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AUTOGENOMORPHISMS ON FINITE BOOLEAN ALGEBRAS

EVA KOTLEBOVA, Bratislava

Introduction

E. K. Blum and D. R. Estes [1] introduced and studied the concept of
a genomorphism between algebras of arbitrary similarity type. It is a generalization
of the homomorphism concept, which presupposes algebras of the same similarity
type.

Blum and Estes [1] characterized autogenomorphisms on free semigroups and
groups. In this paper we shall describe autogenomorphisms on finite Boolean
algebras.

Basic concepts and notation

A=(A; a, ..., a,) denotes a universal algebra with underlying set A and
fundamental operations o;: Ai— A ; 1<i<n. Having a={a,, ..., a.}, we write
(A; a) instead of (A; ay, ..., ).

Let H be a nonempty subset of A. Then [H; a] denotes the subalgebra of
(A; a) generated by H. When H={cy, ..., &}, we write [ci, ..., c; a] or
[ciy ..., o] instead of [H; a].

Definition 1. (See [1]). Let A=(A; a) and B=(B; 8) be two arbitrary
algebras. A mapping ¢@: A — B is said to be generative if for each operator o; of
arity >0

(p(ai(als Teey a’i))el(p(al)’ B q)(ari);B]'
The mapping @ is said to be congruential if @(a}) = ¢(a;), 1 <j=r,, implies
q)(ai(ah swiny a’i))= (p(a,-(a{, ey a:i))‘
A mapping @ is called a genomorphism, if it is both generative and congruential.
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The prefixes mono, epi, iso, endo and auto have the same connotation as in the
category of sets. Thus, for example, ¢: A— A is an autogenomorphism if @ is
a genomorphism that is injective (one-to-one) and surjective (onto).

Remark 1. Every homomorphism ¢ is a genomorphism, since then
@(ai(ay, ..., a,))=Pi(@(a), ..., p(a,)). An injective generative mapping is ob-
viously a genomorphism.

- Lemma A. ([1], Lemma 2). Let ¢: A— B be generative. Let S< A. Then
o([S; a]) <[9(S); BI].

Lemma B. ([1]), Lemma 3). The composition of two autogenomorphisms is
again an autogenomorphism.

We suppose that the reader is familiar with basic notions and results on
Boolean algebras. The following statement is routine (see [2]).

Lemma C. Let a, b, ¢ be atoms of a Boolean algebra B=(B; v, A, ', 0, 1).
Then [a, b] = {a,b,a’,b’,avb,(avb)’,0,1}and]a, b, c] = {a,b,c,a’,b’, c’,
avb, avce, bve, (avb)', (avc), (bvc), avbve, (avbvc)', 0,1},

Lemma D. Let B be a Boolean algebra and a, b € B. Assume aA b =0. Then
[a, b] = {0, 1, a, b, a’, b', a’'Ab’, avb}.

Proof. Let FB(x, y) denote the free Boolean algebra on two generators x, y.
There exists an epimorphism f: FB(x, y)—[a, b] with f(x)=a and f(y)=>b.
Clearly x Ay € Ker f. Now the statement follows from |FB(x, y)| = 16 and the fact
that [a, b]=FB(x, y)/Ker f.

Main results

Theorem 1. Let ¢ be an autogenomorphism of a Boolean algebra B. Then
@({0, 1})={0, 1}, and for each ae B, @(a’)=(@(a))'.

Proof. Let @(a)=0, @¢(b)=1, a,beB. By Lemma A, ¢([a, b])<[O0, 1],
hence {a, b} ={0, 1}. Thus, ({0, 1})={0, 1}.

Suppose that a is an element of B. Therefore, @(a’)e[@p(a)] = [@(a),
(@(a))’, 0, 1], which implies @(a’)=(g(a))’, by the previous result.

Corollary. Let B=({a,a',0,1}; v, A, ", 0, 1) be a Boolean algebra. Let ¢
be an autogenomorphism on B. Then ¢({0, 1})={0, 1} and ¢({a, a’'})={a, a’}.

