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IRREDUCIBLE DISJOINT CONVERING SYSTEMS OF Z
WITH THE COMMON MODULUS CONSISTING
OF THREE PRIMES

IVAN KOREC, Bratislava

Abstract. A disjoint covering system X consisting of k congruence classes
(1.1) is said to be irreducible if the union of any of its » members, 1 <r <k, is not
a congruence class. The least common multiple of its moduli n,, ..., n, will be called
the common modulus of X. The irreducible disjoint covering systems with the
common modulus pgr where p < q <r are primes, are described. It is proved that
there are (27 —2): (27—2) - (2" —2) of them. Further, the bounds for Abu(X)=
k —(p + q+r—2) and for the number hx of the elements of X with the modulus
pqr are given by the formulae (2.4), (2.5).

1. Introduction and basic notions

The symbol Z will denote the set of integers. For integers n >0, a the symbol
a(mod n) will denote the congruence class {a + nx, x € Z}. The greatest common
divisor of x, y will be denoted by D(x, y).

The intresection of any two congruence classes X =a(mod m), Y= b(mod n)
is either empty or a congruence class. If m, n are relatively prime then the first case
never takes place, and every congruence class modulo mn can be represented in the
form a(mod m)nb(mod n). Analogously, if p, q, r are relatively prime (and so
more when they are different primes) every congruence class modulo pgr can be
represented in the form

a(mod p)nb(mod g)nc(mod r) .
The system
a;(mod n,), a;(mod n), ..., a(mod ny) (1.1)
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will be called disjoint covering system (abbreviated : DCS) if every integer belongs
to exactly one of the classes (1.1). More formally, a DCS is a partition of Z into
finitely many congruence classes; we always assume that they are given in (1.1)
without repretition. The integers n,, ..., n, will be called moduli of (1.1) and their
least common multiple will be called the common modulus of (1.1).

The above mentioned property of congruence classes implies

D(ni, nj)>1 forevery i,je{l,...,k}, i¥j. (1.2)

A DCS (1.1) will be called irreducible disjoint covering system (abbreviated :
IDCS) if k>1 and there is no Mc({1, ..., k}, 1<card(M)<k such that
U{ai(mod n,); i e M} is a congruence class. Every DCS can be obtained from the
trivial DCS {Z} and several IDCS by the operation of splitting which is defined in
[3]. Hence some problems concerning general DCS can be reduced to the same
problems for IDCS. If p is a prime then the partition of Z into p congruence classes
modulo p is an IDCS. For all other IDCS their moduli are relatively prime (but by
(1.2) they cannot be pairwise relatively prime).

The example of so called non-natural DCS given by S. Porubsky [6] leads to an
IDCS with the common modulus 30. Other examples are given in [3] where it is
also shown that an IDCS with the common modulus m exists if and only if m is
a prime or m is divisible by at least three different primes. In the next section we
shall deal with the simplest possibility when m is the product of three different
primes p, q, r, and we shall describe all IDCS with the common modulus of this
form.

Let us define #(p) =p — 1 for every prime p, and extend the function % to the
set of all positive integers by the formula #(m - n) = ¥(m)+ %(n). Further, if X is
the DCS (1.1), let us call the number

Abm(X) =k — (1 +max (F(n,), #(ny), ..., F(n)) (1.3)

the Mycielski’s abundance of X. The hypothesis formulated by Mycielski and
Sierpinski in [5] which is proved by Znam in [8] states

Ab(X)Z0 (1.4)

for every DCS X. -

For every IDCS whose common modulus is a prime the equality in (1.4) holds.
For all other IDCS the inequality Abu(X)=S5 is proved in [4]. (Notice that (1.4)
holds also for DCS of arbitrary abelian groups but the last inequality does not.) In
this paper the exact bounds for Abu(X) are given provided that the common
modulus of DCS X is the product of three primes.
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2. Results on irreducible disjoint covering systems

Theorem 1. Let p, q, r be pairwise different primes. Then for every IDCS
X with the common modulus pgr there are sets P,, P,, Q,, Q,, R,, R, such that:

(i) {P,, P.},{Q,, Q.},{R,, R,} are partitions of the sets P={0, 1, ..., p—1},
Q={0,1, .., q-1}, R={0, 1, ..., r— 1}, respectively.

(ii) For every aeP, b€ Q it holds

a(mod p)nb(mod g)eX if and onlyif aeP, and be Q,; (2.1)

analogously for the moduli pr, gr instead of pq.
(iii) For every aeP, beQ, ceR it holds

a(mod p)nb(mod q)nc(mod r)e X (2.2)
if and only if '

(aeP, and beQ, and ceR,) or (aeP, and beQ, and CeR,).
(2.3)

Conversely, to every ordered sixtuple of sets P,, P,, Q,, Q,, R,, R, which satisfies
(i) there is exactly one IDCS X with the common modulus pqr such that (ii), (iii)
hold.

