

Werk

Label: Article Jahr: 1985

PURL: https://resolver.sub.uni-goettingen.de/purl?312901348_46-47|log11

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

UNIVERSITAS COMENIANA ACTA MATHEMATICA UNIVERSITATIS COMENIANAE XLVI—XLVII—1985

IRREDUCIBLE DISJOINT CONVERING SYSTEMS OF Z WITH THE COMMON MODULUS CONSISTING OF THREE PRIMES

IVAN KOREC, Bratislava

Abstract. A disjoint covering system X consisting of k congruence classes (1.1) is said to be irreducible if the union of any of its r members, 1 < r < k, is not a congruence class. The least common multiple of its moduli $n_1, ..., n_k$ will be called the common modulus of X. The irreducible disjoint covering systems with the common modulus pqr where p < q < r are primes, are described. It is proved that there are $(2^p - 2) \cdot (2^q - 2) \cdot (2^r - 2)$ of them. Further, the bounds for $Ab_M(X) = k - (p + q + r - 2)$ and for the number h_X of the elements of X with the modulus pqr are given by the formulae (2.4), (2.5).

1. Introduction and basic notions

The symbol Z will denote the set of integers. For integers n > 0, a the symbol $a \pmod{n}$ will denote the congruence class $\{a + nx, x \in Z\}$. The greatest common divisor of x, y will be denoted by D(x, y).

The intresection of any two congruence classes $X = a \pmod{m}$, $Y = b \pmod{n}$ is either empty or a congruence class. If m, n are relatively prime then the first case never takes place, and every congruence class modulo mn can be represented in the form $a \pmod{m} \cap b \pmod{n}$. Analogously, if p, q, r are relatively prime (and so more when they are different primes) every congruence class modulo pqr can be represented in the form

$$a \pmod{p} \cap b \pmod{q} \cap c \pmod{r}$$
.

The system

$$a_1 \pmod{n_1}, a_2 \pmod{n_2}, ..., a_k \pmod{n_k}$$
 (1.1)

will be called disjoint covering system (abbreviated: DCS) if every integer belongs to exactly one of the classes (1.1). More formally, a DCS is a partition of Z into finitely many congruence classes; we always assume that they are given in (1.1) without repretition. The integers $n_1, ..., n_k$ will be called moduli of (1.1) and their least common multiple will be called the common modulus of (1.1).

The above mentioned property of congruence classes implies

$$D(n_i, n_i) > 1$$
 for every $i, j \in \{1, ..., k\}, i \neq j$. (1.2)

A DCS (1.1) will be called irreducible disjoint covering system (abbreviated: IDCS) if k > 1 and there is no $M \subseteq \{1, ..., k\}$, $1 < \operatorname{card}(M) < k$ such that $\bigcup \{a_i(\operatorname{mod} n_i); i \in M\}$ is a congruence class. Every DCS can be obtained from the trivial DCS $\{Z\}$ and several IDCS by the operation of splitting which is defined in [3]. Hence some problems concerning general DCS can be reduced to the same problems for IDCS. If p is a prime then the partition of Z into p congruence classes modulo p is an IDCS. For all other IDCS their moduli are relatively prime (but by (1.2) they cannot be pairwise relatively prime).

The example of so called non-natural DCS given by \S . Porubský [6] leads to an IDCS with the common modulus 30. Other examples are given in [3] where it is also shown that an IDCS with the common modulus m exists if and only if m is a prime or m is divisible by at least three different primes. In the next section we shall deal with the simplest possibility when m is the product of three different primes p, q, r, and we shall describe all IDCS with the common modulus of this form.