Now, we want to show that every autogenomorphism on a finite Boolean
algebra associates each atom with an atom or a coatom. Evidently, this is true for
Boolean algebras with four elements.

Lemma 1. Let @ be an autogenomorphism on a Boolean algebra B with
|B| = 8. Let @(a), @(b) be different atoms of B. Then one of the following cases
occurs:

(i) a<b or b<a,

(ii)) anb=0,

(iii) avb=1.
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Proof: Evidently, 0, 1, a4, b are mutually different. By Lemma D,
|[@(a), @(b)]| =8. Therefore, |[a, b]| <8, by Lemma A. Denote by FB(x, y) the
free Boolean algebra on two free generators x and y. There is an epimorphism
f: FB(x, y)—|a, b] such that f(x)=a and f(y)=b. Clearly, [a, b]=FB(x, y)-
/Ker f. Since |FB(x, y)| =16, we have |Ker f|=2. Evidently, xAy, x'Ay, xAY’,
x'Ay' are the only atoms of FB(x, y). Hence, xAy€Ker f or xAy’eKer f or
x Any'’eKer f or x' Ay’ €eKer f, which gives one of the cases (i)—(iii).

Theorem 2. Let @ be an autogenomorphism on a Boolean algebra B and
@(x)=y for some x e B. Let ¢': B— B be defined as follows:

y' for z=x,
q)’(z)={ —y for z=x,
L @(2) for x#z#x'.
Then @’ is an autogenomorphism on B.
Proof. Evidently, ¢’ =y . @, where

y' for t=y,
w(t)={ y for t=y’,
t for y#t#y'.

It is easy to verify that v is an autogenomorphism on B. It follows that ¢’ is
also an autogenomorphism (see Lemma B) and the proof is complete.

Definition 2. Two autogenomorphisms ¢;, @, on a Boolean algebra B are
said to be similar, if for each a e B, @i(a)= @:(a) or @:(a)=q:(a’).

Remark 2. Itis easy to see, that the similarity is an equivalence relation on the
set of all autogenomorphisms on a Boolean algebra B.

Theorem 3. Let @ be an autogenomorphism on a Boolean algebra B with
|B|=8. Let @(a), @(b) be different atoms of B. Then there exists a similar
autogenomorphism 1 such that

(i) cAad=0 for y(c)=@(a) and y(d)=@(d),

(i) Y(z)=@(z) for c#z#d and ¢’ #z#d'.

Proof. In accordance with Lemma 1 we can choose c=a and d=b'or c=b
and d = a' in the first case, and ¢ = a’, d = b’ in the third case. The rest of the proof
is straightforward.

Lemma 2. Let @ be an autogenomorphism on a Boolean algebra B with
|B|=8. Let @(a), @(b), @(c) be different atoms of B. Then there exists no chain
x>y>z such that x, y, z€e{a, a’, b, b’, c, c'}.

Proof. Itis easy to see that, say, x, y € {a, a'} is impossible. Thus, without loss
of generality we can assume x€{a,a’}, ye{b,b'}, ze{c,c'} and x>y>z.
According to Lemma A and Lemma C we get

e({xAy', (xAry ) D ={e(x)ve(y), (p(x)ve(y))},
o({xaz', (xA2")' D) ={@(x)ve(2), (p(x)ve(z))'} and
o({yrz’,(yA2")'D={e()ve(z), (p(y)ve(z))'}.
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Really, it is easy to check that xAy'e{0, 1, x, y, x’, y'} is impossible.
Therefore, @(xAy')€{0, 1, p(x), @(y), (¢(x))’, (¢())'}. Hence, by Lemma C
and Theorem 1,

e({xay’, (xay ) H={@x)ve®), (p(x)ve(y))}.