Proof. Let X be an IDCS with the common modulus pgr. Then its moduli can
be only pqr, pq, pr, qr; the other divisors of pgr are excluded by (1.2). Define

P,={a€P;(3beQ) (a(mod p)nb(mod q) e X}
P.={a€P; (3ceR) (a(mod p)nc(mod r) € X}
Q, ={beQ; (3a€P) (a(mod p)nb(mod q) e X}

and analagously defines Q,, R,, R,. (The notation used allows the permutation

(PQR) (pqr) (abc) of the letters.)
If P,nP,# then there are a e P,nP,, be Q and ce R such that

a(mod p)nb(mod g)eX and a(mod p)nc(mod r)e X
Since these elements of X are different we have
a(mod p)nb(mod q)nc(mod r) =@

which is a contradiction. Therefore P,nP,=§, and analogously Q,nQ, =6,
R,NR, =0.

If P, =0 then X does not contain any element with the modulus pq. Hence all
moduli of X are multiples of r, which is a contradiction. Therefore P,#0, and
analogously the other sets P,, Q,, Q,, R,, R, are nonempty.

To prove P,uP,=P consider a e P—P,; we shall prove a €P,. Since P, is
nonempty there are a, € P,, b € Q such that Y, =a,(mod p)nb(mod q) e X. We
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shall prove that Y =a(mod p)nb(mod q) belongs to X, too. Since a € P— P, the
set X does not contain a(mod p)nc(mod r) for any ceR. Further, the set
X cannot contain any element of the form b(mod q)nc(mod r) because it has
nonempty intersection with Y,. Therefore Y is the union of a subset of X, and since
X is irreducible we have Y € X, and hence a € P,. Hence {P,, P,} isa partition of P,
and analogously {Q,, Q,} is a partition of Q, and {R,, R,} is a partition of R.

Now we shall prove (ii). The direct implication is obvious. Conversely, let
a€P, and b € Q,. Then there is a, € P such that Y,=a,(mod p)nb(mod q) e X.
Since a € P — P,, we can obtain a(mod p)nb(mod q) € X in the same way as above.

To prove (iii) assume (2.2) at first. Then a(mod p)nb(mod q) # X, and hence
a€P, or beP,. Analogously aeP, or ceR,, and also beQ, or ceR,. If a €P,
then a € P,, and hence b € Q,. Therefore b ¢ Q,, and hence b € Q,. The case a € P.
is similar. Conversely, assume 2.3. If, for example,

aeP, and beQ, and ceR,,

then b€Q,, and hence a(mod p)nb(mod q) é X. Analogously
a(mod p)nc(mod r) é X and b(mod q)nc(mod r) ¢ X, and hence (2.2) holds.

Now assume that the sets P,, P,, Q,, Q,, R,, R, satisfy (i). The conditions (i),
(iii) uniquely determine a set X of congruence classes with the moduli prq, pr, qr
and pqr. We only have to prove that X is an IDCS. To prove that X is a DCS it
suffices to realize that for every aeP, beQ, ceR exactly one of the four
conditions

aeP,andbeQ,,aeP,andceR,, beQ andceR,,

and (2.3) is fulfilled. They determine the modulus (pq, pr, gr, or pqr, respectively)
of the element of X which contains

a(mod p)nb(mod g)nc(mod r) .

It remains to show that the DCS X is irreducible. If not, then there is a proper
subset Y of X, card(Y) =2, such that | JY is a congruence class with a modulus m.
Obviously 1 <m <pqr and m divides pqr. However, m# p because X contains an
element with the modulus gr (see (1.2)); analogously m#q, m#r. Hence
me{pq, pr, qr}; let e.g. m =pq. Then there are a € P, b € Q such that for every
c € R (2.2) holds, and hence (2.3) holds, too. Considering ceR, (i.e. céR,) we
obtain a € P, and considering c € R, we obtain a € P,. Therefore P.nP, =@, which
is a contradiction.

Corollary 1. If p, g, r are pairwise different primes then there are exactly
(2° —2) - (27 -2) - (2" —2) irreducible DCS with the common modulus pqr.

Proof. Every IDCS X with the common modulus pgr is determined by an
ordered triple (P,, Q., R,) of proper subsets of P, Q, R, and there are 27 —2,
292, 2 -2 possibilities for P,, Q,, R,, respectively.
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Remark. It seems reasonable to classify IDCS from Theorem 1 by the
cardinalities of the sets P,, Q,, Q,, Q., R,, R, (or, equivalently, by the primes p, q,
r and the cardinalities of P,, Q,, R,).

Theorem 2. If X is an IDCS with the common modulus pqr, where p<q<r
are primes, then

(P=1)(q+r=3)=AMX)=(p—1)-(q—1)-(r—-1). (2.4)
Further, if hy is the number of elements of X with the modulus pgr then
(P=1D-(q-D)+(r—D=hx=(p-1)-(q—-1-(r—1)+1. (2.5)

The bounds in (2.4), (2.5) are the best possible.

