

Werk

Label: Article **Jahr:** 1984

PURL: https://resolver.sub.uni-goettingen.de/purl?312901348_44-45|log9

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

UNIVERSITAS COMENIANA ACTA MATHEMATICA UNIVERSITATIS COMENIANAE XLIV—XLV—1984

COMPLEMENTED P-ALGEBRAS

TIBOR KATRIŇÁK, Bratislava

An algebra $L = (L; \vee, \wedge, *, 0, 1)$ is called a *p-algebra* (or a pseudocomplemented lattice) if $(L; \vee, \wedge, 0, 1)$ is a bounded lattice and $x \le a^*$ iff $a \land x = 0$. A *p*-algebra is said to be nontrivial if $x^* \ne 0$ whenever $x \ne 1$.

It is known in Lambrou [4] using the axiom of choice and working with ultrafilters that a nontrivial p-algebra is complemented. We give a short elementary proof of this fact (Theorem 1). In special cases complemented p-algebras are Boolean algebras. In Theorem 2 we characterize those equational classes of p-algebras in which that is the case.

Theorem 1. A p-algebra L is complemented if and only if L is nontrivial. **Proof.** Since $x' \le x^*$, we see that a complemented p-algebra is nontrivial. Conversely, let L be nontrivial. Evidently, $x \le y$ yields $x^* \ge y^*$. Therefore, $(x \lor x^*)^* \le x^* \land x^{**} = 0$, and this implies $x \lor x^* = 1$. Hence x^* is a complement of x in L.

Pentagon, the five-element nonmodular lattice, is the smallest non-Boolean complemented p-algebra. It is known that the p-algebras can be defined in terms of identities, that means the class of all p-algebras is equational (cf. [1]).

Theorem 2. Let K be an equational subclass of the class of all p-algebras. The following conditions are equivalent:

- (i) K does not contain a pentagon;
- (ii) Every algebra from K satisfies identity

$$x = x^{**} \wedge (x \vee x^*);$$

(iii) In K, every complemented algebra is a Boolean one.

Proof. (i) \Rightarrow (ii). In [2, Theorems 4 and 6] we have shown that the equational subclasses satisfying (i) are contained in the class of p-algebras defined by identity $x = x^{**} \land (x \lor x^*)$. (ii) \Rightarrow (iii). Since $x \lor x^* = 1$ in a complemented p-algebra,

we see that $x = x^{**}$ for every x. But the "closed" elements form a Boolean algebra (see [1, Theorem 6.4]). (iii) \Rightarrow (i) is trivial.

Remark. In view of Theorem 2 we can give a different proof of Theorem in [3]: A complete lattice with 0 and 1 is an atomic Boolean algebra if and only if it is semisimple (i.e. the intersection of all maximal ideals of L is $\{0\}$) and completely distributive. Evidently, L is distributive, pseudocomplemented and dually pseudocomplemented, by complete distributivity. (Let a^+ denote the dual pseudocomplement of a, i.e. $a \lor x = 1$ iff $x \ge a^+$.) Then $x = x^{++} \lor (x \land x^+)$ and, by [1, Lemma 15.5], every maximal ideal of L contains ideal $\{x \in L: x^+ = 1\}$ = $\{x \land x^+: x \in L\}$. By semisimplicity, $x \land x^+ = 0$ for every $x \in L$. Hence L is complemented. Therefore, L is a Boolean algebra by Theorem 2. The rest follows from the Tarski's Theorem for Boolean algebras.

REFERENCES

- [1] Grätzer, G.: Lattice Theory. First concepts and distributive lattices, W. H. Freeman and Co., 1971.
- [2] Katriňák, T.: Splitting p-algebras, Algebra Univ. (to appear).
- [3] Lambrou, M. S.: Semisimple completely distributive lattices are Boolean algebras, Proc. Amer. Math. Soc. 68 (1978), 217—219.
- [4] Lambrou, M. S.: Nontrivially pseudocomplemented lattices are complemented, Proc. Amer. Math. Soc. 77 (1979), 155—156.

Author's address:

Received: 18, 10, 1982

Tibor Katriňák Katedra algebry a teórie čísel MFF UK matematický pavilón Mlynská dolina 842 15 Bratislava

SÚHRN

KOMPLEMENTÁRNE p-ALGEBRY

T. Katriňák, Bratislava

V práci sa charakterizujú tie p-algebry, ktoré sú aj komplementárnymi zväzmi.

РЕЗЮМЕ

р-АЛГЕБРЫ С ДОПОЛНЕНИЯМИ

Т. Катриняк, Братислава

Охарактеризованы те р-алгебры, которые являются решеткой с дополнениями.