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1. Introduction

It is well-known (see [2] or [3]) that a finite commutative semigroup S can be
partitioned into maximal subsemigroups {P(e): i=1, 2, ..., r}, where {ey, ..., €}
is the set of all idempotents of S and x € P(e,) iff x* =e¢ for some k, moreover,
there are the smallest positive integers K and D such that

xK=xK+D (1)

for all x € S. S. Schwarz [5] called identity (1) the Euler—Fermat theorem for S.

8. Schwarz mentioned in [4] and [5] that a small number of semigroups S is
known for which (a) the idempotents e, 1<i<r are characterized, (b) the
decomposition S =|J(P(e): i=1, ..., r) and cardinalities |P(e;)| are established
and (c) the integers K and D for the Euler—Fermat theorem are calculated. In [1],
[4] and [S] he investigated from this point of view the multiplicative semigroup C,
of circulant matrices over a two-elements Boolean algebra 2.

The aim of this note is to extend these results and investigate the multiplicative
semigroups of circulant matrices over arbitrary finite Boolean algebras (finite
distributive lattices or GF(p*)).

2. Preliminaries

Let 4 = (U, F) denote a finite universal algebra. In the whole paper we will
assume that F contains two binary operations “+’’ and * - as well as two nulary
operations 0 and 1 such that (U, +, -, 0, 1) is semiring. That means, + and - are
associative, commutative and distributive, i.c.
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x - (y+z)=x-y+x-z

for all x, y, zeU and 0, 1 are neutral elements with respect to + and -,
respectively. In this note we will consider three classes of algebras satisfying these
conditions:

(i) finite Boolean algebras 8=(B, +, -, 0, 1)
(ii) finite distributive lattices 9 =(D, +, -, 0, 1)
(i) finite commutative rings ® =(R, +, -, 0, 1) satisfying identities x** = x
and p - x=0.
Consider a finite algebra 4% =(U, F) and n>1.

Take ao, ay, ..., a.—1€ U. We can form a circulant matrix
ao a ... A,
A = an-1 Qo ... Qp—2
a a ... Ao

It is easy to verify that A can be (uniquely) written in the form (see [4])

A=aE+aP+..4+a,_,P" ",

where
10..0 010..0
g= |91 andp=(0010
001 1000

Now it is not difficult to show that the product of two circulant matrices is again
a circulant matrix. So all circulant matrices over % form a finite commutative
semigroup Sa(n), the semigroup of circulant matrices over U. A general reference
for semigroups and universal algebras can be find in [2] and [3], respectively.

3. A General Result

We need the following result which is a direct consequence of two theorems from
[3] (p. 121 and pp. 124—125):

Lemma 1. Let % be a finite universal algebra from an equational class K.
Then there is in K a finite family of finite subdirectly irreducible algebras
{U;eK:i=1, .., k} such that

U=[] (U:i=1,2,..,k),
i.e. U is a subdirect product of {%U:i=1, 2, ..., k}.
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Now we can prove
Lemma 2. Let U = (U, F) be a finite algebra from an equational class K. Let
F contain operations +, -, 0, 1 such that (U, +, -, 0, 1) is a semiring. Suppose

that A =[] (%: i=1, ..., k). Then for the semigroup of circulant matrices S (n)

the following statement is true:
Sau(n)=n (Snu‘(n): i= 1, cacty k)

Proof: Suppose that p;: U— U is the projection corresponding to the
subdirect product U =[] (%:i=1, ..., k) (i=1, ..., k). Take a circulant matrix

A € Sy(n). The homomorphism p; can be extended to the pi: Sa(n)— Sa,(n) in the
following way: :

pi(ao) p,~(a,._1)
5(A)= 1_).~(an-1) {)i(an-z)

pi(a;) ... pi(ao)
It is easy to check that p;(A - B)=p,(A)- p:(B), i=1, ..., k. Hence p;: Sx(n)—
Sa,(n) is a homomorphism for every i=1, ..., k. Since p; are epimorphisms, we
obtain epimorphisms p; again. Now we can define the map: ’

@: (P(A)=(P1(A), ﬁz(A), R I_’(A))

from Sx(n) into the direct product [J(S«(n): i=1, ..., k). Obviously g is injective
and Im @ is a subdirect product of the semigroups Sa,(n); i=1, ..., k.
The proof of the following theorem is straightforward.

