#3D
VAL 7

—/

Werk

Label: Article
Jahr: 1985
PURL: https://resolver.sub.uni-goettingen.de/purl?312901348_46-47 |log13

Kontakt/Contact

Digizeitschriften e.V.
SUB Géttingen

Platz der Gottinger Sieben 1
37073 Gottingen

& info@digizeitschriften.de

http://www.digizeitschriften.de
mailto:info@digizeitschriften.de

UNIVERSITAS COMENIANA
ACTA MATHEMATICA UNIVERSITATIS COMENIANAE

XLVI—XLVII—1985

GENERALIZED PASCAL TRIANGLES.
DECIDABILITY RESULTS

IVAN KOREC, Bratislava

Abstract. Generalized Pascal triangles (GPT) are created analogously as the
asual Pascal triangle is. However, instead of the addition on the set N of
1onnegative integers an arbitrary binary operation on a set A is used. Moreover,
‘he left and the right margins need not be constant but they are formed by using
‘WO unary operations on A, and the top is replaced by a finite sequence of elements
>f A. Even if only finite sets A are considered some questions about GPT are
algorithmically unsolvable. For example, it is undecidable whether an element
x € A occurs in a given GPT, or whether x occurs there infinitely many times. These
problems are proved to be solvable in some special cases. It is so e.g. if the set of
rows of a GPT is a semilinear language or if the left and the right margins are
constant and the binary operation is addition modulo a prime or if A consists of at
most two elements.

1. Introduction

The present paper is motivated by [1], [2], [3], where the systolic trellis
automata are studied as a model for parallel computations with pipelining which is
suitable for VLSI technology.

The systolic trellis automata consist of processors (without memory) which are
placed in the lattice points of the first quadrant of the plane. We suppose that
positive directions of the coordinate axes will be right-down and left-down so that
the origin will be the top point of the first quadrant. Every processor obtains the
data from its sons (i.e. down neighbours) and sends the output signal (with unit
delay) to two its fathers (if the processor is inside) or to its father (if the processor is
on the margin). If a word w of the length n ought to be processed, then it is given to
the inputs of the horizontal row which contain exatly n processors. The acceptance

93

of w depends on the output of the top processors after n steps. Notice that the
infiniteness of a systolic trellis automaton is an abstraction similar to that of a tape
of Turing machines.

It is obviously substantial for systolic trellis automata how regularly their
processors are placed. An important class of systolic trellis automata is formed by
so called regular systolic automata [1]. They will consist of labelled processors (of
finitely many kinds). A labelled processor consists of a label and a (proper)
processor (which is a pair consisting of an input function and a transition function) ;
the label of a processor in a regular trellis automata is uniquely determined by the
labels of its fathers (left and right ones, or only one of them if the other does not
exist). Hence a regular trellis automaton can be easily constructed from the top
downwards. It suffices to know the label of the top processor and the rules how to
determine the labels of other processors from the labels of its fathers. Besides
questions about the computational power of regular systolic automata (and just by
study of these questions) there also arise some questions about their global and
local structures. For example : which (labels of) processors mentioned in the rules
do occur in the regular trellis automata and how often they occur ; which (labels of)
processors occur in their neighbourhood and how they are placed; what is the
structure of horizontal rows of a regular trellis automaton. If we study only these
structural queastions we may forget the (proper) processors at all, and consider
only their labels ; this we shall do in all further sections. That is one way how to
obtain generalized Pascal triangles. Another way which also motivates the term
used is given by their definition.

The above-mentioned questions are algorithmically unsolvable in general. In
this paper we shall deal with some special cases when they are solvable. The
restrictions will be made either to the rules of forming new labels or to the structure
of an initial segment which can be constructed and investigated. Moreover, we shall
prove solvability of these problems if only two labels of processors are used. We
shall prove this for a more general case when several processors in the top line are
allowed.

The two next sections contain terminology and definitions, precise formulation
of the algorithmic problems and a proof of their unsolvability. (Abstract symbols
are considered instead of labels of processors.) The case considered in the fourth
and the fifth sections can be informally called semilinear. The sixth section
considers Pascal triangles modulo p ; they resemble tree structures of processors
(and indeed make it possible to realize some of them). The seventh section applies
the obtained results e.g. for the case of two symbols (i.e., that of two named
processors). The last section contains some modifications and generalizations; e.g.
how to apply the previous results fo groups of symbols (or named processors) which
are not contained in one row.

94

2. Notation and basic definitions

The letters Z, N denote the set of integers and the set of nonnegative integers,
respectively. The {(x, y)eZXZ; x +y=0} will be denoted by D. Further, let &
be an infinite countable set of symbols which contains a special symbol (a cipher)
for every x €N, and some further symbols, e.g. §. These further symbols will be
enumerated by (several or all) negative integers, e.g. $ will have the number —1.
Finite sequences of elements of ¥ will be called words, and all usual word and
language operations will be used for them and their sets, e.g. concatenation
(without any symbol), iteration *, iteration * without the empty word €, power as
repeated concatenation and boolean set operations union U, intersecticn N and
difference —. The set of all subwords of the words of a language L will be denoted
by Sub(L). The length of a word w will be denoted by |w|, and the cardinality of
a set X will be also denoted by |X|. All considered alphabets will be (finite
nonempty) subsets of &, and base sets of all algebras also will be subsets of &. (An
exception will be necessary for uncountable algebras but we shall not need them.)
As a rule, the symbol 8 will not be used in alphabets and base sets unless it is
explicitely mentioned.

Enumeration of elements of ¥ enables us to speak about recursivity and
recursive enumerability not only for languages but e. g. for classes of finite algebras
of the same (finite) signature, and for infinite countable algebras. (Codings of such
object e.g. into the alphabet {0, 1} is possible but it will not be necessary.)

Members of sequences (finite as well as infinite ones) will be usually numbered
by all elements of N. Hence a sequence will usually begin with the 0-th member.
We shall often need ultimately periodic sequences by the following definition.

2.1. Definition. 1) An infinite sequence (ao, a,, a, ...) will be called ultimate-
ly periodic if there are nonnegative integers k, p such that for every integer x = k it
holds a,.,=a,.

2) The least integers k, p with the above property will be called pre-period
and period of the sequence (a,, a,, a,, .:.), respectively.

3) The finite sequences

(00, Ay, Az, ..., ak—l)) (ak, ak+l, veey a“.,,_l) ’

where k, p are as above, will be called the pre-periodical part and the periodical
part of (ao, a,, a,, ...), respectively.

4) An ultimately periodic sequence will be called periodic if its pre-periodical
part is empty (i.e. pre-period is 0).

We shall consider functions defined on some special subsets of the set D.
These subsets and some notions concerning them are introduced in the following
definition.

95

| 2.2. Definition. 1) For every m, n € Z we denote
D, .={(x,y)eD;x=Zmand y=-n}. (2.2.1)
2) For M=D,, , or M=D and k eZ the sets

{(x,y)eM;x+y=k}, {(x,y)eM;x—y=k},
{(X9Y)EM; x=k}’ {(X’Y)EM;)’=k}

will be called the k-th row of M, the k-th column of M, the k-th left diagonal of
M and the k-th right diagonal of M, respectively.

3) For M=D,, , and k € Z the sets

{(x,y)eM;m=x<m+k}, {(x,y)eM;-n+k>y=Z—n)}
{(x,y)eM; x+y<k}

will be called the left, the right, and the upper margins of width k of the set M,
respectively. Their union will be called the margin of width k of M.

4) The margin of width 1 will be simply called the margin, and analogously for
the left, the right, and upper margins. The complement of the margin of M (taken
in M, of course) will be called the interior of M.

5) If Fis a function with the domain M=D or M=D,, , then the restriction of
F to the k-th row (k-th column etc.) of M will be called the k-th row (k-th column
etc.) of F, respectively. The same names will be used for (finite or infinite)
sequences created from the appropriate values of F.

In the upper part of Figure 2.1 there is a function F with the domain
Doo=NXN. The lower part illustrates a function G with the domain D,,. If we
write the function values in this manner (which is usual for the Pascal triangle),
then the notions of Definition 2.1 are quite natural. We shall informally use also
further geometrical notion, e. g. the (m — n)th column of D,, , will be called the axis

of D, ..
F(0, 0)

F(o, 1) F(1, 0)
F(0, 2) F(1, 1) F(2, 0)
F(0, 3) F(1, 2) F(2, 1) F@. 0)
F(o, 4) F(1, 3) F(2, 2) F(3, 1) F(4, 0)

G0, 0) G1,-1) G(2,-2)
G(0, 1) G(1, 0) G(2,-1) G(3,-2)
G(0, 2) G(1, 1) G@2, 00 G(3,-1) G(4,-2)
GO, 3 G(1, 2) G(2, 1) G@, 0) G@4,-1) GG6,-2

Figure 2.1
96

Algebras will be denoted by letters ¢, 9, ..., and their base sets by the
appropriate letters A, B, The algebras with the signature (0, 1, 1, 2) will be
frequent in what follows ; if no signature is explicitly mentioned, an algebra with the
signature (0, 1, 1,2) is considered. Later we shall use the nulary operation
(sometimes) to construct the top of a generalized Pascal triangle, the unary
operation to construct its left and its right margins, and the binary operation to
construct its interior. (Hence the usual Pascal triangle can be obtained from the
algebra (N; 1, id, id, +), where id(x)=x for all xeN and + denotes the usual
addition.)

We shall sometimes extend functions defined on the sets D, , to the whole set
D by the value 8. In connection with such extensions the following definition will
be suitable.

2.3. Definition. Let «/ =(A, K, 1, r,.) be an algebra of signature (0, 1, 1, 2)
and § € A. We shall say that the binary operation * on the set Au{8} is canonically
ordered to o if for all x, ye Au{$} it holds:

8 if x=8,y=8
I(y) if x=8,yeA
r(x) if xeA,y=8
x-yif xeA,yeA

Sy = (2.3.1)

A binary operation on a finite set A is usually given by its Cayley table. All
four operations of an algebra & will be also given by a table. This table will be
divided into the head row, a row for the first unary operation / and |A| further
rows for the binary operation. Analogously it will be divided into |A|+ 2 columns
(only the second unary operation r is used instead of /). The head column will
contain ., | and the elements of A ; the head row will contain ., r and the elements
of A in the same order. Now it is clear how to write the values of ., |, r into the
table. The value K will be written into the intersection of the row headed by | with
the column headed by r. Notice that if we replace 1, r and K in the table by the
symbol § (and the dot . by a star x) we obtain the Cayley table of the canonically
ordered operation.

