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Introduction

A study of multifunctions is motivated by numerous applications in different
fields. In [1] the idea of multifunctions is exploited in mathematical programming.
There are some continuity properties of supremal value function and of the
solution set investigated in the paper. This two concepts arise naturally in the
development of solution techniques for decomposable mathematical programming
problems. The multifunctions determined by inequalities are also studied and some
conditions for them to be closed and open are given there. These are properties
similar to upper and lower semicontinuity respectively. In this paper we deal with
the same problems but for quasicontinuity.

In all what follows X, Y will denote topological spaces and by R we denote
(— o, + ) with the usual topology. .

1. Supremal value function

The supremal value function is termed the function v: X— R defined by

v(x)=sup{f(x,y): yeF(x)},

where f: X X Y— R is a function and F: X — is a multifunction. We shall use the
capital letters for multifunctions and we shall write F: X — Y instead of F: X —2Y
for a multifunction whose values are subsets of Y. The case F(x)=@ is also
possible. Before studying the properties of supremal value function we introduce
some definitions which we shall use.
The notion of quasicontinuity was introduced by Kempisty as follows.
Definition 1. A function f: X— Y is said to be quasicontinuous at a point
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xo€ X if for any open U containing x, and any open V containing f(x,) there exists
a nonempty open set Gc U such that f(G)< V. The function is said to be
quasicontinuous if it is quasicontinuous at any x € X.

Following definitions are for instance in [2].

Definition 2. A multifunction F:X—->Y is said to be upper
(lower) semi-continuous at a point x,€ X if for any open V such that
F(x,) c V(F(x0)nV#0) there exists an open set U containing x, such that
F(x)c V(F(x)nV+@) for any x e U. F is said to be upper (lower) semi-continuo-
us if it is upper (lower) semi-continuous at any x € X.

Definition 3. A multifunction F: X—Y is said to be upper (lower)
semi-quasicontinuous at a point x,€ X if for any open U containing x, and any
open V such that F(x,) = V(F(x,)nV# @) there exists a nonempty openset G c U
such that F(x)c V (F(x)nV#0) for any xe G. F is said to be upper (lower)
semiquasicontinuous if it is upper (lower) semi-quasicontinuous at any x € X.

We shall denote by u.s.c., l.s.c,, u.q.c., L.w.c. the upper semi-continuity, the
lower semi-continuity, the upper semi-quasicontinuity, and the lower
semi-quasicontinuity respectively.

Following Definition 1. we can introduce the semi-quasicontinuity derived
from the semi-continuity') of real valued functions. In this case we shall speak
about order semi-continuities and order semi-quasicontinuities to distinguish these
from the notions defined above.

Definition 4. If f(x,) is finite, then a function f: X — R is said to be order
upper (lower) semi-quasicontinuous at a point x, € X if for any open U containing
xo and any €>0 there exists a nonempty open set Gc< U such that f(x)<
f(xo) + e(f(x) > f(xo) —€) for any x € G. In the case f(x,)= 4+ a function f is
always order upper semi-quasicontinuous at x, and it is said to be order lower
semi-quasicontinuous at x, if the inequality f(x)>e¢ holds instead of f(x)>
f(xo) — € for any x € G. In the case f(x,) = — % a function f is always order lower
semi-quasicontinuous at a point x, and it is said to be order upper semi-quasicont-
inuous at x, if the inequality f(x)<—¢ holds instead of f(x)<f(x,)+ € for any
x € G. The function is said to be order upper (lower) semi-quasicontinuous if it is
order upper (lower) semi-quasicontinuous at any x € X.

We shall denote by o.u.s.c., 0.l.s.c., 0.u.q.c., 0.l.q.c. the order upper semi-cont-
inuity, the order lower semi-continuity, the order upper semi-quasicontinuity, and
the order lower semi-quasicontinuity respectively.

The next definition can be found in [1].

‘) The definition of the semi-continuity can be found for instance in C. Berge: Topological
Spaces. Macmilan. New York, 1963.
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Definition 5. A multifunction F: X— Y is said to be uniformly compact near
a point x,€ X if there is a neighbourhood U of x, such that the closure of the set

F(U)= |J F(x) is compact in Y.
xeU

In all theorems following in the first two sections we do not exclude the
possibilities that f and v are infinite but for shortness the proofs are given only for f
and v finite. The cases when f and v are infinite can be proved with a slight
modification of the proofs given here.