Proof. Let P,, Q,, R, be the sets coordinated to X in Theorem 1, and let x, y,
z be their cardinalities, respectively. Then a(mod p)nb(mod q) € X if and only if
aeP, and b ¢ Q,, hence X contains x - (q —y) elements with the .modulus pq;
analogously we can determine the number of elements of X which have moduli pq
and gqr. By the condition (iii) of Theorem 1 X contains xyz+
(p—x)-(p—y) - (p—2z) elements with the modulus pgr. Hence X consists of

fx,y, 2)=xyz+(p—x)-(q—y) - (r—2)+x-(g—y)+y - (r—2)+z-(p—x)

congruence classes. To obtain (2.4) we have to determine the extrems of the
function f for

1=x=p-1, 1=sy=q-1, 1=z=r-1. (2.6)
If x, y are fixed then g(z)=f(x, y, z) is a linear function of z. Hence it reaches its
extrems for z=1, z=r—1 (or g(z) is a constant function, and the choice of z is
inessential). Therefore it suffices to consider ze{1,r—1}, and analogously

xe{l,p—1}, ye{l, q—1}. To make the formulae below shorter, denote a =
p—1, b=q—1, c=r—1. By an easy computation we obtain

f(1,1,1)=f(a, b, c)=1+abc+a+b+c

f(1,1,c)=f(a,1,c)=c+ab+b+1+ac=(a+1)(b+c)+1
f(1,b,1)=f(1,b,c)=b+ac+1+bc+a=(c+1)(a+b)+1
f(a,1,1)=f(a,b,1)=a+bc+ab+c+1=(b+1)(a+c)+1

Since 1=a <b <c we can easily obtain

f(1,1,c)<f(a,1,1)=f(1, b, 1)=f(1,1,1).
Therefore
f(1,1, ¢c)Scard(X)=f(1,1,1).
Since Abm(X)=card(X)—(F(pqr)+1)=card(X)—(a+b+c+1) we have
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f(,1,c)—(a+b+c+1)=SAbWX)=f(1,1,1)—(a+b+c+1)
a-(b+c—1)=SAbu(X)=abc

which is (2.4).
To prove (2.5), consider analogously the function

h(x,y, 2)=xyz+(p—x)-(p—y)-(p—2)
for x, y, z satisfying (2.6). We can easily obtain
h(1,1,c)=h(x,y, z)=h(1,1,1)

which immediately gives (2.5).
Corollary 2. For every integer n, there are only finitely many IDCS X such
that their common moduli are product of three primes and Abu(X)= n,.
Rlemark. Generally speaking, the common modulus m of a DCS X need not
occur among its moduli (see [1]). However, by (2.5) m occurs among them for
IDCS X from the above theorems. Therefore (2.4) holds also for the so-called
Mycielski—Znam’s abundance which is defined by the formula

Abyz(X) =k —(1+ F(m)) .
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PE3IOME

HEPA3JIOXWUMBIE TOYHO HAKPBIBAIOIIME CUCTEMBI LIEJIUX YUCE]I C OBIINM
MONYJIEM COCTOSIIUM U3 TPEX IMPOCTBIX YHUCE

HUBan Kopeu, Bpatucnasa

TouHo HakphIBalowlasi cucTeMa X COCTOSIAS M3 CMEXHBIX KJIaccoB (1.1) 6yner Ha3bIBaThCSH
HEpa3NoXHMOM eCITM HH s KaKHX r KiaccoB M3 X, 1<r <k, o6beJHHEHHE He ABIAETCH CMEXHBIM
knaccoM. Haitmenbluee obliee kpaTHoe Mopmyneit ny, ..., n, OyneT Ha3bIBaThcs obwmumM Mopynem
cucrembl  X. JlokasbiBaeTcsi, uTO ecnM p<q<r MpocThle 4YHCIA TO CYILECTBYET TOYHO
(2P =2)-(29—-2) - (2" —2) HepasnOXHUMBIX TOYHO HaKpBIBAIOLIMX CHCTEM C OGLIMM MOAyNeM pqr.
Hanee nonyvatorcs ouenku (2.4), (2.5) mns ymcna Abu(X)=k—(p+q+r—2) u nns uncna hy
aneMeHToB X ¢ 06IIMM MopayneM pqr.

SUHRN

IREDUCIBILNE PRESNE POKRYVAJUCE SUSTAVY NA Z,
KTORYCH MODUL JE SUCINOM TROCH PRVOCISEL

Ivan Korec, Bratislava

Presne pokryvajiicu sistavu X, pozostivajicu z k zvySkovych tried (1.1) budeme nazgvat
ireducibilnou, ak zjednotenie Ziadnych r jej prvkov, 1<r<k, nie je zvyikova trieda. Najmensi
spolo¢ny nasobok jej modulov ny, ..., n, budeme nazyvat jej spoloénym modulom. Vysetruji sa
ireducibilné presne pokryvajice siistavy, ktorych spolo¢ny modul je si¢inom troch prvoéisel p, q, .
Dokazuje sa, Ze existuje presne (27 —2)- (29 —2)- (2" —2) takychto siistav. Dalej st ndjdené presné
dolné a horné odhady (2.4) a (2.5) pre &islo Aby(X)=k —(p+q+r—2) a pre pocet hx prvkov X,
ktorych modul je pqr.
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