It may happen sometimes that some values of the operations of & will be
unsubstantial. In this case the dot will be written at the appropriate place of the
Cayley table or another expression for . It will not mean that we want to consider
a partial algebra. We will consider any total algebra which can arise if we arbitrarily
replace dots by the elements of A.

2.4. Defimition. 1) If « =(A, K, |, 1, .) is an algebra of signature (0, 1, 1, 2),
then the generalized pascal triangle of algebra &/ (notation: GPT()) is the
mapping F of NX N into A defined for all x, y e N by the formulae

F(0,0)=K
97

F(0, y +1)=I(F(0, y))
F(x+1,0)=r(F(x, 0))
F(x+1,y+1)=F(x,y+1)-F(x+1, y)

2) Let 4=(A; K, |, r, .) be an algebra of signature (0, 1, 1, 2), let
W=da, ... a, € A* and let i be an integer. The generalized Pascal triangle of
with the top w and with the left margin at the i-th left diagonal (notation:
GPT (A, w, i)) is the mapping G with the domain

Di nvi={(x,y)eD;x=Ziand y=—(n+i)}

which is defined by the formulae
G(x,—x)=a,_for i=x=n+i
G(i, y+1)=WlG(i, y)) for y=—i
G(x+1, =(n+i))=r(G(x, —=(n+1i)) for x=n+i
G(x+1,y+1)=G(x,y+1)-G(x+1,y)forx =i, y= —(n+1i),
. x+y+2>0.

3) For i =0 we shall write GPT(g w) instead of GPT(#, w, i); we shall also
omit the words “with the left margin on the i-th left diagonal”.

4) A function F will be called a generalized Pascal triangle (abbreviation:
GPT), if there is an algebra &/, a word we A* and an integer i such that
F=GPT(«, w, i).

2.5. Remarks. 1) The first point of the above definition can be considered as
a special case of its second point because GPT ()= GPT(«, K).

2) For every mapping F of D into & we denote by Fs its completion to the
domain D by the value 8. Then for every algebra «f and we A*, i e N the function
Gs =GPTs (A, w, i) satisfies

Gs(x+1,y+1)=Gs(x,y+1)+Gs(x+1,y), (2.5.1)

where » denotes the operation canonically ordered to . The relation between Gs
and G is very simple (remember that $ is not a value of G), and therefore we shall
sometimes use Gs instead of G (also without explicitly mentioning it). For
example, if an initial subword of length m of a row of G which is shorter than m is
considered, we add the necessary number of § at its end. Analogously we add § at
the beginning of final subwords. (In the 6-th section we shall use 0 instead of $.)

4) The change of i in the expression GPT(s, w, i) corresponds to the
horizontal translation of this GPT, which is usually unsubstantial. (An exception is
when the mutual position of several GPT is considered.) Therefore we shall restrict
ourselves to the case i =0 if possible.

Some notions from Definition 2.4 and Remark 2.5 are explained by examples
in Figure 2.2c, d, e, f. '

98

r 0 1 * $ 0
1 1 1 1 8 5 i
0 1 0 1 0
0 1 | 0 1

1 0 1 0

Th tion * (2. 3.
a) Algebra o b) The operation * (2. 3

f) GPTs(s4, 011)

Figure 2.2

2.6. Definition. 1) The set of rows of GPT(.#4), GPT(#, w), GPT(¥, w, i)
will be denoted R(), R(#, w), R(#, w, i), respectively. (The rows are enumer-
ated according to Definition 2.2.)

2) Let #=(A;K,1,r,.) be an algebra and * be the binary operation (2.3.1)
canonically ordered to &. Then by next or next , if s/ must be stressed we denote
the mapping of (Au{8})* into (Au{8})* defined for all a,, ay, ..., a. e AU{8} by
the formula

next(aoal a,,)=b()b1 b,.-] 3 (2.6.1)

where

b,'=a,'*a,'+| for all i=0, 1, oo n—1.

An application of the function next and its powers (as repeated compositions)
gives the next lemma and the theorem about ultimate periodicity of margins of
GPT for finite algebras.

2.7. Lemma. For every algebra &/ =(A; K, |, 1,.), we A* and integers m =0,
i =0 denote:

r; the i-th row of GPT (4, w),
Xi, m the initial subword of length m of r; (or r.8™),
.. the final subword of length m of r, (or $™r).

Then for all i, k eN it holds

ri.i =next(8r8), ri =next“(8*r8*) 2.7.1)
Xiv1,m=0€Xt(8X;), Xisx, m =next*(8%x;) (2.7.2)
Vier,m=1Xt(Vi. m8), Virrm =neXt*(y; .8%) (2.7.3)

Proof. The definition of next immediately implies the left formulae. The right
formulae are for k=0 trivial (e.g. r,=r;) and for positive k they can be proved
by induction from the left formulae.

2.8. Theorem. Let £ =(A; K, |, r, .) be a finite algebra, we A*, let m be
a positive integer and let for every i € N the words x; = x; m, i = y: . be defined as
in Lemma 2.7. Then the sequences

‘(xo, X1, X2y ...) ()’Oy Y15 Y2,)

are ultimately periodic. The period of every of them is at most |A|™, and the sum of
the period and the pre-period is at most |A|™ +max (0, m —|w]).

Proof. Consider for example the left sequence. It starts with max(0, m —|w]|)

100

members containing 8, and further it contains only the elements of A". Hence it
contains at most

n=|A|™+max(0, m —|wl|)

different members. Therefore for some g =n the member x, is equal to a member
x,, § <q. Let q be the smallest possible and denote p =q —s. Then x,.,=x,, and
by (2.7.2) x,+«=x, for all k=s. The integers p,s are the period and the
pre-period of the sequence (xo, x;, X3, ...), and obviously p + s =n. It remains to
prove p=|A|™. If p>n, then x, contains the symbol 8 and then infinitely many
members x; contain 8, which is a contradiction.

A similar theorem, with another proof, and with another bounds for the
pre-period (initial index) is contained in [7].

3. Formulation of the decision problems

Now we shall formulate a theorem about algorithmic undecidability of some
problems concerning generalized Pascal triangles. We shall give a wider list of these
problems so that we can use it later. The theorem will deal with the class of all
generalized Pascal triangles of finite algebras. If we restrict the class of considered
GPT, some of the problems can be algoritmically decidable. For example, we can
restrict the cardinalities of algebras, or the length of the tops of GPT. We can also
require that the algebras fulfil some identities or other conditions. In further
sections we shall consider some of such suitable restrictions.

The following mnemonic is used in the notation of problems: 0 means ““at least
one”, i means “infinitely many”, a means “almost all”’ (i.e. with finitely many
exceptions), e means ‘‘every”’, s means ‘“‘symbol”, and w means ‘“word”. We shall
say that a word u belongs to GPT(«, w) if u is a subword of a row of GPT (¢, w),
i.e. if u eSub(R(«, w)).

3.1. Theorem. There is no algorithm which for every finite algebra o =(A;
K; 1, r,.), every symbol x € A, every Bc A and every u, w e A* determines:

(P.1/0ss) whether the symbol x occurs in GPT(#);

(P.1/ows) whether the word u occurs in GPT(%);

(P.1/0osw) whether the symbol x occurs in GPT(, w);
(P.1/oww) whether the word u occurs in GPT(#, w);

(P.1/iss) whether x occurs in infinitely many rows of GPT(¥);
(P.1/iws), (P.1/isw), (P.1/iww) analogical to (P.1/iss);

(P.1/ass) whether x occurs in almost all rows of GPT(¥);
(P.1/aws), (P.1/asw), (P.1/aww) analogical to (P.1/ass);
(P.1/esw) whether x occurs in every row of GPT(s#, w);

101

(P.1/eww) whether u occurs in every row of GPT(«, w);

(P.2/0ss) whether at least one row of GPT({) belongs to x*;

(P.2/ows) whether at least one row of GPT () belongs to u*;

(P.2/osw) whether at least one row of GPT(sf, w) belongs to x*;
(P.2/oww) whether at least one row of GPT(, w) belongs to u*;

(P.2/iss) whether infinitely many rows of GPT(s{) belong to x*:

(P.2/iws), (P.2/isw), (P.2/iww) analogical to (P.2/iss);

(P.2/ass) whether almost all rows of GPT(s{) bolong to x*;

(P.2/aws), (P.2/asw), (P.2/aww) analogical to (P.2/ass);

(P.3/0ss) whether every symbol y e B occurs in GPT();

(P.3/ows) whether every word v € B* occurs in GPT(.#);

(P.3/0osw) whether every symbol y € B occurs in GPT(#, w);

(P.3/oww) whether every word v € B* occurs in GPT(, w);

(P.3/iss) whether every symbol y € B occurs in infinitely many lines of GPT (A4);
(P.3/iws), (P.3/isw), (P.3/iww) analogical to (P.3/iss);

(P.3/ass) whether every symbol y € B occurs in almost all lines of GPT(H);
(P.3/aws), (P.3/asw), (P.3/aww) analogical to (P.3/ass);

(P.3/esw) whether every symbol y € B occurs in all lines of GPT(4, w).

3.2. Remarks. 1) The notation system of Theorem 3.1 allows us to formulate
also some further problems, e.g.:

(P.1/ews) whether x occurs in all rows of GPT();
(P.2/ess) whether all rows of GPT(s/, w) bolong to x*;
(P.3/eww) whether every word v € B* occurs in all rows of GPT(sA, w).

However, these problems are algorithmically solvable, as we shall see later.

In what follows we shall refer to all 48 problems which can be generated by the
notation system of Theorem 3.1.

2) The mentioned problems can be considered not only for finite algebras but
also for some infinite algebras (e.g. recursive ones). In the present paper we shall
do it only if the generalized problems do not become more complicated. E.g.,
generalized Pascal triangles with infinite many symbols will not be considered at all.

3) Pascal triangles with finitely many symbols are recursive (independently of
the properties of the algebras they are created from). Such GPT are determined by
their sufficiently wide upper margins (which are finite). However, when an upper
margin of a GPT is given it is not clear whether it is sufficiently wide or not. (The
set of those upper margins which are not sufficiently wide is recursively enumerab-
le. However, it is not clear whether it is recursive.)