Let us define $\mathcal{F}(p) = p - 1$ for every prime p, and extend the function \mathcal{F} to the set of all positive integers by the formula $\mathcal{F}(m \cdot n) = \mathcal{F}(m) + \mathcal{F}(n)$. Further, if X is the DCS (1.1), let us call the number

$$Ab_{M}(X) = k - (1 + \max(\mathcal{F}(n_1), \mathcal{F}(n_2), ..., \mathcal{F}(n_k))$$

$$(1.3)$$

the Mycielski's abundance of X. The hypothesis formulated by Mycielski and Sierpinski in [5] which is proved by Znám in [8] states

$$Ab_{M}(X) \ge 0 \tag{1.4}$$

for every DCS X.

For every IDCS whose common modulus is a prime the equality in (1.4) holds. For all other IDCS the inequality $Ab_M(X) \ge 5$ is proved in [4]. (Notice that (1.4) holds also for DCS of arbitrary abelian groups but the last inequality does not.) In this paper the exact bounds for $Ab_M(X)$ are given provided that the common modulus of DCS X is the product of three primes.

2. Results on irreducible disjoint covering systems

Theorem 1. Let p, q, r be pairwise different primes. Then for every IDCS X with the common modulus pqr there are sets P_q , P_r , Q_p , Q_r , R_p , R_q such that:

(i)
$$\{P_q, P_r\}, \{Q_p, Q_r\}, \{R_p, R_q\}$$
 are partitions of the sets $P = \{0, 1, ..., p-1\}, Q = \{0, 1, ..., q-1\}, R = \{0, 1, ..., r-1\},$ respectively.

(ii) For every $a \in P$, $b \in Q$ it holds

$$a \pmod{p} \cap b \pmod{q} \in X$$
 if and only if $a \in P_q$ and $b \in Q_p$; (2.1)

analogously for the moduli pr, qr instead of pq.

(iii) For every $a \in P$, $b \in Q$, $c \in R$ it holds

$$a \pmod{p} \cap b \pmod{q} \cap c \pmod{r} \in X$$
 (2.2)

if and only if

$$(a \in P_q \text{ and } b \in Q_r \text{ and } c \in R_p) \text{ or } (a \in P_r \text{ and } b \in Q_p \text{ and } c \in R_q).$$

$$(2.3)$$

Conversely, to every ordered sixtuple of sets P_q , P_r , Q_p , Q_r , R_p , R_q which satisfies (i) there is exactly one IDCS X with the common modulus pqr such that (ii), (iii) hold.

Proof. Let X be an IDCS with the common modulus pqr. Then its moduli can be only pqr, pq, pr, qr; the other divisors of pqr are excluded by (1.2). Define

$$P_q = \{a \in P; (\exists b \in Q) \ (a \pmod p) \cap b \pmod q \in X\}$$

$$P_r = \{a \in P; (\exists c \in R) \ (a \pmod p) \cap c \pmod r \in X\}$$

$$Q_p = \{b \in Q; (\exists a \in P) \ (a \pmod p) \cap b \pmod q \in X\}$$

and analogously defines Q_r , R_p , R_q . (The notation used allows the permutation (PQR)(pqr)(abc) of the letters.)

If $P_q \cap P_r \neq \emptyset$ then there are $a \in P_q \cap P_r$, $b \in Q$ and $c \in R$ such that

$$a \pmod{p} \cap b \pmod{q} \in X$$
 and $a \pmod{p} \cap c \pmod{r} \in X$

Since these elements of X are different we have

$$a \pmod{p} \cap b \pmod{q} \cap c \pmod{r} = \emptyset$$

which is a contradiction. Therefore $P_q \cap P_r = \emptyset$, and analogously $Q_p \cap Q_r = \emptyset$, $R_p \cap R_q = \emptyset$.

If $P_q = \emptyset$ then X does not contain any element with the modulus pq. Hence all moduli of X are multiples of r, which is a contradiction. Therefore $P_q \neq \emptyset$, and analogously the other sets P_r , Q_p , Q_r , R_p , R_q are nonempty.