Similarly one can establish the remaining two statements. It is not difficult to
verify that

e((yrz)vx)e{e(x)vo(y)ve(z), (e(x)ve(y)ve(z))'}.
Evidently, (yAz')vx'€¢{0, 1, x, y, z, x', y’, z'}. Since
YAz )vx' €{xny’ , xnz',yAz',(xAy'), (xAzZ"), (yrz')'},

we see that

e((yrz')vx)€{0,1, @(x), @(y), @(2), (p(x)), (@(¥))’, (¢(2))’, @(x)v @(y),
e(x)ve(z), (y)ve(2), e(x)ve(y)), (@(y)ve(z)), (e(x)ve(z))'}.

Now, again by Lemma C

P((yrz)vx)e{@(x)ve(y)ve(z), (e(x)ve(y)ve(z)')}.
Consider yAz'. Clearly, yaz'=((yAz')vx')ay. It follows that

e(yrz)elp((yrz)vx"), e(M]=[e(x)ve(y)ve(z), p(y)]=
={e(y), (¢(»))', e(x)ve(y)ve(2), (e(x)ve(y)ve(z)), (x)v@(z),

(p(x)v@(2)),0,1}, acontradiction with
e({yrz',(yrzZ' YD ={e(y)ve(2), (p(y)ve(2))'}.

Lemma 3. Let @ be an autogenomorphism on a Boolean algebra B with

|B|=8. Let @(a), ¢(b), ¢(c) be different atoms of B. Then
(i) a<b implies b>c or bvc=1,

(ii) a>b implies b<c or bac=0,

(iii) aAnb =0 implies b<c or bac=0,

(iv) avb=1 implies b>c or bvc=1.

Proof. (i) It is easy to check that b<c or bAc=0 imply a<b<c or
a<b<c’', which yields a contradiction with Lemma 2. By the same argument we
show that b>c or bvc=1 is impossible in case (ii). Similarly, b>c or bvc=1
implies a’>b>c or a’>b> ¢’ in (iii), which is impossible. Eventually, b <c or
bAac=0implies a’<b<c or a’<b<c’in (iv), which again contradicts Lemma 2.
An application of Lemma 1 concludes the proof.

Theorem 4. Let @ be an autogenomorphism on a Boolean algebra B with
|B|=2", (n>2). Then there exists a similar autogenomorphism 1y on B such that
anb=0 for arbitrary two atoms vy (a), y(b) of B.
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Proof. First we prove that for arbitrary three elements a, b, c € B such that
@(a), @(b), @(c) are different atoms in B, there exists a similar autogenomorp-
hism v such that y(a,) = @(a), Y(b1) = @(b), Y(c:)=@(c) and a;Ab;=a;Ac; =
binc; =0.

By Lemma 3 four cases can occur:

(i) ai=a, by=b’', c;=cor a;=a, by=b’, c;=c¢’';
(ii) ai=a’, by=b, c;=c’' or a;=a’, by=b, c;=c;

(iii)) a,=a, by=b, c;=c’ or ay=a, by=>b, c;=c;

@(iv) ay=a’, by=b', cy;=cor ay=a’, by=b', c;=c'.

In all the cases we have a;Abi=biAc;=0. A repeated application of
Theorem 3 and Lemma B ensures the existence of a similar autogenomorphism
satisfying the above conditions. It remains only to show that a,Ac,=0.

Again, by Lemma 3, we have to verify three cases: a,<c; or a;>c¢; or
aivei=1.But a;<c¢; and b;Ac; =0 imply a; < c¢;<b,’, a contradiction ; similarly,
a;>c; and a;Ab; =0 imply b{>a;> c,, which contradicts Lemma 2.

Eventually, byAa;=b;Ac;=0 implies 0=b;A(a;vci)=b, in the last case,
which is a contradiction to Theorem 1. Hence a; A ¢, =0. Now it is easy to prove
Theorem using the induction on the number of atoms of B.

Remark 3. Let B be a Boolean algebra with |B|=2" (n is finite). The
nonzero elements aj, ..., a, € B satisfying a;Aq; =0 for i#j are exactly all atoms
in B. Thus, according to Theorem 4, the following statement is true.

Lemma 4. Let @ be an autogenomorphism on finite Boolean algebra B. Then
@ restricted to the set of atoms can be written in the form @ =hoy, where v is
a bijection on the set of all atoms of B and h(e)€ {e, e’} for each atom e.