Sketch of proof of Theorem 3.1. The proof is based on a simulation of
computation of a Turing machine T by creating a generalized Pascal triangle. One
step of the computation will be simulated by creating several (e.g. eight) further

102

rows of the generalized Pascal triangle. Only the middle part of GPT is used for the
simulation (it is the part filled in by X in the upper part of Figure 3.1). Therefore
after halting of the Turing machine T it is possible to remove all traces of
simulation and to arrange that all sufficiently futher rows have a requested form
(e.g. that they consist only of zeros). The halting of T is signalized by a symbol
(from the group) Y in a row of GPT. The creating of further rows is displayed in the
middle of Figure 3.1.

In the table in the lower part of Figure 3.1 the letters X, Y represent groups of
symbols. The symbols of the group X are used at first to create an initial
configuration of a (universal) Turing machine T. Then they are used to simulate the
appropriate computation of T. The symbols of the group Y are used only when T
halts. Then they arrange the form of all sufficiently farther rows of GPT. For
example, if we want that all these rows consist of zeros if suffices that the group Y
consists of 0 only (and 0 ¢ X). If we need a more complicated form of further rows,
the group Y can simulate another suitable Turing machine.

103

|
r 0 1 2 3 : X Y

1 1 0 2 3 0 | |

T
0 0 0 2 3 0 : . 0.7
1 2 2 X) X o
2 3 3 3 s %
3 0 0 1 by Uy
I P e . }__ i _i e A
X X X 1 | XY, Y
Y 0.Y Y y ' v Iy

Figure 3.1

The Table 3.2 contains a more detailed information about the problems
(P.k/XYZ), ke{1, 2,3}, Xe{o,i,a,e}, Y, Ze{s, w}. The left part consists of
information about the GPT of all finite algebras. The right part deals with GPT of
algebras consisting of at most n elements, where n is sufficiently large, n = n,. The
constant n, (not necessarily the smallest possible) can be determined by a detailed
analysis of the proof of Theorem 3.1, but we do not look for it.

Table 3.2
OfC(l?lsysr: a finite la|=n (nZn,)
Problem: ss sW ws ww ss sSW ws ww
o 8] 8] U U S U U U
P.1 i 8) U U U S U U U
' a 8] U U U s §] U U
e S,n U NO U S,n U NO U
o U U U U S U U
P2 i U U U U S U U
a U U NO NO S U NO NO
e S.n S,n NO NO S,n S,n NO NO
o U U U U S U U 8]
P.3 i U U U U S U U U
a U 8] U U S U U 8]
e NO 8] NO NO NO U NO NO
Attention: |u|=2 and |B|22 is assumed.
U ... unsolvable S...solvable
NO... always ,,no* YES ... always,,yes"
n ...more often ,no* y ... more often ,,yes*

104

3.3. Remarks. 1) In the Table 3.2 the letter U denotes algorithmic unsolva-
bility and the letter S algorithmic solvability. The words YES, NO mean that the
answer is always “yes” or “no”. (Hence they also mean algorithmic solvability;
maybe, some S in the table can also be replaced by NO or YES. Notice that YES
does not occur in Table 3.2 but it will occur in similar tables below.) If beside S the
letter y or n is written it means that more typical or more usual answer is “yes” or
“no”. (The criteria for writing y or n depend on the problem, and they also can be
a little bit subjective.)

2) If the problem (P.1/oss) is algorithmically unsolvable for a class of GPT,
then the problems (P.1/osw), (P.1/ows), (P.1/oww) are automatically also algorith-
mically unsolvable because (P.1/0ss) can be reduced to each of them. (Roughly
speaking, it is contained in them.) However, Table 3.2 is filled up for |u|=2,
|B| =2. This manner allows us to read a more detailed information from the table.
E.g. the answer U for (P.1/oww) in the table means a little more than the sentence
“(P.1/oww) is unsolvable” in Theorem 3.1. (The trivial reduction described above
does not work in Table 3.2.) On the other hand, we must be careful in reading
Table 3.2. For example, the problem (P.2/aww) is unsolvable (despite NO in the
table) because U is in the table for (P.2/asw) ; (P.2/aww) is unsolvable for |u|=1.

We do not prove the answers U in Table 3.2 (it is partially done in the sketch
of proof of Theorem 3.1) but we prove all other answers.

The word u, |u|=2 cannot occur in the 0-th row of GPT({) which has the
length 1. Therefore NO occurs in the window for (P.1/ews). The lengths of the
words from u* are multiplies of |u| Z2. However, every generalized Pascal triangle
contains infinitely many lines the lengths of which are not multiples of |u].
Therefore NO occurs in the windows for (P.2/XwZ), X € {a, e}, Z € {w, s}. Every
line of every GPT contains only finitely many subwords, and B* is infinite.
Therefore NO occurs in the windows for (P.3/ews), (P.3/eww). The 0-th row of
GPT (o) contains only one symbol and |B| =2 ; therefore NO occurs in the window
for (P.3/ess).

Consider now the problem (P.1/ess). If for an algebra o/ =(A; K, I, r,.) and
x € A the answer is “yes”, then

K=x and (I(K)=K or r(K)=K). (3.T.1)

Conversely, if K=x and for example 1(K) =K, then the left margin consists of x
only,and hence the answer is ““yes”. The condition (3.T.1) can be easily verified, and
hence S must be in the window. It cannot be replaced by NO or YES because there
are pairs (&, x) satisfying (3.T.1) as well as those not satisfying (3.T.1). However,
for A fixed, |[A|Z4 there are more pairs (&£, x) which do not satisfy (3.T.1).
Therefore n is also written in the window for (P.1/ess).

Consider now the problem (P.2/esw). If for an algebra #/ =(A; K, 1,1, .) and
for a word u € A* the answer is “yes” then

105

uekK* and I(K)=K and r(K)=K and K-K=K. (3.T.2)

Conversely, if (3.T.2) holds, then the answer is “yes”. The condition (3.T.2)
obviously can be verified, and hence we have S in the window for (P.2/esw) (and
also for (P.2/ess) because the assumption |u|=2 is not substantially used). For
every fixed A, m, |A|=22, m=1 there are pairs (s, u), |u| =m which satisfy
(3.T.2) but there are more pairs (4, u), |u|=m not satisfying this condition.
Therefore S cannot be replaced by NO or YES, and n is written beside S.

It remains to explain S for the problems (P.k/Xss), k € {1, 2, 3}, X €{o, i, a}
for |#|=n, where n21 is fixed (the condition n=n, is necessary only for the
answers U). The considered class contains only finitely many nonisomorphic
algebras, and hence the problems (P.k/Xss) contain only finitely many instantions
in essential. Therefore they can be solved using a table of answers for these
instantions. (However, we have no algorithm which constructs the appropriate
table for arbitrary given n=1.)

4. Simple semilinear languages

In this section simple semilinear languages are introduced. They form
a subclass of the class of semilinear languages (not necessarily context-free ones)
which are studied e.g. in [4] and [6]. We shall show that if the language R(s{) or
R(«, w) is simple semilinear, all problems (P.k/XYZ) from Theorem 3.1 and
Remark 3.2.1 are decidable. The assumption that & is finite can be sometimes
weakened or omitted at all. However, as it will be seen later, only a seeming
generalization arises in this way. Indeed, if R(, w) (or R(«)) is a language (i.e. if
it is a subset of some B* for a finite set B), then there is a finite algebra % such that
GPT(A, w)=GPT(%, w). (B need not be a subalgebra of .)

4.1. Definition. 1) A language L will be called a simple linear language of
degree at most k if there are words

Uo, Ui, V1, Uz, V2, oy Uiy U (4.1.1)
such that

L={uoviuviu, ... viu;i=1} (4.1.2)

2) Alanguage L is said to be a simple semilinear language (abbreviation: SSL
language) of degree at most k if L is the union of finitely many pairwise disjoint
simple linear languages of degree at most k.

3) Alanguage L is a simple (semi-)linear language of degree k if L is a simple
(semi-)linear language of degree at most k, and L is not a simple (semi-)linear

106

language of degree at most k — 1. A language L is a simple (semi-)linear language if
L is a simple (semi-)linear language of degree at most k for some k e N.

4) The finite sequence (4.1.1) will be called a generating sequence for L if
(4.1.2) holds. A generating system for a simple semilinear language L is a set which
consists of generating sequences for a finite set M of pairwise disjoint simple
semilinear languages such that L is the union of M. We say that a simple semilinear
language is given if a generating system for L is given.

Every simple linear language is nonempty but an SSL language can be empty. If
(4.1.2) is a simple linear language of degree k, then the words vy, v, ..., v, are
nonempty. L is an SSL language of degree O if and only if L is finite. If L is an SSL
of degree at most 1 (or at most 2) then L is regular (or context-free). The converse
does not hold in general but see Theorem 4.7.

The language L from (4.1.2) is a subset of u¥viu¥ ... viu¥. We can order
a subset M of N?**! to the language L by the method of the 5-th chapter of [4].
Then the set M is linear ; in the notation of [4] we have M=L(c; p) where c =(1,
1, ..., 1)eN**'and p=(0, 1, 0, 1, ..., 1, 0) e N***', Hence simple (semi-)linear
languages form a subclass of the class of those bounded languages to which
(semi-)linear subsets of sets N*, n=1, 2, 3 ... correspond. To every SSL language
a finite union of sets of the form L(c; p) corresponds, and vice versa.(Notice that
simple linear languages need not be linear or metalinear in the sense of [4].)

Considering semilinear sets associated to SSL languages by the method of [4]
the following theorem can be proved.

4.2. Theorem. Let L,, L, be languages, x, y be words and k, m, n be
nonnegative integers. Then:

1) IfL,is an SSL language (of degree k) and the symmetric difference L, ~L,
is finite then L, is an SSL language (of degree k).

2) If L, is a simple (semi-)linear language (of degree k) then xL,y is a simple
(semi-)linear language (of degree k).

3) If L, is an SSL language (of degree k) and

Lo={w; 3x, y(|x|=m, |[y|=n and xwy eL,)} ,

then L, is an SSL language (of degree k).

4) The reflection of a simple (semi-)linear language (of degree k) is a simple
(semi-)linear language (of degree k).

5) The union, the intersection, the difference, and the symmetric difference of
SSL languages (of degree at most k) are SSL languages (of degree at most k).