To prove $P_q \cup P_r = P$ consider $a \in P - P_r$; we shall prove $a \in P_q$. Since P_q is nonempty there are $a_1 \in P_q$, $b \in Q$ such that $Y_1 = a_1 \pmod{p} \cap b \pmod{q} \in X$. We

shall prove that $Y = a \pmod{p} \cap b \pmod{q}$ belongs to X, too. Since $a \in P - P_r$ the set X does not contain $a \pmod{p} \cap c \pmod{r}$ for any $c \in R$. Further, the set X cannot contain any element of the form $b \pmod{q} \cap c \pmod{r}$ because it has nonempty intersection with Y_1 . Therefore Y is the union of a subset of X, and since X is irreducible we have $Y \in X$, and hence $a \in P_q$. Hence $\{P_q, P_r\}$ is a partition of P, and analogously $\{Q_p, Q_r\}$ is a partition of Q, and $\{R_p, R_q\}$ is a partition of R.

Now we shall prove (ii). The direct implication is obvious. Conversely, let $a \in P_q$ and $b \in Q_p$. Then there is $a_1 \in P$ such that $Y_1 = a_1 \pmod{p} \cap b \pmod{q} \in X$. Since $a \in P - P_r$, we can obtain $a \pmod{p} \cap b \pmod{q} \in X$ in the same way as above.

To prove (iii) assume (2.2) at first. Then $a \pmod{p} \cap b \pmod{q} \neq X$, and hence $a \in P_r$ or $b \in P_r$. Analogously $a \in P_q$ or $c \in R_q$, and also $b \in Q_p$ or $c \in R_p$. If $a \in P_q$ then $a \notin P_r$, and hence $b \in Q_r$. Therefore $b \notin Q_p$, and hence $b \in Q_r$. The case $a \in P_r$ is similar. Conversely, assume 2.3. If, for example,

$$a \in P_q$$
 and $b \in Q_r$ and $c \in R_p$,

then $b \notin Q_p$, and hence $a \pmod{p} \cap b \pmod{q} \notin X$. Analogously $a \pmod{p} \cap c \pmod{r} \notin X$ and $b \pmod{q} \cap c \pmod{r} \notin X$, and hence (2.2) holds.

Now assume that the sets P_q , P_r , Q_p , Q_r , R_p , R_q satisfy (i). The conditions (ii), (iii) uniquely determine a set X of congruence classes with the moduli pq, pr, qr and pqr. We only have to prove that X is an IDCS. To prove that X is a DCS it suffices to realize that for every $a \in P$, $b \in Q$, $c \in R$ exactly one of the four conditions

$$a \in P_q$$
 and $b \in Q_p$, $a \in P_r$ and $c \in R_p$, $b \in Q_r$ and $c \in R_p$,

and (2.3) is fulfilled. They determine the modulus (pq, pr, qr, or pqr, respectively) of the element of X which contains

$$a \pmod{p} \cap b \pmod{q} \cap c \pmod{r}$$
.

It remains to show that the DCS X is irreducible. If not, then there is a proper subset Y of X, $\operatorname{card}(Y) \ge 2$, such that $\bigcup Y$ is a congruence class with a modulus m. Obviously 1 < m < pqr and m divides pqr. However, $m \ne p$ because X contains an element with the modulus qr (see (1.2)); analogously $m \ne q$, $m \ne r$. Hence $m \in \{pq, pr, qr\}$; let e.g. m = pq. Then there are $a \in P$, $b \in Q$ such that for every $c \in R$ (2.2) holds, and hence (2.3) holds, too. Considering $c \in R_p$ (i.e. $c \notin R_q$) we obtain $a \in P_q$ and considering $c \in R_q$ we obtain $a \in P_r$. Therefore $P_r \cap P_q = \emptyset$, which is a contradiction.

Corollary 1. If p, q, r are pairwise different primes then there are exactly $(2^p-2)\cdot(2^q-2)\cdot(2^r-2)$ irreducible DCS with the common modulus pqr.