Theorem 3. Let S be a finite commutative semigroup S =[] (S::i=1, ..., k).
Let p;: S— S; be projection (i =1, ..., k) corresponding to this subdirect product.

Then
(i) e€S is an idempotent of S iff p;(e) € S; is an idempotent of S; for every
i=1,..,k;
(ii) If e € S is an idempotent of S then a € P(e) (i.e. a” = e for some r € N) iff
pi(a)e P(pi(e)) in S, for every i=1, ..., k;
(iii) Let a€S. Let (pi(a))"=(p:(a))** i=1, ..., k so that r,=0, d;>0 and
none of numbers r;, d; can be replaced by a smaller one. Denote

r=max {ri:i=1, ..., k}, d=lcm. {d:i=1, ..., k}.

Then a" = a"* and none of the integers r, d can be replaced by a smaller one. In
particular, if r, d; are integers from the Euler—Fermat theorem for S; then
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r=max {r:i=1,..,k}, and d=lcm. {d:i=1,..,k}

are integers for the Euler—Fermat theorem for S.
(iv) If S=[](Si:i=1, ..., k) is a direct product then

[P(e)| =|P(pi(e))] - [P(pa(e))] - ... - |P(pu(e))]

for any idempotent e € S.

Lemmas 1,2 and Theorem 3 show that the investigation of the semigroup of
circulant atrices Sy(n) can be reduced to the study of semigroups S, (n) for
subdirectly irreducible algebras % only.

4. Circulant Matrices over Boolean Algebras
and Distributive Lattices

In this section we will apply Theorem 3 to the semigroup of circulant matrices
over a finite Boolean algebra or a finite distributive lattice. It is well-known that
every finite Boolean algebra is a direct product of the two-element Boolean
algebras 2 and similarly every finite distributive lattice is a subdirect product of the
two-element lattices.

Combining Theorem 3 with [1], [4] and [5] we obtain
Theorem 4. Let U be a finite Boolean algebra % with 3 =[IB:i=1, ..., k)

or a finite distributive lattice @ with @=[[(D::i=1, ..., k) and B, D,=2

(i=1, ..., k). Then in the semigroup Sx(n), n > 1, of circulant matrices over 4 the
following holds:

(i) A € Su(n)is anidempotent in Sy (n) iff for all i =1, ..., k there are integers
d; such that

d.#O, d,‘ln, d,’ ‘L=n
and
pi(A)=E+P%+ P>+ . + PV (=E(d))
or

pi(A)=0 (0 denotes the zero matrix) for d; =0

We can denote this idempotent és A=E(d, ..., d).

(ii) Let A € Su(n). Then A belongs to the idempotent E(d,, ..., di) iff for «
arbitrary i

pi(A)=0 for d,=0
or
pi(A)=P"(E+P““+ ...+ P"%) for di#0
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such that
Ilsu<w<..<u,<t, m<n

and
g.C.d. {u,, oo vy Usy t,} =1
(iii) Having A € P(E(d,, ..., di)) denote by

t = max {dﬂ i=1, .., k, diqéO}

and
d=lcm. {d:i=1, .., k, d+#0}
Then
Ar—l = Al—l+d
and none of integers t and d can be replaced by a smaller one. In particular,
An—l = AZn—l

is the Euler—Fermat theorem for Ss(n).
(iv) If U is a Boolean algebra then

|P(E(d,, ..., d)| = n* -1‘[(4)(&): =1, B, dr‘#O),
where
D)= S h-u(h)- @~ 1)

and p is the Mobius function, t € N.