6) If L, is a simple (semi-)linear language (of degree k=1) then L,=
={weL,; |w|=n} is a simple (semi-)linear language (of degree k).

4.3. Remark. The points 1), 3), 5) of the above theorem do not hold for
simple linear languages. If, for example, (4.1.2) is infinite (i.e. v;# € for some i),

107

and we delete uoviu,v3u; ... viux from it, then the obtained language is néither
simple linear nor a disjoint union of two simple linear languages.

4.4. Lemma. Let o be (arbitrary) algebra, k be a positive integer and w € A*.
Let

Uo, Uiy ..., Ux EA*, Vy, ..., U EAY,
iZ|vy|+...+|ve| +2 - max(|vy], ..., |vi])
and let for j=i, j=i+1 the word
UV {uviu, ... viu (4.4.1)

belong to R(#, w). Then for every j=i the word (4.4.1) belongs to R(#, w).
Proof. For this proof denote (4.4.1) by r;. The assumption is 1,

ri+1€ R(#, w). We prove 1, € R(3, w) ; then an easy induction gives the lemma.
Denote m =|v,|+ ...+ |v,| and consider the finite sequence

Wo, Wi, Way oy Wy (44.2)

of all subwords of the length m + 1 of the word 8™r.8™. Then s =|r;| + m =|r.,.|,
and Lemma 2.7 implies that for every x =0, 1, ..., s the x-th symbol of r;,, is
next™(w,). Denote by U, the segment of (4.4.2) consisting of the first |uol
members, V; the segment consisting of the further |vi{*!| members, U, the segment
consisting of the further |u,| members, etc. up to the segment U, which consists of
last |u| members of (4.4.2). Thus the whole sequence is divided into the segments

UO’ Vl, Ul: VZ’ UZ, viviey Vk, Uk

so that the function next™ always gives u,, vi*' from the segment U,, V,,
respectively.

For every x =0, 1, ..., k the segment U, contains only such subwords of
8™r.8™ which intersect the word u,. (The occurence of u, clear from (4.4.1) is
understood ; its position is clear even if u, is empty.)

Every segment V,, x =1, ..., k, contains a subsegment of length at least 2 - |v,|
which contains only subwords of v} (from r;), and gives only a subword of vi*!
(from r;,,). Therefore V, can be divided into three segments A,, B,, C, so that B,
contains only subwords of v}, and gives an occurrence of v, in vi*'. So the whole
sequence (4.4.2) is divided into segments

UO’ Ah Bl, Cl, Ul, A2’ BZ, C21 UZ’ soey Ak, Bka Ck, Uk .

Let us form the finite sequence wq, wi, ..., w, from r,,; analogously as we have
formed (4.4.2) fromr;. With respect to the structure of r,,, the sequence
Wwo, W1, ..., w, can be divided into the segments

UO, Al’ Bl, Bly Cla U!’ A29 BZ; B2a CZ, UZ, seey Aks Bka Bk’ Ck’ Uk .
108 ‘

The last sequence gives (using the function next™) the word which arises from r;,, if
for every x=1, ..., k we replace an occurrence of v, by the word v2. So we
obviously obtain the word r;,,, which completes the proof.

4.5. Lemma. Let » be an (arbitrary) algebra, k be a positive integer, and
weA*. Let a row of GPT(#, w) be expressed in the form

UoV U1 V3U; ... ViU
for some integer i=2 and some words
Uoy Uyy ..., U EA¥* vy, ..., 1 €AT.
Then the next line can be expressed in the form
Xoyi '\ X1ys Xz . YT Xk

so that |x,_,| =|u,_ 1|+|v,| |y,|—|v,| for s=1, ..., k and |x|={w|+1.
Proof. For every s = , k denote the last symbol of v, by d,. Then the
words Xo, Y1, X1, ..y Vi, xk are (umquely) determined by the formulae

Xo=next(8uov;), xi =next(du$)
ys =next(d,v,) for s=1, ..., k,
x, =next(d,_,u,v,) for s=1,.., k=1.

4.6. Theorem. For an (arbitrary) algebra «, every w e A* and every positive
integer s the following conditions are equivalent:

(1) The set R(#, w) of all rows of GPT(#, w) is a simple semilinear language of
degree at most s.
(i) The set R(/, w) contains an infinite simple linear language of degree at
most s.
(iii) There are positive integers k =s, words

Ug, Uy ..., U EA¥*, vy, ..., L EA* (4.6.1)
and an integer i such that
iZ2- (|os| +... + |vi|) + 2 - max(|vi), ..., |vi) (4.6.2)
and both words
UoV{U1V3U; ... Vi, UV w0t Uy ... vitu, (4.6.3)

belong to R(#, w).
Proof. The implications (i)— (ii), (u)—»(m) are obvious. Now let (iii) hold.
We shall prove that R(#, w) is an SSL language of degree at most k. Let
=|vy|+...+|v|, and let t,t+n be the numbers of the rows (4.6.3) of
GPT(# w). Consider n pairs of rows of GPT(s, w), where the m-th pair

109

(m=0,1, ..., n—1) consists of the (t+ m)-th row and the (¢ + m + n)-th row of
GPT(#, w). Lemma 4.5 implies that for every m =0, ..., n — 1 the m-th pair is of
the form

j+1

XoyiX1y4xs ... yixi, Xoyit' X y5'x, ... yitixg

where

|y;|=|v1|, e ,)’k|=lvk|, j=i—m

and hence

PZInl+ o+ +2 - max(yi], ., ye]) -
Then Lemma 4.4 implies that
L. ={xoyixiysxs ... yixe; r=2j} cR(HA, w).

Denote by Y the set of ¢ first lines of GPT (s, w). Then it holds
R(:4, w)=YuL,uL,u...UL,_, . (4.6.4)

Indeed, the inclusion o is obvious. To show the converse, realize that for every
qZ|w| every side of (4.6.4) contains exactly one word of length q. Similar
argument also shows that Y, Ly, L, ..., L,._, are pairwise disjoint. Hence R(#, w)
is an SSL language of degree at most k, and since k<5, we have proved (i).

From Theorem 4.6 and well known results about context-free and regular
languages we can obtain the following consequence.

4.7. Theorem. For an (arbitrary) algebra # and every we A*:

1) The set R(s, w) is a regular language if and only if R(#, w) is an SSL
language of degree 1.

2) The set R(#, w) is a context-free language if and only if R(s/, w) is an SSL
language of degree 1 or 2.

4.8. Theorem. There is an algorithm which for every recursive algebra o and
every weA* gives a generating system for the set R(#, w) of all lines of
GPT (54, w) provided R(, w) is simple semilinear language (and which does not
halt when R(<, w) is not an SSL language).

Proof. Let the function F=GPT(#, w) be recursive, and we know how to
compute the values of F. (Only for this reason we need the recursivity of #.) The
algorithm will form (in an arbitrary order) all pairs of rows of #. For every pair it
will find out whether it can be represented in the form (4.6.3) for some words
(4.6.1) and integers k, i which satisfy (4.6.2). (It is a finite process for every pair of
rows.) As soon as such a test is positive, the algorithm will stop generating the pairs
of rows, and will follow the proof of Theorem 4.6 to obtain (4.6.4).

4.9. Remark. The above algorithm can be modified so that for every given
recursive algebra o/, we A* and positive integers m it will find out whether

110

R(#, w) is a disjoint union of m simple linear languages. (Hence it will always
stop.) However, neither for m =1 and finite algebras it can be modified so that it
will find out whether R(#/, w) is a disjoint union of m simple linear languages and
a finite set.

4.10. Theorem. For every problem (P.k/XYZ), ke {1, 2, 3}, Xe€{o, 1, a, e},
Y, Z € {w, s} there is an algorithm which solves this problem for every recursive
algebra o, x € A, u, v € A* and recursive set B c A provided R(#, w) (if Z=w),
or R(#) (if Z=s) is a simple semilinear language (and which does not halt when
R(4, w) or R() is not an SSL language).

Proof. Consider the cases Z=w which are more general. The appropriate
algorithm will look for the generating system for R(sf, w) at first. (If R(, w) is
not an SSL language the algorithm will not finish this stage, hence it will not halt.)
If the generating system is found, then A can be replaced by a finite set A; c A, and
B by a finite set B, (provided k =3, of course). .

Further, we shall assume that a representation (4.6.4) for R(¥, w) is given,
and that A,=A, B,=B. The problem (P.k/XYZ) will be reduced to some
problems concerning infinite simple linear languages L,, L,, ..., L,_; and a finite
set Y. As a representant of infinite semilinear languages we consider below the
language L from (4.1.2); we assume that vy, ..., v, are nonempty.

Each of the problems (P.1/Xww) can be reduced to several problems
concerning a finite set Y, and to the problems whether u is a subword of at least
one word, infinitely many words, almost all words, or all words of the languages L,,.

Table 4.1
Class of GPT: R(«) or R(HA, w)
is an SSL language
Problem: sS SW ws ww
o S S S S
P.1 i S S S S
a S S S S
e S S NO S
o S S S S
P2 i S S S S
a S S NO NO
e S S NO NO
o S S NO NO
P.3 i S S NO NO
a S S NO NO
e S S NO NO
Attention:|u|=2 and |B|Z2 is assumed.

111

However, u is a subword of (4.4.1) for some j=|u| if and only if u is a subword of
(4.4.1)forall j = |ul|. Thereforetoanswerall questions above for L = L.. only finitely
many words (4.4.1) for j=<|u| must be checked. Hence the problems (P.1/Xww),
and also their special cases with s instead of w, are solvable (provided R(¢, w) is
SSL language).

The problems (P.2/XYZ) can be reduced to some problems of emptiness or
finiteness of an SSL language by Theorem 4.2 ; hence they also are solvable.

The problems (P.3/XsZ) can be reduced to the problems (P.1/XYZ), hence
they also are solvable in the considered case. For |B| =2 the problems (P.3/XwZ)
must be always answered “no” because Sub(R(s, w)) is a bounded language and
B* is not bounded. (This explains six new NO in Table 4.1.) For |B| = 1 we have to
know that Sub(L) contains B* if and only if some v;, i=1, ..., k, belongs to B*.
The reduction is similar to that of problems (P.1/XYZ).

Table 4.1 summarizes the information about the problems (P.k/XYZ) for the
case when R(#, w) is simple semilinear.

