)<p(t,)+fI G(s, m(s), Tym,) ds sp(t,)+f“(}(s,

r(s), Tyr,) ds = r(t,), which is contradictory to the assumption m(t,) = r(t,). Thus,
the set W is empty and the assertion is proved.

Definition 1. A solution 7(t) [r(¢)] is said to be a maximal [minimal] solution
of the (7) if for any other solution r(t) of (7) the inequality r(¢) <#(t) [r(t) =r(1)]
holds on the common interval of existence.

Lemma 4. Let the assumptions of Lemma 3 be satisfied. Let q € E, be a given
initial function. Then there exists a positive number d such that the maximal
solution of (7) exists on [t,—h, t,+d].

Proof. Procceding like in the previous lemma we obtain a >0, b >0, M >0.
Since G is continuous on [to, to+a] X [p(t), p(t)+ b] X [F(t), F(t)+ b] and T, is

. : b
continuous on E,, we obtain G(¢, r, Tlr,)<M+§ for tot<t<t+a, p(t)sr<

p(t)+b+e, p,<r.<p,+b+e¢, and for each £€(0, &).
We consider the initial value problem
r,=q-+e

r(Py=pli) +s+f' G(s, 1(s), Tyr) ds, 126, (12)

p(to) =4q(0),

where € €(0, &).
Using Lemma 2 we obtain that this problem has a solution r(t, t,, q, €) which
exists on [t — h, to+d], where

For 0< ¢, <€, <¢ the inequalities

rro(t09 q, 82)< rro(to, q, 81)
r(t, to, q, €2)<p(t) + € +I G(s, r(s, t, q, €), Tyr(to, q, €),) ds
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hold for t, <t <ty+d from which using Lemma 3 we have
r(t, to, q, €2)<r(t, to, q, &), toSt<to+d .

Since the system r(t, to, q, €) is equicontinuous and uniformly bounded on
[t, to+ d] and the system T,r(t,, q), is compact on E,, applying the Ascoli—Arzela
theorem there exists a monotonous, decreasing sequence {&,} which converges to

zero as n tends to + o such that lim r(¢, t, q, €,) = r(t, to, q, 0) = r°(t, t,, q) and

lim Tir(t, q, &), = Tir(to, q,0),=Tir’(to, q). uniformly for te[to, to+d].

Also, since G is uniformly continuous, we obtain that G[t, r(t, to, q, &),

Tlr(tov q, 8")']
converges uniformly to G[t, r(t, to, q), Tir’(to, q).] as n tends to + = so that the
convergence principle can be wused in the equation r(t,t, q, &)=

= p(t)+e,.+[ G(s, r(s,to, &), Tir(t, q, &);)ds to<t<to+d. Evidently

r’(t, 9)o=q, so the limit function r°(¢, to, q) is the solution of (7) on [t,—h,
to+d].

To finish the proof it remains to prove that r(t, t,, q) is the maximal solution
of (7). Indeed, let r(t, to, q) be a solution of (7) existing on [t,— A, t,+ d]. For any
€ €(0, &) the inequalities

rfo(t01 q)< rlo(tO’ q, E)
r(t, to, q)<p(t)+e¢ +f G(s, to, q), Tir(to, q)) ds
to

and the equality

r(t, 1o, 4, €)=p(1) + + f G(s, (s, tor q, €), Tar (1o, q, €)) ds

for tp<t<ty,+d hold. Hence by Lemma 3 for the same ¢ the estimation
r(t, to, q)<r(t, to, q, €) holds. Also, because lir(r’l+ r(t, to, q, €)=r(t, to, q) un-

iformly on [t, to+d] we obtain that on the whole interval of existence the
inequality r(t, to, ) <r°(t, to, q) is fulfilled, which completes the proof.

Remark 2. Analogically the existence of a minimal solution of (7) can be
proved.

Remark 3. Both the maximal or the minimal solution of (7) respectively can
be continued (as a maximal or minimal solution respectively) on the interval
[to—h, ).

Lemma 5. Let the assumptions of Lemma 4 be satisfied. Let 7(t) = #(t, to, q)
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be a maximal solution of (7) which exists on I. Let k(t) be a continuous function
from [t,—h, ®) into R, such that

, k=a (13)
k() <p(r) + f G(s, k(s), Tk)) ds, t=1, .
Then the estimate
k() <F(t) (14)

is true for each t=1,.

Proof. To employ Lemma 3 and Lemma 4 we need only to show that for any
compact subinterval there is an £,>0 such that the solution r(t, €) exists on it for
every £ €[0, &) and make the considerations on such a one compact subinterval
only. The proof of this property can be realized analogically to the proof of
Theorem 3.2 in [3]. After having found a solution r(t, €) for every t =1, and any
e€[O, &) we have to ascertain that for all considered ¢ and € >0 the estimate

k()<r(t, ) (15)
is fulfilled. This relation can be proved similarly as in Lemma 3. In accordance with
Lemma 4 we have lir(l)l+ r(t, €)=7(t) uniformly in ¢, which completes the proof.