Suppose we have a Boolean algebra B with 2" elements (n is finite). An
element a € B is said to have a length k if a=e,;v...ve:, where ey, ..., ex are
different atoms of B. Notation /(a)= k. Now we can formulate

Theorem 5. Let @ be an autogenomorphism on a finite Boolean algebra with
2" elements. Let l(a)=k, 0<k=<n, for ae B. Then I(¢(a))e{k, n—k}.

Proof. By induction on the length. For k =1 it is true by Lemma 4. Suppose
that gz k>1 and that the statement is true for all elements a with /(a)<k. By
hypothesis a =e;v ... v ex. Therefore, p(a)e[@(eiv...ver-1), p(e)] =K.

Denote @(e;Vv ...V e._,) by b. First we show that | K| <8. ¢(e) or (ge:))’ is an
atom of B and b or b’ has the length k — 1. Without loss of generality we can
assume that @(ex) is an atom. Two cases can arise: b A @(ex) =0 or b =@(e), i.e.
b'A@(e)=0. By Lemma D, K={0, 1, @(e:), (@(e))’, b, b’, c, c'}, where
c=bv@(e) in the first case and c=bA(@(e))’ in the second one. Now, let L,
denote the set of elements of length i and set M, = U(L, uL,_).

j=1

So by induction hypothesis p(M;) =M, for i=1, ..., k—1. (It is a bijection of
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finite sets.) Since a ¢ M,_,, the length of @(a) is greater than k — 1 and smaller than
n—k+1. Therefore, @(a)e{c,c’}. Assume [(b)=k—1. We claim that
bA@(e)=0. Suppose to the contrary that b=@(e.). Hence, c=bA(q(e))’,
c¢'=b'v@(e) € Mi_,, which is a contradiction. Thus, b A @(e,) =0, as claimed, and
consequently @(a)e {bv@(ec), b’ A(@(e))’'}. By the same reasoning we obtain
@(a)e {b'vo(e), bAa(@(e))'} for I(b)=n—k+ 1. The proof is finished.

Theorem 6. Let ¢ be a bijection on a finite Boolean algebra B. Then ¢ is an
autogenomorphism on B if and only if ¢ = hovy, where v is an automorphism on B
and h is a bijection satisfying h(a) € {a, a'} for every a € B.

Proof. Let @ be an autogenomorphism on B with |B|=2". Suppose that
{e, ..., e.} is the set of all atoms of B. First we prove that there exists an
autogenomorphism @, on B similar to ¢ such that

@) @i(a)=q@i(e))v...v@i(e) whenevera=e,v...ve.

In accordance with Theorem 5 there exists an autogenomorphism y, on B
satisfying

_[@a), if I(p(a)) =(a)
w@={ s ot —n— I(a).

We claim that v, satisfies (*) for all a € B with l(a)<%l or l(a)>§. Really, let

l(a) <§ . We shall proceed by induction on /(a). For a =0 is y;(a) = 0. Similarly, if

[(a)=1, i.e. a is an atom, then y,(a) is also an atom. Thus, for 0</(a)<1, ¥,
n
2
beB with 0<I(b)<k. Assume a=e;v...vex_1ver. Set b=e;v...ve,_,. By
induction hypothesis is y:(ex) an atom of B and y1(b)=yi(e))v...vi(ex-s).

Two cases can occur: Y:(b)=yi(e) or Yi(b)Ayi(e)=0.