4.11. Remark. If R(:¢,w) is a semilinear language then it is a simple
semilinear language because every other semilinear language contains words of the
same length. However, R(«, w) can be bounded and not semilinear.

S. Embeddings of generalized Pascal triangles

We shall consider only the embeddings based on the translations of the sets
Z x Z. The role of embeddings is to reduce some problems concerning GPT to the
problems concerning another GPT, which is either simpler or already investigated.

5.1. Definition. Let F, G be mappings of subsets X, Y of the set D into the
set . We shall say that F can be embedded into G if there are a, b € Z such that
for every (x, y)eX it holds (x +a, y+b)eY and

F(x,y)=G(x+a,y+b). (5.1.1)

Every pair (a, b) with the above property will be called an embedding vector of F
into G.

The relation of embedding is obviously a quasi-ordering, i.e. it is reflective and
transitive. We shall mainly consider the case when F, G are generalized Pascal
triangles. Then X=D,, ., Y=D, , for some integers m=n, p=q (see (2.2.1))
which implies @ + b =0 (and some other conditions depending on m, n, p, q) for
every embedding vector of F into G. Theorems 5.6 and 5.7 will be used if some
properties of G ought to be proved from some known properties of F or vice versa.
However, also for F=G existence of a nontrivial embedding (i.e. one with
non-zero embedding vector) gives a nontrivial information about F and G. This
situation is described in Theorem 5.4.

112

Corollary 5.8 combines these results into the form which often seems to be the
most suitable for further application of the above mentioned results. The following
theorem shows that arbitrarily wide margins of GPT can be replaced by suitable
margins of width 1.

5.2. Theorem. Let m=n be integers and F be a mapping of D, ,=
{(x, y)eD;xZm,y=Z—n}into &. Then the following conditions are equivalent :

(i) F can be embedded into a GPT(#, w) for a finite algebra % and a word
weA*.

(ii) F can be embedded into GPT (4%, v, m — 1) with the embedding vector (0, 0)
for a finite algebra % and a word v € B* (which arises from the 0-th row of F
by adding a new initial symbol and a new final symbol).

Proof. The implication (ii)— (i) is obvious ; notice that instead of GPT(%, w)
also GPT(#, w, i) can be considered. Now assume (i). Since # is finite then the
left and the right margins of F are ultimately periodic by Theorem 2.10. Let their
periods be p, q and their pre-periods s, t, respectively. Let F be extended to the
(m —1)-th left diagonal and to the (—n — 1)-th right diagonal (so the new domain
will be D,._1, »+1) as follows. Take s+ p new symbols for the left margin and ¢+ q
new symbols for the right margin (“new” means that they do not belong to A).
Then write these elements into the first s + p or t + q places of the (m — 1)-th left
and (—n — 1)-th right diagonals, respectively. Then the groups of the last p, or g
elements will be periodically repeated on the appropriate diagonals. Let G be the
extended function. An algebra 9% can be constructed such that G=
=GPT(AB,v,m —1),where v is the 0-th row of G. The base set of B will consist of
the elements of A and the p+q + s+t new elements on the margins of G. Its
binary operation will be an extension of that of s ; the new values will be used only
for the m-th left and (—n)-th right diagonals. The nulary operation of % is not
substantial, and the unary operations serve only for the margins, hence only the
vaiues of | for p +s new elements and r for g +¢ new elements are important.

5.3. Remarks. 1) Theorem 5.2 holds also for infinite algebras o/, % provided
that the set ¥ — A is infinite (or that & can be enlarged if necessary). In this case
one-to-one sequences ought to be written into the new margins. '

2) A question arises whether the margin is necessary at all, i.e. whether the
conditions (i), (ii) are equivalent with the condition that F is a GPT. The answer is
negative, as Figure 2.2e shows. After removing the left and the right margins (of
width 1) there is no suitable operation r.

5.4. Lemma. Let F be a mapping of the set D,, ,into a finite set A. Let all left
and right diagonals of F be ultimately periodic, and let F be nontrivially embedded
into itself with an embedding vector (a, b) # (0, 0). Then the set M of all rows of F
is a simple semilinear language of degree at most 2; if a =0 or b =0, then M is an
SSL language of degree 1.

113

Proof. Denote c=a + b and r, the k-th row of the function F, x, its initial
subword of length a, and a, its final subword of length b. (Symbols $§ are used for
small k if necessary.) The sequences

(x07 X1y X2,), (yO,)’1, Y2,)

are ultimately periodic. Let p be the least common multiple of their periods, let q
be the maximum of their pre-periods and K = q + pc. Further we always assume
k> K. By the assumptions we have

Tk = XkTk—cYk = XiXk—clk—2cYk—cYk = - oo = XiXk—c +++ Xk+c—pclk—pcY k+c—pc «++ Yk-cYk -
Denote

Wi = XiXk—c -+« Xk+c—pes Lk = Yk+c—pe +++ Yk—cYk -
Then
Wi = Wi—pcs Zk = Zk—pcs Tk = Wilk—pcZk -
If we replace k by k + pc we obtain
Tk+pc= WispdkZk+pc = WkTkZk = Wirk-pcli,
and by an easy induction
Tk +pes = wit'r, —chiH

If we consider this formula for all k, K <k =K + pc, and use the length argument
similar to that for (4.6.4) we obtain

‘ M={r;; i<K}U LJ {Witepzi;sZ1) (5.4.1)

k=K+1

Hence we have expressed M as the union of a finite set and pc simple linear
languages. We can immediately see that M is an SSL of degree at most two. If a =0
(or b =0) then |w.| =0 (and |z.| =0) for all k, respectively and hence (5.4.1) is an
SSL of degree 1.

5.5. Remark. If a =0 in the above lemma, then b+# 0, and every left diagonal
can be nontrivially embedded into itself. Hence all left diagonals are periodic (and
their periods divide b). The right diagonals need not be periodic. However, the set
of their preperiods is bounded. Hence if we remove a suitable left margin of F, then
the right diagonals of the obtained function G will be periodic. The set of their
periods is finite, and hence G can be embedded into itself also with an embedding
vector (a,, 0) # (0, 0). Of course, a similar consideration can be made for b =0. In
both cases we have obtained two linearly independent embedding vectors.

Conversely, let there be two linearly independent embedding vectors (a;, b,),
(a3, b,) for embeddings of F into F, and for example a,b,<a,b,. Then

114

a - (111, bl)—al : (029 bz) =(O, ab, _ale)
b, - (az, bz)" b, - (al, bl) =(azb1 _alb27 O)

also are embedding vectors of F into F, and the set M is regular.

5.6. Theorem. Let F be a mapping of the set D,, , into a finite set A, and let
all left and right diagonals of F be ultimately periodic. Further, let M be the set of
all rows of F. Then the following conditions are equivalent:

(i) The set M is a simple semilinear language of degree 1.

(ii) If we remove sufficiently wide margins of F, then the obtained function G can
be nontrivially embedded into itself with an embedding vector (a, b) #(0, 0),
where a=0 or b =0.

(ili) If we remove sufficiently wide margins of F then the obtained function G can
be nontrivially embedded into itself with two linearly independent embedding
vectors.

Proof. If (ii) holds then the set M, of all rows of G is an SSL language of
degree 1 by Lemma 5.4. Since M is infinite, it can be obtained from M, by the
operations from Theorem 4.2, the set M also being an SSL language of degree 1.
The equivalence (ii) — (iii) was proved in Remark 5.5. It remains to prove (i) — (ii).
Let

k
M=Yu J{uviw;s=1}
i=1

where Y is a finite set consisting of the |Y| first rows of M, all vy, ..., v, are
nonempty, and the k + 1 sets on the right are pairwise disjoint. Let a be the least
common multiple of |v,], ..., |v|. Then the embedding vector we are looking for
can be (a, 0) (also (0, a) is suitable). To obtain the function G, it suffices to remove
such left margin of F that the elements of Y and the initial u,, ..., u in all other
rows vanish. Hence the width

max (|ui], ..., ||, |Y| +1+n—m)

is sufficient. (For (0, a) a suitable right margin must be removed, and for both
embedding vectors both margins can be necessary.)

Theorem 5.6 can be obviously used for F=GPT(¢/, w), where ¥ is finite. An
exact analogy for the case when M is an SSL language of degree 2 does not hold. To
show that, consider the' language

M={0%; i=1}u{0%1"*"; i=1}u{0°1%*?;i=1}.

The corresponding F can be easily constructed. However, F cannot be embedded
into itself because the vectors (2, 1) and (1, 2) (suitable for the second and the third

115

parts of M, respectively) are linearly independent. By Lemma 4.5 this bad case
cannot take place for GPT(4, w). Therefore the following theorem holds.

5.7. Theorem For every finite algebra o and every we A* the following
conditions are equivalent:

(i) The set R(#, w) is a simple semilinear language of degree 2.

(ii) If we remove sufficiently wide margins of GPT(#, w), then the obtained
function G can be nontrivially embedded into itself, and every nontrivial
embedding vector has both components positive.

(iii) For G as in the previous point, every two embedding vectors of G into G are
linearly dependent.

Combining the above theorems with Theorem 4.10 we obtain:
5.8. Corollary. The problems

(P.k/XYZ), ke{1,2,3}, Xe{o,i,a,e}, Y, Ze{s, w} (5.8.1)

are algorithmically solvable for the class of all generalized Pascal triangles
GPT(4, w), ¢ finite, which can be nontrivially embedded into itself after
removing sufficiently large margins.

The finiteness of # can be weakened similarly as in Theorem 4.10. Notice that
also for finite algebras this corollary is weaker than Theorem 4.10 because it deals
only with SSL of degree at most 2. However, it is more comfortable for applica-
tions.

6. Pascal triangles modulo p

In the whole section p will mean a positive integer, most often a prime. We
shall investigate generalized Pascal triangles for the following algebras.

6.1. Defimition. For every positive integer p let M, denote the set {0, 1, ...,
p—1) and M, the algebra (M, ; 1, |, r, +) where I(x)=r(x)=x for all xeM,
and + means the addition modulo p. All GPT(M,, w, i) will be called generalized
Pascal triangles modulo p.

Hence GPT(A,) can be obtained from the usual Pascal triangle if all its
elements are reduced modulo p. If we want to extend GPT(A,) or GPT(,, w) to
the whole set D, we shall use the value 0 instead of § which was used in the
previous sections. In this way (and only in this way) all diagonals will be periodic,
and not only ultimately periodic.