Theorem 1. Let F be u.q.c. at a point x, € X, let f be 0.u.s.c. on x, X F(x,) and
let F(xo) be compact. Then v is o.u.q.c. at xo.

Proof. Let U be an open set containing x, and let € >0. From the supremum
property we have

fxo Y)<v(xo) +3

for any y € F(x).

Since f is 0.u.s.c., for any y € F(x,) there exist U, and V, neighbourhoods of x,
and y respectively such that for any (x, z) from U, X V, we have

Fx, 2)<flxo, 1) + <) + 5 ()

The set V= |J V, covers F(x,) and the compactness of F(x,) implies that

y € F(xo)
there exists the finite subcover V,,, ..., V, . Denote
V=V,u..uV, and U=U,n...nU, nU

where U, is the neighbourhood of x corresponding to V,, for 1 <i<n.

Then u.q.c. of F implies that there exists a nonempty open set G c U such that
F(x)c V for any x € G. If now y e F(x) where x € G, then y eV, for some i,
1<i<n. Because x € G implies x € U,,, according to (1) we have

Fx, 1) <o y) +5<0(00) + 5

for any y € F(x) where xe G.
Hence

v(x) <v(xo) +—23—£< v(xo)+¢€

for any x € G. The o.u.q.c. of v at x, is proved.
Theorem 2. Let F be l.q.c. at a point x, € X and let f be o.1.s.c. on xo X F(xo).
Then v is 0.l.q.c. at Xx,.
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Proof. Let U be an open set containing x, and let £>0. The property of
supremum implies that there exists a point y, € F(x,) such that

fxon yo)>v(x0) =5 -

From the o.l.q.c. of f on x, X F(x,) it follows that there are U,, V, neighbour-
hoods of x, and y, respectively such that

fx, 9)> f(xo, yo) =5 >v(x0) = )

for any (x, y)e Uy X V..

Let U, = UynU. From the l.q.c. of F it follows that there exists a nonempty
open set G < U, such that F(x)n V,#@ for any x € G. It means that for any x e G
there is a point y, such that y, € F(x)n V,. Hence a point (x, y.) belongs to the set
U, X V, and according to (2) we have

v(x)=f(x, y)>v(x0)— €

for any x € G. The o.l.q.c. of v at x, is proved.

If Y=R and f: X— Y, the quasicontinuity of f is equivalent to simultaneous
o.u.q.c. and o.l.q.c. provided that the sets G which can be different for individual
types of semi-quasicontinuities are not disjoint. Then we can introduce the
quasicontinuity for multifunctions as follows.

Definition 6. A multifunction F: X— Y is said to be quasicontinuous at
a point xo€ X if for any open set U containing x, and any open V,, V, such that
F(xo)< V, and F(xo)nV,#@ there exists a nonempty open set G = U such that
F(x)c V, and F(x)nV,#@ for any xe G.

The next theorem is given without a proof because it is a combination of the
previous theorems’ proofs.

Theorem 3. Let F be quasicontinuous at a point x, € X, let f be continuous on
xo X F(x,) and let F(x,) be compact. Then v is quasicontinuous at x,.

2. Solution set

When v is the supremal value fuhction, then the multifunction M: XY
defined by

M(x)={yeF(x): f(x, y)=v(x)}

describes its solution set — the set of the solution points.
Before formulating the theorems concerning the quasicontinuity of this

148



multifunction we give some lemmas in order to make the proof of the main
theorem more intelligible. The first lemma can be found in [2].

Lemma 1. Let X be a first countable Hausdorff topological space. Let x, be
a point which is not isolated. Suppose that { P};_, is a sequence of properties such
that to any neighbourhood U of x, a sequence {M,}7-,, M, U of nonempty open
sets exists such that P, is satisfied on M,. Then a descendirg base {W,};., of
neighbourhoods of x, and a sequence {G,}7-, of mutually disjoint open sets exist
such that G, ¢ Wi, GinW,,, =@, P, is satisfied on G, for k=1, 2, .... Evidently

the set A =J G.u{x,} is quasiopen.
k=1

Remark 1. The sequence {W.nA};_, is a base of neighbourhoods of x, in
a topology induced on A and if the sequence {P,};., satisfies Py., = P, for any
integer k, then the property P, is satisfied on W,nA. A set A is said to be

quasiopen if A < A°.2)

Lemma 2. Let X be a first countable Hausdorff topological space and let Y be
a metric space. If F is quasicontinuous at a point x,€ X, f is continuous on
xo X F(xo) and if F(xo) is compact, then there exists a quasiopen set A containing x,
such that F/A is us.c. at x, and v/A is continuous at x,.