Proof. Every IDCS X with the common modulus pqr is determined by an ordered triple (P_q, Q_r, R_p) of proper subsets of P, Q, R, and there are $2^p - 2$, $2^q - 2$, $2^r - 2$ possibilities for P_q , Q_r , R_p , respectively.

Remark. It seems reasonable to classify IDCS from Theorem 1 by the cardinalities of the sets P_q , Q_p , Q_p , Q_p , Q_p , Q_p , Q_q

Theorem 2. If X is an IDCS with the common modulus pqr, where p < q < r are primes, then

$$(p-1)\cdot (q+r-3) \le Ab_{M}(X) \le (p-1)\cdot (q-1)\cdot (r-1)$$
. (2.4)

Further, if h_x is the number of elements of X with the modulus pgr then

$$(p-1)\cdot(q-1)+(r-1) \le h_x \le (p-1)\cdot(q-1)\cdot(r-1)+1$$
. (2.5)

The bounds in (2.4), (2.5) are the best possible.

Proof. Let P_q , Q_r , R_p be the sets coordinated to X in Theorem 1, and let x, y, z be their cardinalities, respectively. Then $a \pmod{p} \cap b \pmod{q} \in X$ if and only if $a \in P_q$ and $b \notin Q_r$, hence X contains $x \cdot (q - y)$ elements with the modulus pq; analogously we can determine the number of elements of X which have moduli pq and qr. By the condition (iii) of Theorem 1 X contains $xyz + (p-x) \cdot (p-y) \cdot (p-z)$ elements with the modulus pqr. Hence X consists of

$$f(x, y, z) = xyz + (p - x) \cdot (q - y) \cdot (r - z) + x \cdot (q - y) + y \cdot (r - z) + z \cdot (p - x)$$

congruence classes. To obtain (2.4) we have to determine the extrems of the function f for

$$1 \le x \le p - 1, \quad 1 \le y \le q - 1, \quad 1 \le z \le r - 1.$$
 (2.6)

If x, y are fixed then g(z) = f(x, y, z) is a linear function of z. Hence it reaches its extrems for z = 1, z = r - 1 (or g(z) is a constant function, and the choice of z is inessential). Therefore it suffices to consider $z \in \{1, r - 1\}$, and analogously $x \in \{1, p - 1\}$, $y \in \{1, q - 1\}$. To make the formulae below shorter, denote a = p - 1, b = q - 1, c = r - 1. By an easy computation we obtain

$$f(1, 1, 1) = f(a, b, c) = 1 + abc + a + b + c$$

$$f(1, 1, c) = f(a, 1, c) = c + ab + b + 1 + ac = (a + 1)(b + c) + 1$$

$$f(1, b, 1) = f(1, b, c) = b + ac + 1 + bc + a = (c + 1)(a + b) + 1$$

$$f(a, 1, 1) = f(a, b, 1) = a + bc + ab + c + 1 = (b + 1)(a + c) + 1$$

Since $1 \le a < b < c$ we can easily obtain

$$f(1, 1, c) < f(a, 1, 1) \le f(1, b, 1) \le f(1, 1, 1)$$
.

Therefore

$$f(1, 1, c) \leq \operatorname{card}(X) \leq f(1, 1, 1)$$
.

Since $Ab_{M}(X) = card(X) - (\mathcal{F}(pqr) + 1) = card(X) - (a+b+c+1)$ we have

$$f(1, 1, c) - (a + b + c + 1) \le Ab_{M}(X) \le f(1, 1, 1) - (a + b + c + 1)$$

 $a \cdot (b + c - 1) \le Ab_{M}(X) \le abc$

which is (2.4).

To prove (2.5), consider analogously the function

$$h(x, y, z) = xyz + (p - x) \cdot (p - y) \cdot (p - z)$$

for x, y, z satisfying (2.6). We can easily obtain

$$h(1, 1, c) \le h(x, y, z) \le h(1, 1, 1)$$

which immediately gives (2.5).

Corollary 2. For every integer n_0 there are only finitely many IDCS X such that their common moduli are product of three primes and $Ab_M(X) \le n_0$.