6.2. Definition. For every positive integer p and every integer i we denote by
F} the mapping of D into M, defined by the formula '

116

0 if x+y=0,x#i
Fi(x,y)= { 1 if x=i,y=—i (6.2.1)
Fo(x—1,y)+Fi(x,y—1) if x+y>0

The upper index i will be sometimes omitted if i =0.

Hence F, =GPTy(M,) and F} =GPTy(M,, 1, i) for all i. The role of the
functions F; for GPT modulo p is explained in the next theorem.

6.3. Theorem. For every positive integer p the set

{GPTy(M,, w, i); weM?, ieZ) (6.3.1)

of generalized Pascal triangles modulo p (which are extended to D by the value 0)
is a modul (if p is a prime, then a vector space) over the ring (resp. the field)
(M, ; +,.) of residue classes modulo p. A base of this modul (resp. vector space) is
the set {F;; i€Z}, and for every aq, ay, ..., a,€M,, keZ it holds

GPTy(My, aca; .. a,, k)= a, - Firk. (6.3.2)
i=0

Proof. All mappings of D into M, obviously form a modul (resp. a vector
space) over (M, ; +,.). A mapping f of D into M, belongs to the set (6.3.1) if and
only if it has only finitely many nonzero values in the 0-th rows and for all x, y e Z,
x+y>0

F(x,y)=F(x—1,y)+F(x,y—1).

Both these conditions are preserved by linear combinations, (6.3.1) is nonempty,
and hence (6.3.1) is a modul. The proof of (6.3.2) is trivial ; it must be verified in
the 0-th row at first. It remains to show that the functions F;, i € Z are linearly
independent, which is also easy. The values in the 0-th row must be again
considered.

6.4. Remark. Both GPTo(A,, w,i) and GPT(M,, w,i) will be called
generalized Pascal triangles modulo p; they must be distinguished from the
context. Analogously + is used for addition modulo p as well as for the usual
addition of integers.

6.5. Lemma. For every prime p, for every integers x,y and for every
nonnegative integers k the function F, = GPT,(#,, 1, 0) satisfies the conditions :

plx+y and p \ x imply F,(x, y)=0 (6.5.1)
E(p-x,p-y)=F,(x,y) (6.5.2)
p*|x+y and p* \x imply F,(x, y)=0 (6.5.3)
F,(p*-x, p* - y)=Fu(x, y) (6.5.4)

117

Sketch of proof. (6.5.1) is trivial for x <0 or y <0.If x =0, y =0 then (6.5.1)
is a consequence of the property of binomial coefficients

p

p - -
(x) forall x=1,...,p—1.

(6.5.2) can be proved from (6.5.1) by induction. Since only zeros occur between
F,(p-x=p,p-y), F,(p-x,p-x—p) we have

F(p-x,p-y)=F,(p-x—p,p-y)+F,(p-x,p-y—p)=
=Fp(x_1’ y)+F,,(x,y—1)=Fp(x, Y) .

(6.5.3) and (6.5.4) can be proved by induction from (6.5.1) and (6.5.2).

6.6. Remark. The formulae from Lemma 6.5 can be extended also to the
functions F;. For example

p*|x+y and p* \ x imply Fi(x+i, y—i)=0
Fo(p* - x+i,p*-y—i)=Fi(x+i, y—i)

We shall refer Lemma 6.5 also for the function F;.

6.7. Definition. For every prime p we denote by M, ; the set of all multiples of
the i-th row of GPT(,).

For example, the field (M;; +, .) contains only one non-zero element 1, and
hence

Mzo={0, 1}, M., ={00, 11}, M,,={000, 101}, M,,= {0000, 1111}, ...
For p =3 we obtain

M;,={0, 1, 2}, M5, ={00, 11, 22}, M,,={000, 121, 212%, ..
These sets will be useful in the formulation of the next theorem about the structure

of the rows of GPT(A,).
6.8. Theorem. For every prime p and all i=0, 1, ..., p—1

IMP- i' =p, M,.ic{0""}u(M, —{0})"*! (6.8.1)

The left formula holds for all i € N. Further, denote by 1, the i-th row of GPT(M,)
and g =p* for some integer k=1. Then

R(#) < U (r}ur0s-M, 090 (6:82)
sub(R(4,)) = U sub((M,, 0+-1-7y%) (6:8.3)

Proof. The left formula (6.8.1) and the inclusion M, ; = Mi** are obvious from

118

the definitions of M, ;. Then the right formula (6.8.1) for i<p follows from the
property of binomial coefficients:

p*(li) for 0Sk=i<p, p aprime .

To prove (6.8.2) consider the (q - x +i)-th row of F,=GPT(,). 0=i<q. We
may assume x = 1. Lemma 6.5 implies that the q - x-th row of F, contains at most
x +1 nonzero symbols at the 0-th, g-th, ..., q - x-th positions. For every symbol
t#0 in the q - x-th row (and also from O if it is at one of the mentioned positions)
the ¢-multiple of r; arises in the (r- x +i)-th row. These multiples of r; will be
divided by the groups of g —1 —i zeros. Since the q - x-th row beins and end with
the symbol 1, the (q - x + i)-th row begins and end with the subword r,. Therefore
it belongs to the right side of (6.8.2). The formula (6.8.3) is an easy consequence of
(6.8.2); notice that r;eM, ..

6.9. Lemma. Let p be a prime, we M} —0* and let k be the smallest integer
such that |w|=p*+1.Then w occurs in GPT(AM,) if and only if w occurs (as
a subword) in one of the first p**? rows of GPT(A,).

Proof. We shall use the induction with respect to k. At first we notice that all
nonzero symbols v €M, — {0} can be found in the first p rows of GPT(A,); the
symbol v occurs in the v-th row.

Now assume that a word w e M} —0*, [w| =2 occurs in the (p - x + i)-th row
of GPT(M,), 0=i<p, and consider the segment of the p - x-th row on which the
occurrence of w depends. The segment has the length at most |w|+p — 1, and by
Lemma 6.5 it can be obtained from a word y e M} —0* in the x-th row so that the
word 0°~! is put between every two neighbour members of y, and maybe shorter
groups of zeros are put at the beginning and the end. Hence for k>0 we have

— k —
,ylé[IWI:p l]é[p +1;p 1]=pk_,+1

and for k=0 it holds |y| =1. In both cases we may use the inductive assumption
that y occurs in the first p*** lines of GPT (M,), i.e. x <p**'. Then w occurs in the
first p**? rows because

p-x+isp-(p*"'-1)+(p—-1)=p***-1.

6.10. Theorem. Let p be a prime, let k=n be positive integers,
u, weM;—0* and |w|=p", |u| =p*—p" +2. Then the following conditions are
equivalent:

(i) u occurs in GPT(M,, w);
(ii) u occurs in GPT(A,, w) infinitely many times;
(iii) u occurs (as a subword) in one of the first p**? lines of GPT(A,, w).

119

Proof. Since the left diagonals of G=GPT(AM,, w), are periodical (i) and (ii)
are equivalent. (iii) obviously implies (i). It remains to prove that (i) implies (iii).

Theorem 6.8 and (6.3.2) imply that for every x the p* - x-th row of G consists
of multiples of w which are divided by the groups of p* —|w| zeros. The sequence
of coefficients of these multiplies coincides with the x-th row of F,.

Now assume that u occurs in the y-th row of G for the first time, and
y=p"-x+i for some 0=i<p". If x =0 then obviously y <p**?: let x=1. The
segment of the p" - x-th row, which is important for the occurrence of u, has length
at most |u|+ p" — 1. This segment intersects at most

[(Iul +p" =1 +p"— l]s(p“ +D+p"—1_
p" N p"

multiples of w, which estimates also the length of the corresponding subword of the
x-th line of F,. Then Lemma 6.9 gives x <p*~"*2, and hence

pkr+1

y=p"-x+i=p®-(p* =1 +(p" —1)<p“**

which completes the proof.
6.11. Theorem. For the class of algebras {, ;p prime} all problems
(P.k/XYZ),ke{l, 2, 3, Xe{o,1i, a, e}, Y, Ze{w, s} are decidable.
Proof. We shall make the necessary consideration for Table 6.1 simultane-
ously with the proof of the above theorem. Let = M, p a prime, xeM,, BcM,,
and u, weM;.

Table 6.1
Class of GPT: M,, p a prime
Problem: ss SW ws ww
o YES S.y S S
P.1 i YES S.y S S
a S.n S NO S
e S.n S NO S
! 0 S S S.n S
P.2 i S,n* S S,n* S
a NO S NO NO
e NO S NO NO
) YES S,y NO NO
P.3 i YES S,y NO NO
a NO S NO NO
e NO S NO NO
*NOforp>2
Attention: |u| =2 and |B| =2 is assumed.

120

Every symbol x e M, occurs in infinitely many rows of F, € GPT(M,). This
gives YES in the windows for (P.k/Xss), ke {1, 3}, Xe{o,i}. All NO from
Table 3.2 can be transfered. Infinitely many rows of F, belong to the set 10*1
which gives NO for (P.2/ass), (P.2/ess). Only the symbol 1 occurs in almost all rows
of F,, and it occurs in all of them. So we obtain NO for (P.3/ass) because |B| =2 is
assumed. (For |B| =1 the answer is “yes” if and only if p =2 and B={1}.) This
argument also proves S (and explains n) for (P.1/ass), (P.1/ess). The set R(A,)nx*
is nonempty if and only if x=1; it is infinite only if p =2. This proves S for
(P.2/0ss), (P.2/iss). Now consider the problem (P.3/Xws). Let y, z be different
elements of B. If yzzyyyz occurs in F, then a word of the form u0t00u (u#0, t+0)
occurs (in the preceding row) which contradicts Theorem 6.8. Thus we obtain three
new NO. The problem (P.1/ows) can be solved by Lemma 6.9. Since the left
diagonals of F, are periodical the problem (P.1/iws) is equivalent to (P.1/ows). So
.we obtain two S in the table. If a word u is contained in almost all lines of F,,, then it
must occur in the line of the form 10”1 and in the preceding row that does not
contain 0, which contradicts |u|=2. So we obtain NO for (P.1/aws). For the
problems (P.2/Xws) assume that a row of F, is of the form u* for |u|=2, k=2.
Then u is a palindrome because of symmetry of F,, and it has 1 at the ends. If u
contains zero then u* contains groups without 0 that are twice longer inside than at
the ends, which contradicts (6.8.2). Therefore u does not contain zero. Then p =2
because for p >2 the rows of F, without zero do not contain the word 11. For p =2
we can easily find out that |u| is a power of 2 ; then (P.2/iws), (P.2/ows) really must

.be answered “yes”. However, for p >2 we have k=1, hence “yes” is seldom for
(P.2/ows) and impossible for (P.2/iws).