5. Circulant Matrices over Finite Rings

In this section we will investigate semigroups of circulant matrices Sa(n) over
a finite commutative ring & =(R, +, -, 0,1) with unit satisfying identities

x**=x and p-x=0

(for some prime number p). We will present solutions to the questions formulated
in the introduction only partly. We have necessary conditions describing idempo-
tents in Sz(n) and, in particular, for p =2 there are necessary and sufficient
conditions.

Let T,« denote the class of all commutative rings with unit satisfying these
identities. Evidently, T,« is an equational class.
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We start with the description of the finite subdirectly irreducible rings
belonging to T,x.

Theorem 5. Let (& be a finite commutative ring with unit and satisfying the
identity x"=x, r=2.

Then R is subdirectly irreducible iff R is a field.

Proof: Suppose that 2 is subdirectly irreducible. Since every congruence
relation on R is uniquely determined by its kernel, it is sufficient to consider the
ideals of ? only. According to the hypothesis the smallest nontrivial ideal J of R
exists. Take O#aeJ. Then we have (a)=J, where (a) is the principal ideal
generated by a. Therefore (a)=J. We claim that R is an integral domain. To the
contrary suppose that there are 0# ¢, 0# d in R such that

c-d=0.

Clearly (a) =(c), by hypothesis. Therefore b - ¢ = a for some b € R. It follows that
a-d=(b-c)-d = b-(c-)=b-0=0. We can consider the ideal I=
{xeR: x-a""=0}. Itis easy to check that de I and a ¢ I. Hence (a) & I, what is
a contradiction. Thus R is an integral domain, as claimed. It is well-known that
a finite integral domain is a field. The rest of the proof is trivial.

Corollary 1. Every finite ring 2 € T,« is a subdirect product of a finite family
of fields GF(p"), ..., GF(p"), where r, |k for i=1, ..., s.

Suppose that QR is a finite ring from T,«. Consider A € Sx(n) satisfying

Ar=A.
Assume
A=wE+a,P+...+a,,P""
and
P=coE+c,P+...+c,..P"!
Therefore,

= (a,ay ... a,: i+ jo+ ...+ j,=i(mod n), jx <n)

We can verify without any difficulties that
: !
=Y (a%: j- p=i(mod n), j<n)+2(k—1%ﬂ ak ... al:
kij+ ...+ kj=i(mod n), ky+...+ k. =p, r=2, ji<n)

Since p-x=0in ® and A? = A, we obtain

a=c= (a5 p-j=i(mod n), j<n) (1)
Two cases can arise: (p, n)=1 or (p, n)#1.
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In the firs case we have

Lemma 6. Let (p, n)=1. Then for every x€l, is x/pel,. (I, ={xeZ,:
x=p*(mod n), s=1, ..., ¢(n)}@(n) is the Euler function and x/p=j iff p-j=
x(mod n) and j<n).

Proof: It is well-known that {x € Z,: (x, n) =1} = G forms a subgroup of the
multiplicative semigroup (Z,, - ). Evidently, |G| = @(n). Therefore I, is the cyclic
subgroup of G generated by y € Z, satisfying y = p(mod n). The proof is complete.

Now we are ready to formulate the main result.

Theorem 7. Let ® be a finite ring from the equational class T,«~. Let
A € Sz (n) and let

A=aE+aP+..+a,P
(a) Suppose that (p, n)=1. Then A? =A iff
a5=ao and af'=a,-

whenever
j=r-p*(mod n)for1<r,j<n and 1 <s<g@(n).

(b) Suppose that n=p'm, where r=1 and (p, m)=1.
Then A” = A iff the following conditions are fulfiled:

(i) a,=0 for (p’,s)#p’

(ii) B>=B for B=aE+ a,P+ az,’P*+ ... + am-1)’P™ "

Proof: The part (a) follows from Lemma 6 as well as from the condition (1).