Remark. Generally speaking, the common modulus m of a DCS X need not occur among its moduli (see [1]). However, by (2.5) m occurs among them for IDCS X from the above theorems. Therefore (2.4) holds also for the so-called Mycielski—Znám's abundance which is defined by the formula

$$Ab_{MZ}(X) = k - (1 + \mathcal{F}(m)).$$

REFERENCES

- [1] Burshtein, N.: Exactly covering systems of congruences. Ph. D. Thesis. University of Tel Aviv, 1974.
- [2] Friedlander, J.: On exact covering of the integers, Israel J. Math. 12 (1972) 299-305.
- [3] Korec, I.: Irreducible disjoint covering systems. Acta Arithmetica. XLN (1984), 389-395.
- [4] Korec, I.: Improvement of Mycielski's inequality for nonnatural disjoint covering systems of Z. To appear.
- [5] Mycielski, J.—Sierpiński, W.: Sur une propriété des ensembles linéaires, Fund. Math. 58(1966), 143—147.
- [6] Porubský, Š.: Natural exactly covering systems of congruences, Czech. Mat. Journal 24 (1974), 598—606.
- [7] Porubský, Š.: Results and problems on covering systems of residue classes, Mitt. Math. Semin. Giessen, Heft 150, 1981, 1—85.
- [8] Znám, Š.: On Mycielski's problem on systems of arithmetical progressions, Coll. Math. 15 (1966), 201—204.
- [9] Znám, Š.: A survey of covering systems of congruences, Acta Math. Univ. Comen. 40—41 (1982), 59—79.

Received: 19. 1. 1984

Author's address:

Ivan Korec

Katedra algebry a teórie čísel MFF UK

Mlynská dolina

842 15 Bratislava

РЕЗЮМЕ

НЕРАЗЛОЖИМЫЕ ТОЧНО НАКРЫВАЮЩИЕ СИСТЕМЫ ЦЕЛИХ ЧИСЕЛ С ОБЩИМ МОДУЛЕМ СОСТОЯЩИМ ИЗ ТРЕХ ПРОСТЫХ ЧИСЕЛ

Иван Корец, Братислава

Точно накрывающая система X состоящая из смежных классов (1.1) будет называться неразложимой если ни для каких r классов из X, 1 < r < k, объединение не является смежным классом. Найменьшее общее кратное модулей n_1, \ldots, n_k будет называться общим модулем системы X. Доказывается, что если p < q < r простые числа то существует точно $(2^p - 2) \cdot (2^q - 2) \cdot (2^r - 2)$ неразложимых точно накрывающих систем с общим модулем pqr. Далее получаются оценки (2.4), (2.5) для числа $Ab_M(X) = k - (p + q + r - 2)$ и для числа h_X элементов X с общим модулем pqr.

SÚHRN

IREDUCIBILNÉ PRESNE POKRÝVAJÚCE SÚSTAVY NA Z, KTORÝCH MODUL JE SÚČINOM TROCH PRVOČÍSEL

Ivan Korec, Bratislava

Presne pokrývajúcu sústavu X, pozostávajúcu z k zvyškových tried (1.1) budeme nazývať ireducibilnou, ak zjednotenie žiadnych r jej prvkov, 1 < r < k, nie je zvyšková trieda. Najmenší spoločný násobok jej modulov $n_1, ..., n_k$ budeme nazývať jej spoločným modulom. Vyšetrujú sa ireducibilné presne pokrývajúce sústavy, ktorých spoločný modul je súčinom troch prvočísel p, q, r. Dokazuje sa, že existuje presne $(2^p-2)\cdot(2^q-2)\cdot(2^r-2)$ takýchto sústav. Ďalej sú nájdené presné dolné a horné odhady (2.4) a (2.5) pre číslo $Ab_M(X) = k - (p+q+r-2)$ a pre počet h_X prvkov X, ktorých modul je pqr.