Theorem 6.10 gives S in Table 6.1 for all eight problems (P.1/XZw); only the
trivial cases w € 0*, u € 0* must be considered separately. The problems (P.1/0sw),
(P.1/isw) have the answer “yes” whenever w ¢ 0*. The problems (P.3/Xws) can be
reduced to (P.1/Xws), hence they are solvable. The problems (P.3/ Xww) must be
answered NO for similar reason as (P.3/Xws).

For the problems (P.2/XYw) imagine that the y-th row of G = GPT(,, w),
w €0* belongs to u*, and construct the zone of G between its (y —p" + 1)-th and
the y-th row (including these rows), where n is the least integer such that |w|=p".
Let the zone be constructed from the left to the right, at each stage a new occurence
of u into the y-th row be added, and let the zone up to the appropriate right
diagonal of G be filled in.

A necessary condition for the right margin of & just being constructed is that
all rows have the same final subword of the form z0™, z# 0 as the words u, w have.
(This also gives a necessary condition for u, w which can be checked at first.
Similarly, u, w must have the same initial subword of the form 0™z, z# 0.) Another
necessary condition is that a row of the zone consists only of multiples of w which
are divided by the groups of p™ — |w| zeros. If, finally, the appropriate sequence of

121

Figure 6.1

coefficients belongs to R(/,) then the last row of (the just constructed part of) the
zone does belong to R(A,, w). Since the process of construction is ultimately
periodic, we can decide whether u* belongs to R(s, w) for at least one k, infinitely
many k, etc. (Sometimes the construction of the zone can be interrupted much
sooner than the ultimate periodicity is found. It is so also in Figure 6.1 if e.g.
w =01221.) Therefore the problems (P.2/XYw) are algorithmically solvable.

Table 6.2 summarizes the obtained information about generalized Pascal
triangles modulo p. Its system is the same as that of Table 3.2.

7. Small algebras and other special cases

Several classes of algebras will be given for which all problems (P.k/XYZ)
from Theorem 3.2 are decidable. The proof will be either direct applications of the
previous sections or at least it will be based on methods given there. Particularly,
Corollary 5.8 will be often used.

7.1. Theorem. All the problems (5.8.1) are algorithmically solvable for the
class of all finite algebras # =(A; K, |, 1, .) such that there is a partial ordering =
of the set A with the property

x'y=x and x-yZy (7.1.2)

for all x, y e A.

Proof. Let a finite algebra o satisfy (7.1.2) and let we A*. Denote G =
GPT (A, w).

Let (m, n) belong to the interior of the domain of G, ¢ = G(m, n) and let c be
a maximal element of the set of all values G(x, y) for (x, y) for the interior of the
domain of G. Then

G(m+1,n)=G(m,n)-G(m+1,n—-1)2G(m, n)=c
122

and hence G(m + 1, n) = c. Analogously G(m, n + 1) = ¢ and hence by induction
G(x,y)=c forall x=m,y=n.

Now we can use Corollary 5.8 (the appropriate embedding vectors are e.g.
(1,0), (0, 1)).

7.2. Theorem. All the problems (5.8.1) are algorithmically solvable for the
class of all finite algebras o =(A;K, I, r,.) in which the binary operation is
associative and idempotent, i.e.

(x-y)'z=x-(y-z) and x-x=x (7.2.1)

for all x, y, z€A.

Proof. We shall again use Corollary 5.8. Consider a finite algebra which
satisfies (7.2.1) and a word w € A*. We may delete an upper margin (of a suitable
width) of G =GPT (&, w), and so arrange that [w|>1 and that the left and the
right margin are periodical. Let its periods be p, q, respectively. We shall prove
that (0, p) and (g, 0) are embedding vectors for a suitable restriction of G.

Order the elements of the margin M of G from the left to the right and adjoin
to every pair (x, y) from the domain Dy |,,_; of G a segment of M as follows. If
(x, y) belongs to the margin of the domain of G then the one-element sequence
consisting of G(x, y) is adjoined to (x, y). Otherwise a segment of M which is over
the y-th right diagonal and the x-th left diagonal is adjoined to (x, y). For example,
if [w| =3 then the finite sequence

G(0, 1), G(0,0), G(1, -1), G(2, -2)

is adjoined to the pair (2,1) (see Figure 2.1).
Then G(x, y) is the product (in the sense of “.” of &) of the segment adjoined
to (x, y). We shall prove this statement by induction. For (x, y) from the margin of
Do, |wi-1 it is obvious. Otherwise let a finite sequence

Aoy A1y -..y An—y, Gn (7.2.2)
be adjoined to (x, y). Then the finite sequences
Aoy 1y ..o Any Ay, ..oy Ay, Gn
are adjoined to (x—1, y), (x, y — 1), respectively. Then by (7.2.1) we have
G(x,y)=G(x—1,y) G(x,y—1)=(ao" a;" ... ap-1) " (ar* ...« @p_y " @) =

=ao (@1 ... n1)’ 0, =00 Ay" ..." Apey Gy .
Now we can prove that
G(x,y+p)=G(x,y) and G(x+gq, y)=G(x, y)
for all (x, y) below the p-th right diagonal and the (q + |w/()-th left diagonal. Let
123

(x, y) be such pair, and (7.2.2) be adjoined to it. Then at least p elements of (7.2.2)
belong to the left margin of G, and hence

Aoy A1y «ooy Qp—1, Aoy Ayy ooy Ap—1, Apy ..., A1, Gy
is adjoined to (x, y + p). Therefore by (7.2.1)
Gx,y+p)=(ap-ai"...-a,.1) @, ... Qn_y " =
=(@o ar" ... Ap-1) @ ... Any @, =G(x, y) .

The other formula can be proved similarly but we can use Corollary 5.8 also
without it.

7.3. Theorem. All the problems (5.8.1) are algorithmically solvable for the
class of all finite algebras & =(A; K, I, r,.) which satisfy one of the identities:

(x-y)-(y 2)=x (7.3.1)
(x-y)-(y-2)=y (7.3.2)
(x-y)-(y-2)=z (7.3.3)
((xy) () (y-2)(z-))=yz (7.3.4)

Proof. We shall use Corollary 5.8 in every case. The appropriate embedding
vectors will be (2, 0), (1, 1), (0, 2) and (1, 1), respectively, and the restriction of
G=GPT(«, w) to the set {(a, b))eNXN;a=2, b=2} will be embedded into
itself in all cases.

If (7.3.1) holds we have

G(a+2,b)=G(a+1,b)-Ga+2,b—1)=
=(G(a, b)- G(a+1,b—1))-(G(a+1,b—-1)-G(a+2,b—-2))=G(a,b),

and analogously G(a + 1, b + 1) = G(a, b) for (7.3.2) and G(a, b +2)=G(a, b)
for (7.3.3). The computation for (7.3.4) is a little longer, and we shall do it only for
a=4, b="7 to obtain shorter formulae.

G(4,7)=G(3,7) G(4,6)=
=(G(2,7) G(3,6)) - ((G@B3, 6) - G(4,5))=
=((G(1,7)- G(2,6)) - (G(2, 6) G(3,5))) - (G(2, 6)- G(3, 5)) - (G(3, 5)-
- G(4,4)))=G(2,6) G(3,5)=G(3,6) .

Analogously, G(a+1, b+1)=G(a, b) in general.

The role of the inequalities a =2, b =2 is that all necessary values of G are
defined.

To avoid too frequent drowing of Cayley tables we shall determine a binary
operation on a finite set A by a linear expression. This expression will be formed so
that we fix the order of elements of A and then we shall write all rows of the Cayley

124

4

table (except the head row). The whole expression will be given into brackets, and
the rows will be separated by semicolons from each other. Analogously, a unary
operation on A will be determined by its values for argument in the fixed order;
they will also be given into brackets. For the sake of uniqueness the value of
a nulary operation will also be written in brackets. The fixed order of elements of
A will be given in the usual expression of a finite set.

For example, the algebra from Figure 2.2a can be expressed as

#=({0, 1}; (1), (11), (10), (01; 10)) .

The canonically ordered operation on the set {8, 0, 1} which is displayed in
Figure 2.2b can be expressed as ($11; 101; 110).

7.5. Theorem. For all algebras consisting of at most two elements, all the
problems (5.8.1) are algorithmically solvable. _

Proof. We may restrict ourselves to the algebras «f which base set is
M, ={0, 1}. (One-element algebras can be considered as subalgebras of suitable
two-element ones.) We shall consider all sixteen binary operations on M,.

Consider the operations (01; 10) (i.e. the sum modulo 2) and (10; 01) at first.
Since 0, 1 can be interchanged it suffices to consider (01 ; 10). If GPT (&, w) ought
to be considered we can arrange that the left and the right margins are periodical ; it
suffices to delete the first line for that. We also omit the trivial case w € 0* (when
e.g. Theorem 7.1 can be used). If the left margin is not constant we add a new left
margin consisting of only 1; the same we do for the right margin. In this way
GPT (4, w) is transformed into GPT (M, w') for some w' e M3. (Hence w' is one
of the words v, 1v, v1, 1v1, where v is either the O-th or the first row of the
original GPT(«, w).)

The problems (5.8.1) for GPT (&, w) usually can be reduced to the appropria-
te problems for GPT(#;, w'). (The reduction need not mean that the answers are
equal.) Only the problems (P.2/Xww) are exceptional. They can be reduced to the
problems

(P.2'/oww) find out whether for given u,, u, u,, w' e M} at least one word
from w,u*u, belongs to R(M,, w'),

and the appropriately formed problems (P.2'/Xww), X € {i, a, e}. (The variants
with s instead of w are special cases of the above.) They can be solved in the same
way which was used for (P.2/Xww) in the proof of Theorem 6.10.

The operations (10; 00) and (11 ; 10) satisfy the identity (7.3.4) ; it suffices to
check that for one of them. Notice that already R() can be an SSL of degree 2 in
this case. Of course, Corollary 5.8 can be directly used instead of Theorem 7.3.