Definition 2. The system (2) is said to be stable if for an arbitrary £ >0 and
to =0 there exists 6 >0 such that for every two solutions y(t, t, p1), y(t, to, p2) the
ly(t, to, p1) = ¥(¢, to, p>)| <& holds for every t =1, and every p,, p.€ E such that
llp1—pall <.

In addition, if lim |y(t, to, p) — J(t, te, p2)| =0 the system (2) is said to be

asymptotic stable. .
Remark 4. The above definition can be applied to the system (1), too.
Definition 3. The equation (7) is said to be stable if for an arbitrary £>0

there exists 8 >0 such that for the maximal solution 7(t) = #(t, to, q), 7(t) < & holds

for every t =1, every function p(t)<d and every initial function g such that

llqll <é.
In addition, if !im r(t) =0, the equation (7) is said to be asymptotic stable.

Theorem 1. Let for the function g(t, y, Ty,) the estimate

[F(t, s, y(s))g(s, y(s), Ty.) = F(t, 5, 5(s))g (s, §(s), Ty.| < (16)
gG(S, IY(S)—)_)(S)I’ Tlly—)_’IS)’ 56l

be fulfilled, where the function G and the operator T, are the same as in Lemma 2.
Let x(t), x(¢) be some solutions of (1). Then the stability [asymptotic stability] of
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(1) and (7), where p(t)=|x(t) — x(¢)| implies the stability [asymptotic stability] of
the perturbed system (2), respectively.

Proof. Because of the stability of (1), for |x, — %o| <y we have |x(t) — x(¢)| <
<4é. Similarly, from the stability of (7) for ||q||<d, p(£)<8 we have
F(t, to, ||ql) <&, all for ¢ =t,.

We shall show that for |r, — r,|5 < & the inequality |y(t, to, r1) — y(t, to, 12)| <€
holds for every ¢t =t,. Suppose a contrary. Then there exist solutions y(¢, to, 1),
y(t, to, r;) and t,>t, such that |y(t,) — y(t,)| =€, |y(t) — y(t)| <€, to<t<t,.

From (5) we obtain

. eTh (17)
V() =x(t, to, :(0)) + j F(t, s, y(s))a(s, y(s), Ty,) ds, t=te.

Similarly for the solution y(t, t, t,) of the problem

g . " 2)
' a'¥=f(t, }_’) + g(t’ )_)9 Ty')

we obtain

Yo=T2 (18)
§5(6)= £(t, to, r2(0)) + f F(t, s, 5())a(s, 3(s), T5,) ds, t=1;.

We have
Yo~ Yu=T1—T12
YO =50 =x(0) =20 + [ [F(t, 5, ¥(5)g(s, ¥(5), Ty) -
~F(t, 5, 5(s))9(s, 5(s), T7.)] ds .

Consequently, if we denote |r, —ry|s =7, |y(t) — y(t)| = m(¢), |x(t) — x(¢)| = p(2),
using the (16) we obtain

m, $|r'3
m()<p(®)+| G(s, m(s), Tim,) ds
p(to) =|r:i(0) — r(0)| =[r(0)] .
Thus, applying Lemma 5 we obtain

m(t)=|y(t) = y(t)| SF(t, to, |r|s), t=1o. (19)
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For t=t, we have
e=m(t)=|y(t,) = ()| <F(t,, to, |r|s) <€

which is a contradiction. Hence the inequality |y(t) — y(t)| <& is valid for every
t =1y, and thus the stability of (2) is proved.

If we assume the asymptotic stability of (1) and (7) we obtain as a consequence
of the achieved considerations that the system (2) is stable so that the (19) is true

for every t=t. From this it follows immediately that if lim 7(t) =0 then also

lim |y(t) — y(¢)| =0, which completes the proof of the theorem.

In the paper [5] the following assertion has been formulated:
Lemma 6. Let u(t), f(t), g(¢) be continuous functions from I into R, such
that

u(:)Su0+f' f(s)[u(s)+f’ gDl dz)ds, 12, (20)

where u, is a positive constant.
Then the estimate

) <udl 4 f FsYiexp { L [f(z) + g(2)] dz} ds] 1)

holds for every t =t,.