Proof. If x, is isolated then it is sufficient to take A = {xo} and the theorem is
proved.

Suppose x, is not isolated. Let U be an open set containing x,, let V be an
open set such that F(x,)= V and let £>0. From the property of supremum it
follows that there exists y,e F(x,) such that

f(xor y0) > v(x0) =5

and it also follows that

f(xo, y)<v(x0) +3

for any y € F(x,).
From the continuity of f for any y e F(x,) there exists U,, V, neighbourhoods
of xo and y respectively such that for any (x, z) from U, X V, we have

., 2) < (3, y)+ 5 <0 (x0) +22 3)

and U,, V,, can be found such that moreover we have

?) The symbols A, A°, A’ are used to denote the closure, the interior and the complement of A’
respectively.

~

149



f(xv Z)>f(x0’ YO)_§>U(XQ)—E (4)

for any (x, y)e U, X V,,.
The neighbourhoods V, can be chosen such that V,eV.If V= |J V, then

y € F(xq)

F(xo)c V< V. The compactness of F(xo) implies that the sets V,,, ..., V, exist
such that when we denote V= L"J V,, then F(x,)c Vc V. Denote
i=1

U=U,n...nU, nU,nU

where U,, is the neighbourhood of x, corresponding to V,, for 1<i<n.
The quasicontinuity of F implies that there exists a nonempty open set G c U

such that F(x)c VeV and F(x)nV,,#0 for any x € G. Then the following two

facts are obvious for any x € G. There exists y, € F(x)nV,, and if y € F(x) then
y €V, for some i, 1<i<n. Hence (x, .)€ U, X V,, and (x, y) € U,, X V,,. From
the supremum property and according to (3) and (4) we have

v(x) =f(x, y)>v(x) — ¢ ()
and ‘

v(x)Sv(xo)+%<v(xo)+e (6)

for any xe G.

Combining inequalities (5) and (6) we have |v(x)— v(xo)| <€ for any x € G.
We have also proved that F(x)c V for any x € G.

Since Y is metric and F(x,) is compact, there exists a descending sequence
{ Vi}&-1 of open sets such that F(x,) < V, and for any open set W there exists k

such that Vi, ¢ W. If now the property P, is formulated as [v(x) — v(xo)| <% and

F(x) c Vi, then the assumptions of previous lemma are satisfied and the existence
of a quasiopen set A with properties formulated in Lemma 1 is guaranteed. Since
Py.1 = Py, there exists a descending base { W, };-, of neighbourhoods of x, such
that Py is satisfied on 'W,nA. This proves that F/A is us.c. at x, and v/A is
continuous at x,.

Since the proof of the following lemma does not essentially differ from the
proof of Theorem 8 in [1], it will be omitted.

Lemma 3. Let X, Y be first countable topological spaces, let X be Hausdorff
and Y be regular. Let F be uniformly compact near x, and let F(x,) be closed. If
there exists a quasiopen set A containing x, such that F/A is i.s.c. at xoand v/A is
continuous at xo, then M/A is u.s.c. at x,.
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The last lemma that we shall need is formulated as Theorem 3 in [3].

Lemma 4. Let X be a first countable Hausdorff space, let Y be a pseudomet-
ric space and let F(x,) be compact. Then F is u.q.c. at a point x, € X if and only if
there exists a quasiopen set A containing x, such that F/A is u.s.c. at x,.

Theorem 4. Let X be a first countable Hausdorff topological space and let Y
be a metric space. If F is quasicontinuous at a point x, € X and uniformly compact
near x,, if F(x,) is closed and if f is continuous on x, X F(x,), then M is u.q.c. at x,.

Proof. Since the assumptions of Lemma 2 are satisfied, there exists
a quasiopen set containing x, such that F/A is u.s.c. at x, and v/A is continuous at
Xo. (The compactness of F(x,) follows from its closedness and from the uniformly
compactness of F near x,.) The assumptions of Lemma 3 are satisfied because Y is
metric and so M/A is u.s.c. at x,. Then according to Lemma 4, the assumptions of
which are also satisfied, M is u.q.c. at x,. The theorem is proved.