The first case implies y:(ex) = Y1 (e;) for some 1 <i<k — 1, which is impossib-
le, as y, is a bijection. Now, in the second case, yi(a)e[yi(b), ¥:(e)]. By
Lemma D, vy(a)=y:(b)vyi(e), as yi(b)vyn(e) is the only element from
[y:(b), yi(ex)] with length equal to k.

satisfies property (*). Suppose that 1 <I(a)=k <3 and that v, satisfies (*) for all

Therefore, 1, satisfies (*) for all elements a € B with (a) <§ . Take a € B with

l(a)>§. Evidently, l(a')<g and yi(a’)=yi(er)v...vyi(e), whenever a’=

eiv...ver. Clearly, a=ex.1v...ve,. Since yi(a’)=(yi(a))’ (see Theorem 1),

then yi(a)=yi(ex+1)Vv...vyi(e,).
Now, let a e B with l(a)=%l for n even. Clearly, y:(a)=@(a) or y,(a)=
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(p(a))’. Let a=ev...ve, k=§. It is easy to show that {y,(a), (y:i(a))’}

= {Yi(e)v...vyi(e), (Yi(e)v...vyi(e))'}. Really, set b=e,v...vexr-.. Thus,
Yi(b)=Yi(e)Vv...vy(er-1). Clearly, yi(a)e[yi(b), Yi(e)]. But the only two
elements of this subalgebra with length equal to k, are exactly y;(ei)v...v yi(ex)

and (yi(e))v...vyi(e))’, hence {yi(a), (yi(a))'} = {yi(e)v...vyi(e),
(Yi(er)v...vyi(e))'}. Define a new autogenomorphism y on B as follows:

¥i(b) for l(b)=k#g
y(b)=

Yi(e))v...vi(e), whenever b=e;v...ve, k=

(STE

Clearly, y is similar to vy, and vy satisfies property (*) for each a € B. Now, we
claim that y is exactly a mapping ¢ from the Theorem. l

Evidently, {y(a), (y(a))'} ={y1(a), (v1(a))’} = {@(a), (¢(a))'} for each
a € B, hence we can express @ in the form @ = hoy, where h is a bijection on B
satisfying h(a)e€ {a, a'}.

Now, to complete the first part of the proof, it remains to show that v is an
automorphism on B.

Let a, b e B. We show that y(aAb)=y(a)Ay(b).

We can express a, b in the form:

a=eé1V..VéVeiri1V...VEryy b=el\/...\/ekVek+l+1V...Vek+1+m

with
{ek+1, sy ek+l}n{ek+l+l9 ceey ek+l+m} =0.
Then
Y(a)=y(e)Vv...vy(e)Vvy(ewa)V...vy(ec),
W(b)'—' ‘P(Cl)Vn-V‘lP(ek)V IP(ek+;+1)V...v1p(ek+,+,,,),
and

Y(aanb)=y(eiv...va)=y(e)v...v(e)=y(a)Ayp(b).

Since y(a')=(y(a))’ for each ae B, we have yY(avb)=y(a)vy(b) for
a, b e B, hence ¥ is an automorphism.

Conversely, let ¢ =hoy, where ¢ is an automorphism on B and h is
a bijection satisfying h(a) € {a, a’} for every a € B. Clearly, both mappings h and
y are autogenomorphisms on B and by Lemma B ¢ is an autogenomorphism, too.

The proof is finished.
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SUHRN
AUTOGENOMORFIZMY NA KONECNYCH BOOLOVSKYCH ALGEBRACH
E. Kotlebova, Bratislava

Genomorfizmus je také zovieobecnenie homorfizmu, ktoré mozno uvazovaf medzi algebrami
roznych typov. Kazdy autogenomorfizmus ¢ na koneénej boolovskej algebre B ma tvar ¢ = hoy, kde y
je automorfizmus a h(a)€ {a, a'} pre kazdé a € B.

PE3IOME
ABTOTEHOMOP®HU3Mbl HA KOHEYHBIX BYJIEBBIX AJITEBPAX
3. Kotne6oBa, Bpatucnasa
T'enoMopcduam Takoe 0606LIeHHe TOMOMOP(H3Ma, KOTOPOE MOXHO M3y4aTh MEXy anreGpamu

pa3HbIx THIOB. Kaxmbiit reHoMopgu3M ¢ Ha KoHeuHo# Bynepoit anre6pe B uMeet opMy @ = hoy,
rne Y — aBToMopdusM ¥ h(a)e {a, a'} mns Bcex a€ B.
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