For the remaining ten binary operations the sets R(&f, w) are SSL languages
of degree 1. Hence Corollary 5.8 can be used ; the appropriate embedding vectors

125

will always be (0,2) and (2, 0), sometimes also (0, 1) and (1, 0). However,
Theorem 7.1 (e.g. for (00;00), (00;01)), Theorem 7.2 (e.g. for (00;01);
(00; 11), (01; 01)) and Theorem 7.3 (e.g. (7.3.3) for (10; 10)) also can be used.

8. Concluding remarks

Up to now we have ordered generalized Pascal triangles only to the algebras of
signature (0, 1, 1, 2). Now we shall use the notation GPT(#, w), GPT (s, w, i)
also for the algebras of signatures (0, 2), (2) and the notation GPT(«) for the
algebras of signature (0, 2). The missing unary operations will be replaced by the
identical mapping of A into A. The more general case which is considered in the
previous sections can be reduced to these special cases by the following theorem.

8.1. Theorem. Let &/ =(A; K, I, 1, .) be an algebra of signature (0, 1, 1, 2),
8a, B=AuU{8§]}, let x be the operation canonically ordered to < by the formula
(2.3.1) and let - be the operation on the set B defined by

Kif x=8,y=8

xy otherwise. (8.1.1)

Xoy = {

Let 3B, =(B; K, o), B, =(B; #) be algebras of signatures (0, 2) and (2), respective-
ly. Then:

1) GPT(#) can be embedded into GPT(%,) with the embedding vector
{1, 1)

2) For every word we A* the function GPT(s, w) can be embedded into
GPT(%,, 8w8) with the embedding vector (1, —1).

The proof is easy and will be omitted. As an illustrating example consider the
algebra o from Figure 2.2a. The corresponding GPT(%,), GPT(%,, w) are
displayed in Figure 8.1a, b. Notice that

GPTs (A, w)=GPTs(%B,, Sw$, —1) (8.1.2)

but no similar formula holds for GPTs(#f). Below we shall sometimes write
GPT(4, w) instead of GPT(%,, w) for arbitrary w e $*A*$*.

a) GPT(%,)

126

c) The minimal triangle for F

Figure 8.1

Theorem 8.1 makes possible to consider GPT for the algebras of the signature
(0, 2) or (2) which are, of course, simpler than that of signature (0, 1, 1, 2).
However, the reduction enlarges the cardinality of algebras and hence it is
disadvantageous for such results as Theorem 7.4. Therefore we have preferred to
study a more general case.

For the problem (P.1/Xww) the occurrence of a word w in a GPT is
understood as the occurrence in a row of this GPT. Similar problems could be
considered also for columns and left and right diagonals. More generally, the
following problem can be considered:

(P.1/ofw) For a given algebra &/, a word w € A* and a mapping F of a finite subset
of D into A find out whether the set {a+b; (a, b) is an embedding
vector of F into GPT(«, w)} is nonempty.

The problems (P.1/ifw), (P.1/afw), (P.1/efw) will be obtained if “is nonemp-
ty” is replaced by ““is infinite”, “contains almost all ne N, and “‘contains allne N,
respectively.

The problems (P.1/Xww) can be reduced to the problems (P.1/Xfw) so that

the word u =uou, ... u, is replaced by the function

127

u, if 0=x=n and y=-x
undefined otherwise

F(x, y)={

For X e {o, i} the opposite reduction is also possible. To explain it, we define:

8.2. Definition. Let &f be an algebra of signature (0,1, 1,2) w e $*A*$* and
F be a mapping of a finite subset of D into A. We shall say that w is an #/-ceiling of
F if F can be embedded into the triangle GPT (<, w) with the sides in the 0-th row,
the 0-th right diagonal and the (|w| — 1)-th left diagonal so that every of its sides
contains at least one element corresponding to an element of F.

All o-ceilings of F have the same length which depends only on its domain,
and they can be determined as follows. At first we find the least triangle T with the
horizontal side on the top which contains the domain of F. (See Figure 8.1c, where
the symbols F show the domain of F.) Then we extend F to a mapping H of T into
Au{8} so that a word w e §*A*$* arises in the top side and it holds

H(x,y)=H(x—1, y)oH(x,y—1) (8.2.1)

whenever both sides are defined. All words which can be written into the top side
of T are #-ceilings of F. (The condition (8.2.1) may cause that no %-ceiling of
F exists.) Now we can reduce (P.1/Xfw) to (P.1/Xww), X € {o, i} by the following
theorem.

8.3. Theorem. For every algebra &, every word w € A* and every mapping F
of a finite subset of D into A the following conditions are equivalent:

(i) The set of all embedding vectors of F into GPT(s, w) is nonempty (resp.
infinite).

(ii) At least one -ceiling of F occurs in at least one row (resp. infinitely many
rows) of GPT(&, 8"w8") where n is the length of the of-ceilings of F.

Hence the problems (P.1/ofw), (P.1/ifw) are solvable e.g. for the class of GPT
described in Theorem 4.10. In this case also the problems (P.1/afw), (P.1/efw) are
solvable. For the proof we can use that the set

{n eN; u occurs in the n-th row of GPT (4, w)}

is semilinear provided R(sf), w) is an SSL language. The mentioned problems are
solvable also for all two-element algebras.

REFERENCES

[1] Culik, K. [I.—Gruska, J.—Salomaa, A.: Systolic trellis automata (for VLSI). Research report
CS-81-34, December 1981, University of Waterloo, Canada.

[2] Culik, K. II.—Gruska, J.—Salomaa, A.: Systolic trellis automata: Stability, decidability, and
complexity. Research report CS-82-04, January 1982, University of Waterloo, Canada.

128

[3] Gruska, J.: Systolic automata, in Parallel and distributed systems. (In Slovak). Research report,
May 1983, Computing Research Center Bratislava, Czechoslovakia.

[4] Ginsburg, S.: The mathematical theory of context-free languages. McGraw Hill Book Company,
1966.

[5S] Hopcroft, J. E—Ullman, J. D.: Formal languages and their relation to automata. Addison-
Wesley Publishing Company, 1969.

[6] Ibarra, O. H.: A note on semilinear sets and bounded-reversal multihead pushdown automata.
Technical Report 74-8, May 1974, University of Minnesota, U.S.A.

[7] Ibarra, O. H—Kim, S. M.—Moran, S.: Trellis automata: Characterizations, speed-up, hierar-
chy, decision problems. Preprint 1983, University of Minnesota, U.S.A.

Received: 8. 2. 1984

Author’s address :

Ivan Korec

Katedra algebry a tedrie ¢isel MFF UK
Mlynska dolina

842 15 Bratislava

PE3IOME

OBOBIIEHHBIE TPEYT'OJIbHUKH TTACKAJIS
PA3PEIIMMBIE TTPOBJIEMBI

HUBan Kopen, Bparucnasa

B cTaThe onpenenenbl o606weHHbIe TpeyronbHUKM Ilackans. OHM BO3HHKAIOT aHAJOTHYHO
OGbIKHOBEHHOMY TPEYroNbHHKY ITacKais, TONBKO BMECTO CyMMbI Ha MHOXecTBe N BCeX HaTypalbHBIX
YHCeN UCTIOJIb3YeTcs Ji06asi GWHApHAs onepauys Ha HEKOTOpPOM MHoXecTBe A. Bonee Toro, aneMeHTsI
7EBOW M MpaBod CTOPOHbI ONPENENSIOTCA MPH MOMOLIM [BYX OJHOMECTHBIX ONEpaluii Ha A,
M B HAYyaJlbHOW CTPOKE HAaXOAMTCH JMI06asi KOHEYHasl MOC/ENOBaTENLHOCTbL 3JIEMEHTOB MHOXECTBA A.
IMpo6nema HaxoNUTCA-NHU NaHHBIA 31eMEHT X € A (MO0 MeHbLUEH Mepe pa3 WM Xe GECKOHEYHO MHOTO
pa3) B naHHOM 06o61LeHHOM TpeyronbHuKe [Mackans G, aNrOPUTMHYECKH HEpa3peLIMMa faXe eclyu
A — KOHEYHOE MHOXECTBO. B cTaThe HMCCIENyIOTC HEKOTOPbIE KI1ACChl 0GOGILEHHBIX TPEYrONbHHKOB
ITackansi, (s KOTOPBIX aHANOTHYHbIE MPOGNEMBb] AITOPUTMHYECKH Pa3peIMMbl. ITO MMEET MECTO
HanpHMep TOrja, KOraa MHOXECTBO CTPOK G sIBJSieTCS NOJTYNTHHEHHBIM SI3bIKOM MM KOraa GuHapHas
onepauys ecTh CyMMa Mo MPOCTOMY MORYIIO P, H ORHOMECTHbIE ONEPALUH TPHUBHAILHL.

SUHRN

ZOVSEOBECNENE PASCALOVE TROJUHOLNIKY
ROZHODNUTELNE PROBLEMY

Ivan Korec, Bratislava
Definuji sa zovSeobecnené Pascalove trojuholniky; tie sa vytvaraji obdobne ako obyéajny
Pascalov trojuholnik, ale namiesto scitania (na mnoZine N) sa pouZiva lubovolna bindrna operacia na

nejakej mnozine A. Naviac, favy a pravy okraj nemusia byt konstantné, ale sa vytvaraji pomocou dvoch

" 129

undrnych opericii na mnozine A, a do horného riadku sa zapisuje Tubovolna konefna postupnost
prvkov A. Aj pre koneéni mnoZinu A su niektoré jednoduché otdzky algoritmicky nerieSitelné.
Napriklad je algoritmicky nerozhodnutelné, ¢i sa vdanom zovseobecnenom Pascalovom trojuholniku G
(uréenom hornym riadkom a operaciami pre tvorbu okrajov a vnitra) nachddza dany prvok x € A asponi
raz, resp. nekoneéne mnoho krat. V tejto praci sa ukazuju $pecidlne pripady, ked sii obdobné problémy
algoritmicky rieSiteIné. Je to tak napriklad vtedy, ked mnozZina v§etkych riadkov G je semilinearny
jazyk, alebo ked je lavy i pravy okraj G konstantny a bindrna operacia pre vnitro je s¢itanie modulo
prvodislo p. Uvedené otazky su algoritmicky riesiteIné tiez vtedy, ked A je najviac dvojprvkova
mnozZina.

130

	
	Article