Corollary 4.1. Let X, Y, F and f fulfil the same conditions as in Theorem 4. If
M is nonempty in some neighbourhood of x, and if M(x,) is single-valued, then M
is quasicontinuous at x,.

Proof. The quasicontinuity of M at x, follows immediately from the u.q.c. of
M at x, and from the facts that M(x,) is singlevalued and M is nonempty in some
neighbourhood of x,.

Remark 2. In the case when we operate with e-optimal solutions for the
evaluation of v(x) rather than with the exact optimal solutions defined by M(x),
we can work with this modification of M

M*(x, e)={yeF(x): v(x)<f(x,y)+¢€}.

In a similar way as we have proved the u.q.c. of multifunction M we can prove
that under the same conditions on X, Y, F and f as in Theorem 4, a multifunction
M?* is also u.q.c. on xo X R*. We can even obtain a stronger result which states that
M*/A X R* is u.s.c. on xo X R*, where A is a quasiopen set containing x,.

3. Multifunctions occurring in nonlinear programming

Some sets in mathematical programming are often determined by a system of
inequalities. Usually the set of feasible points in a nonlinear programming is
described by such a system. We shall therefore study some properties of the
multifunctions determined by a system of inequalities.

For instance the canonical convex programming problem can be stated as
sup {f(y): &(y) <0, ye Y}?), where 9: Y—R™ and f: Y— R are such that —f and

) If x, ye R™, then the statement x <y(x <y) will mean that x, <yi(x;<y:) for each pair of
corresponding components x;, y;.
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g are convex functions on the convex set Y. The perturbation function for this
problem is
vex set Y. The perturbation function for this problem is

v(x)=sup {f(y): §(y)<x,yeY}.

Let now f(x, y)=f(y) and g(x, y) = g(y) — x, where f and g are from XX Y
into R™. If we denote F(x)={y e Y: g(x, y) <0} we can see that the perturbation
function is of the form

v(x)=sup {f(x, y): ye F(x)} .

Thus we obtained the supremal value function properties of which we have
studied in the first section. Since the quasicontinuity of v depends on the
quasicontinuity of F, it is natural to find out under what conditions the multifunc-
tion F determined by inequalities is quasicontinuous.

A sufficient condition for F to be u.q.c. provides the following theorem.

Theorem 5. Let A be a quasiopen set containing a point x,€ X and let
g/A X Y be o.ls.c. on x, X Y. If F is uniformly compact near x,, then F is u.q.c. at
Xo.

Proof. Suppose that the assumptions are satisfied and F is not u.q.c. at x,.
Then there exist open sets U,, V, such that x,e U,, F(x,)= V, and for any
nonempty open set G = U, two points xg € G and yg € F(xg)n Vj exist. Since F is

uniformly compact at x,, there exists a neighbourhood U of x, such that F(U) is
compact.
Consider now the system of sets

Gu=UnUnU,NA",

where U runs over the system % of all neighbourhoods of x,. Then there exist two
nets {xv}vuex and {yu}uee such that xy € Gy and yy € F(xy)n Vi Evidently
xy— X, and because all xy are contained in U there exists a point y, such that
Yu, = Yo, Where {yy,},r is some subnet of the net {yy}yeca

From the o.ls.c. of g/A X Y at a point (x,, y,) we have

g(xo, yo) <liminf g(xy,, yu,) <O .

Hence we have y, € F(xo) and at the same time since yy, € Vo, we get y, € V. This
contradicts F(x,) = V, and the u.q.c. of F at x, is proved.

Denoting J={x € X: g(x, y) <0 for some y€e Y} we can state a necessary
condition for F to be l.q.c.. The simple proof is omitted.

Theorem 6. If F is l.q.c. at a point xo€J, then xo€J°.
The Definition 4 can be naturally extended to functions with values in R™. If
g(x,) is finite then a function g: X—R™ can be said to be order upper

152



semi-quasicontinuous at a point x, € X if for any open set U containing x, and any
£>0 there exists a nonempty open set G c U such thatk gi(x) <gi(xo) +¢*) for
any xeG and any i=1,2,...,m. The cases when g(x,) is infinite can be
reformulated similarly. Using this definition of o.u.q.c. we can give a sufficient
condition for F to be l.q.c..