(b) Necessity. Assume A=A and s =p"v, (p, v)=1. We will prove (i) by
induction on ¢. At first suppose ¢t =0. It is easy to check that there is no 0<j<n
such that p - j=s(mod n). Therefore a, =0.

Now suppose t=1 and that a,,=0 for all s'=p"u, where 0<h<t and

(p, u)=1. We ciaim that p - j=s(mod n) iffj=%m, where 0<i<n. Evidently,
p - j=s(mod n) is equivalent to p-j=n-q+s for some 0<q<n and conse-

LB b %. On the other hand, it is easy to check that p - (%f)—:'

quently j=

s(mod n).

As it was mentioned a, =, (a%: p - j=s(mod n)) by (1). By induction as-
sumption, a; =0 because p'~'|j and p'{j. Hence a, =0 and (i) is proved.

(ii) According to (i) A can be written in the following form

A =aE + ap’Pp' + az.'P"" S ST a(m—l)p’P(m_l)p'.

Since AP =A, it is easy to verify that B* = B.
The converse implication can be easily proved by a direct computation. This
completes the proof of Theorem 7.
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Remark: Since A’= A implies A* = A, Theorem 7 gives necessary condition
for a circulant matrix A € Sx(n) in order to be an idempotent in the semigroup
Sa(n).

Clearly, Theorem 7 characterizes idempotents in Sg(n) for R € Ty+.
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SUHRN
POLOGRUPA VSEOBECNYCH CIRKULANTNYCH MATIC
J. Guriéan, Bratislava

V ¢&lénku Studujeme pologrupy cirkulantnych matic nad nasledovnymi koneénymi univerzilnymi
algebrami: konenymi Boolavymi algebrami, kone¢nymi distributivnymi zvizmi a kone&nymi
komutativnymi okruhmi s 1 spfiiajicimi identitu x** = x. Pre tieto pologrupy hladdme charakteriziciu
idempotentov, charakterizdciu prvkov patriacich ku jednotlivym idempotentom e (t. j. takych prvkov x,
Ze x" = e pre nejaké f € N) a hladdme aj potty takychto prvkov pre jednotlivé idempotenty. Nakoniec,
hladdme najmensie kladné &isla k, d také, aby identita x* = x**“ bola splnen4 v nasej pologrupe.
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PE3IOME
MOJIYTPYIINIA OBUIUX LUPKYIJISHTHBIX MATPULL
51. T'ypuuan, Bpatucnasa

B craTbe u3yyatoTcs Nonyrpynibl UHPKYJAAHTHBIX MATPHUL HAJ[ CJIEAYIOIMMH KOHEYHBIMH YHUBEP-
canbHbIMH anreGpamMu : KOHeYHbIMH ByneBbiMH anreGpamMu, KOHEYHBIMH JUCTPHOYTHBHBIMHU PELLICTKA-
MM ¥ KOHEYHBIMH KOMMYTAaTHBHBIMH KOJIbLIAMH C |, B KOTOPBIX BBIMOMHAETCH MAEHTHTa x©* = x.

JIns 3THX nonyrpynn MILETCS XapaKTepH3aLMUs HMIEMIIOTEHTOB, XapaKTEpPH3alMUs 3JIEMEHTOB
NIPUHAVIEXAIMX KaKOMY-TO MAEMIOTEHTY € (3TO 3HA4YNT TeX JIEMEHTOB X, JUI KOTOPbIX X' =¢ nns
HEKOTOporo 7 € N) H KOJIMYECTBa 3THX 3JIEMEHTOB [U1 KAKOTO-TO HAEMIIOTEHTa e. VI, HakoHel, uuyres
HalMEHbILIME MOJIOXHUTeNbHbIE yucna k, d ajsi Toro, 4Tobbl uaeHTuTa x* = x**“ BhImonHsANacy B HalleH
noayrpynre.
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