Definition 4. The trivial solution x=0 of (1) is said to be exponential
asymptotic stable if for every t,=0 there exist constants K >0, ¢ >0 such that for
any t =t, and |x,| sufficiently small the inequality

[x(t, to, Xo)| <K|xo| exp [—c(t —t,)] (22)

is fulfilled.
Theorem 2. Let the solution x =0 of (1) be exponential asymptotic stable. Let
k(t), m(t), n(t) be continuous functions from I into R, which fulfil

me(t) dt< oo, Lmn(t) dt<o o)

k(1) <exp [—cit] f "n(s)|y(s)| ds ,
o
where ¢, is a positive constant. Let for (¢, y, g) eI X D X E the inequality

lg(t, y, @)l <m(t)[|y| + k(1)] (24)

be true.
Then all solutions of (2) converge to zero as ¢ tends to + .
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Proof. First of all we shall show that the solution u,=0 of (3), where
f(t, x(t, to, xo)) =f(t, 0) is exponential asymptotic stable. Indeed, let u(t) be
a solution of (3) with the same initial condition as the solution uy(t) the equation

u6=f,(t, O)uo o

ox(t, to, 0)

Fundamental matrix of this solution is F(¢, t,, 0) = 3x
0

. For the components
of the vector x, we have

ax(t, to, O)’
9x,

X(t, to, xio)—x(t’ Lo, O)
h-—oO h

=Kexp[—c(t—1t)], i=1,...,n,

=lim K exp[—c(t —t,)] =
h—0

where x;o is a vector which contains exactly unique non-zero i-th component whose
value is equal to h, since x(t, to, 0) =0 and |x(t, to, Xo)| < K|xo| exp[—c(t —to)].
Hence

|F(t, to, 0)| <K exp[—c(t—to)]

thus the solution u, =0 is exponential asymptotic stable. Now, proceeding analogi-
cally as in the proof of Theorem 1 of [6] it can be shown that in a suitable domain
D, the estimate

[F(t, to, xo0)| <K, exp[—ci(t—t,)], t=to, K;>0,¢,>0 (25)

holds. If we assume that D°c D, is a convex subset, x,€ D° q(0) € D°, then from
(23), (24) and (25) using Lemma 1, (where x(t, t,, 0) =0) we obtain the estimate

ly(D)] <|q(0)| Ki exp[—ci(t —t)] +
+ [ Kiew [=c(e=5)m() x[ly(o)] +expl-cis] [ n(2)|y(2)] dz) ds
(26)
Upon multiplying by exp[c;t] we obtain

¥ expleut] <|a(0)| Ky expleval + | Ko exp leusm(s)lIy(s)[1+

+expl—cis] [ n(2)|y(2)] dz] ds =|a(0) K, exp [yl + [ Kim)lys) %
: X | exp[cis] +
+[ (@) dzl ds <|a(O)| Ky expleval + [ Kim(s)]](s)] expless] +

+[ @ Iy(@)| expleiz] dz] ds
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If we denote |y(t)| exp[cit] = u(t), using Lemma 6 the last inequality leads to
ly(¢) exp[eit] <
<|q(0)| K, exp[cito][1+ f K,m(s) exp[ f [Kun(2)+n(z)] dz] ds] ,
to to

so that multiplying by exp[—c,¢] finally we obtain

¥ <1a(0)| K expl~ct~)][1+ | Kim(s) exp [ [Kim(2)+n(2)] d2] ds],
12t (27)

for every solution y(t) of (2).
Choose g(0) and K, sufficiently small ; from (27) it follows the assertion of the
theorem. The proof is complete.
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SUHRN

EXISTENCIA A STABILITA RIESENI
ISTEHO FUNKCIONALNO-DIFERENCIALNEHO SYSTEMU

Vladislav Rosa, Bratislava

V préci sa skima funkciondlno-diferencialny systém, ktory vznikne perturbéciou istej nelinearnej
diferencidlnej rovnice. St dokazané vety o existencii rieSenia systému (aj maximalneho a minimalneho
rieSenia) a sformulované postacujiice podmienky stability, asymptotickej stability a exponencialne;
asymptotickej stability rieSeni skimaného systému.

PE3IOME

CYUWECTBOBAHUE U YCTOMYUBOCThH
PEIUIEHUN ®YHKLUMOHAJIbHO-IU®OEPEHLIMAIILHOM CUCTEMBI

Bnapucnas Poca, Bpatucnasa

B craThe u3yuaetcs dyHKuHOHaNbHO-NUpdEPeHIHANbHAS CHCTEMA, BO3HUKILAA BOIMYIIEHHEM
KaKOro-To HelMHEHHOTO MU depeHIHanbHOrO ypaBHeHHs. [JOKa3bIBalOTCA TEOPEMBI CYLIIECTBOBAHHS
PeLICHHA [ 3TOH CHCTEMbI (TaKXKe MAKCHMalbHOrO M MHMHHMAILHOTO PELIEHHH) M OnpefeleHbl
ROCTaTOYHbIE YCIOBHA NS YCTOWYMBOCTH, ACHUMNTOTHYECKOM YCTOWYMBOCTH M 3IKCNOHEHLMAlh-
HO-aCHMNTOTHYECKOH YCTOWYHBOCTH PELICHHH MCCIIENYEMOH CHCTEMBI.
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