Theorem 7. Let Y be a convex and normed space. Let the sections g’ be
0.u.q.c. at a point x,€ X for any y € F(x,) and let all components of all sections g,
be convex. If there exists y,€ Y such that g(x,, yo) <0, then F is l.q.c. at x,.

Proof. If we consider g...(x, y) =max {gi(x, y), ..., g=(x, y)} instead of g,
the convexity and the quasicontinuity as it was defined above are preserved. It is
also evident that

Fo.. () = {VEY (gmax(X, y) <0} =
={yeY:g(x,y)<0 for i=1,..,m}=
=F(x)

and so we can assume without loss of generality that g: XX Y—>R.

Let now U be a neighbourhood of x,, V be an open set such that F(x,)nV#0
and let y € F(xo)nV. Suppose that for any point y e F(xo)nV the inequality
g(xo, y) =0 holds. Then y,éV and there exists A€(0,1) such that y,=
(1—A)y + Ay, belongs to V. Here we assume that V is absorbing.

From the convexity of g. we have

g(x0, Y1) <(1—24)g(x0, ¥) + Ag(x0, yo) = Ag (X0, y0) <0 .

This contradicts the assumptions and that is why we can suppose that in F(xo)n'V
some point y exists such that g(x,, y)<0.

Since g’ is 0.u.q.c. at x,, there exists a nonempty open set G c U such that
g(x, y)<Oforany x € G. Hence y € F(x)nV for any x € G and F is L.q.c. at x,.

If we denote I(x)={y e Y: g(x, y) <0} we can substitute convexity by a more
general condition.

Theorem 8. If the sections g* are o.u.q.c. at a point x,€ X for any y € I(xo)

and if F(x,) < I(x,), then F is l.q.c. at x,.

Proof. Following the same consideration as in the previous proof, we can
consider g with values in R instead of R™.

Let U be a neighbourhood of x, and let V be an open set such that

F(xo)nV#@. Then I(xo)n V# @ and there exists y € I(x,)n V. Hence also a point y
exists such that y € I(xo)nV and so g(x,, y)<O.
From the o.u.q.c. of g’ at x, it follows that a nonempty open set G c U exists

4) g, denotes the component of g. It means g(x)=(gi(x), ..., gm(x)).
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such that g(x, y) <O for any x € G. We can see that y € F(x) and so F(x)n Vg
for any x € G. The l.q.c. of F at x, is proved.

We give the last sufficient condition for the l.q.c. of F.

Theorem 9. Let X, Y be normed spaces, let Y be convex and bounded and let
g be quasiconvex®) on X X Y. Let D c J be a set such that d(x,, D) >0, where the
last symbol denotes a distance between a point and a set. If for any neighbourhood
U of x, a nonempty open set G c U exists such that there are £ € D and A, € (0, 1)
such that x =A% +(1—A,)x, for any x € G, then F is l.q.c. at a point x,€ X.

Proof. By the assumptions if x € G, where G c U is the set corresponding to
a neightbourhood U of x,, then

X =Axf+(1 —‘AI)XQ

where 4, € (0, 1) and & € D. Since D c J, there exists § € Y such that g(%, ) <0.
If V is an open set such that F(xo)nV##, then there exists a point
Yo€ F(xo)n V. Consider the points

yx =A.,5\) +(1 _Ax)yo .

Since Y is bounded there exists a real k such that ||y|| <k for any y € Y. Then we
have

e = Foll =Ac [l $ = yoll <2KA, .

If i, <i= €0, then ||y, — yo|| <& and the point y, belongs to S(yo, €), where

S(yo, €) denotes the e-neighbourhood of y,. Since we can find £ such that
S(yo, €)= V, we need only to find conditions for A, < &,.
Denote L =d(x,, D)>0. If §=¢,- L and x € S(xo, §), then we have

Now if U = S(x,, 8)nU then a nonempty open set G < U exists such that any
x € G can be written in the form of

x=AX+(1-A)x,,

where £ €D and A, € (0, 1), A, <&, Hence y, e V.
From the quasiconvexity of g we have

g(x, y.) <max {g(%, 9), g(xo, yo)} <O .
This implies that y, € F(x) and so F(x)n V# for any x € G. The proof is finished.
®) A function g is said to be quasiconvex if for any A € (0, 1) and (x,, y1), (%2, y2) € X X Y we have
g(A-x;+(1-4) Xz A y1+(1—1)y;) < max {g(x,, y1), 9(x2, y2)}.
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