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NON-ORIENTABILITY OF OPEN SUBMANIFOLDS

MILOS BOZEK, Bratislava

1. Local decomposition of manifolds -

There is a well-known result on orientability of open submanifolds, see e.g.
[3; Prop. 22.7]:

Theorem A. (a) An open submanifold of an orientable manifold') is
orientable.

(b) A manifold is orientable if and only if all its components are orientable.

The purpose of the present paper is to prove that the part (a) of Theorem A is
convertible under some additional assumption:

Theorem 1. Let M’ be an open submanifold of a manifold M such that the
complement M —M' of M’ in M does not locally decompose M. Then M’ is
orientable if and only if M is orientable.

Recall that a subset A of a topological space X does not locally decompose X
if there exists a basis % of the topology of X such that both sets U and U — A are
connected and non-empty for every U e %B. Note that the connectivity of U is
a consequence of the connectivity of U— A.

The crucial step of the proof of Theorem 1 is contained in the following

Proposition 1. Let A be a subset of a connected topological space X such that
the complement X — A does not locally decompose X. Then A is connected.

Theorem 1 and Proposition 1 will be proved in the next section. In order to
obtain a simple sufficient condition for a subset A of a manifold M which does not
locally decompose M, let us turn our attention to the classical result of Menger and
Urysohn, see e.g. [1; Chap. 8., Th. 2]?)

) By a manifold we mean a topological manifold, i.e. a locally euclidean Hausdorff space not
necessarily connected or separable.

%) Under dimension dim X of a topological space X we mean the Lebesgue’s ,,plaster** dimension
of X.



Theorem B. Let A be a subset of a connected separable m-dimensional
manifold M. If dim A <m —1 then A does not decompose M, i. e. the set M — A
is connected.

Remark 1. Sitnikov [5] has constructed a 2-dimensional subset N of R?® which
does not locally decompose Rs. Therefore the condition dim A <m —1 is not
necessary for the conclusion of Theorem B.

Let A be a subset of a separable m-dimensional manifold M such that
dim A <m—1. Then every domain U in M is a connected separable m-dimens-
ional manifold and dim UnA <m —1 because of the monotony of dimension in
separable manifolds. The set 9 of all domains in M is a basis of the topology of M,
thus, under the assumptions of Theorem B, the set A does not locally decom-
pose M. As a consequence of Theorem 1 we obtain

Corollary 1. Let M’ be an open submanifold of a separable m-dimensional
manifold M such that dim (M — M’)<m — 1. Then M’ is orientable if and only if
M is orientable.

Remark 2. The assumption on submanifold M’ in Theorem 1 is not necessary
for the conclusion of Theorem even if M’ is connected and dense in M as follows
from the example: M is the real projective plane RP2, A, a projective line in RP?
and A, a proper closed segment on the line A,. Both open submanifolds
M,=M— A, and M, =M — A; do not satisfy assumption in Theorem 1. The first
one is orientable and the second one is non-orientable.

If we omit the assumption on separability of M in Theorem B, then the various
definitions of dimension need not to coincide and Theorem B would became
questionable. Nevertheless, we can define dimension of a subset N of a manifold M
at a point p € M (M not necessarily connected or separable), denoted by dim, N,
as the minimum of dim UnN, where U is a neighbourhood of p in M homeomor-
phic to an open subset of an euclidean space R™. Corollary 1 can be strengthened in
the following way:

Corollary 2. Let M’ be an open submanifold of a manifold M such that
dim, (M —M’)<dim, M —1 for every p € M. Then M’ is orientable if and only if
M is orientable.

Proof. To every point p e M let us choose a neighbourhood U, homeomor-
phic to an open connected subset of some euclidean space R™ such that dim, (M —
M’)=dim (U, — M’) and dim, M =dim U,. Then both A = U —-M' and M=,
satisfy the assumptions of Theorem B. Hence, as above, U, — M’ does not locally
decompose U,. Therefore M — M’ does not locally decompose M, so we can make
use of Theorem 1.

Combining the considerations in the proof of Corollary 2 with Proposition 1,
we get the following generalization of Theorem B :

Corollary 3. Let A be a subset of a connected manifold M such that
dim, A <dim, M -1 for every p e M. Then A does not decompose M.
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Remark 3. It is clear that dim, N = —1 for every point p not belonging to the
closure N of a subset N of a manifold M. Hence, to fulfill the essumptions in
Corellaries 2 and 3, it sufficies to verify the condition dim, (M — M’)<dim, M —1
or dim, A <dim, M—1 only for pe M— M’ or p € A, respectively.

Remark 4. If the manifold M is separable then every subset P of M is
paracompact. A result of Dowker and Nagami on local dimensions in paracompact
spaces, c.f. [1; Th. 4.21], says that dim P =sup {dim, P; p € M}. It means that if
M is separable, the assumption of Theorem B and those of Corollary 3 are
equivalent. Similarly, the assumptions of Corollaries 1 and 2 are equivalent
provided M separable.

2. Proof of Proposition 1 and Theorem 1

Proof of Proposition 1. Let C be a component of A. According to our
assumptions, there exists a basis % of the topology of X such that both sets U and
U—-(X—-A)=UnA are connected and non-empty for every Ue . Let %, be
a subset of & consisting of all U € B for which Un A = C. The space X is a union
of its two open subsets | J%B, and [ J(B — %.). It is not difficult to show that the set
B — B, consists of all Ue B for which UnA = A — C. Therefore U,nU, =0 for
every U, e B,, U, e B,. If not, then there exists an element U of % such that
U c UinU.. For such U we have UnA c UinU,nA = (UinA) n (U.nA) <
Cn(A — C)=0, thus UnA =0 which is a contradiction. We have just shown that
the sets | J%B: and | J(%B — B,) are disjoint. The set | %, is non-empty because it
contains the non-empty set C. The connectivity of X implies now | J(%B — B,) =0,
therefore B — B, =0, thus A — C=# and so A = C. Proposition 1 is proved.

Before starting the proof of Theorem 1 let us recall that a connected manifold
N is non-orientable if and only if the total space O(N) of its orientation covering
wn =(O(N), ntn, N) is connected, see e.g. [3; VIIIL. 2.11]. The manifold O(N)
consists of all generators a, of all local homology groups H,(N, N—{p}), peN
where n =dim N. The projection ix: O(N)— N is defined by nin(a, ) = p for every
p € N. The fibration wy is a double covering because H,(N, N — {p})=Z for every
p € N. Using excision we can show easily that O(M’) is homeomorphic to the
subspace 7y (M’) of O(M) for every open submanifold M’ of a manifold M.

Proof of Theorem 1. Owing to Theorem A it suffices to prove the following
assertion: If M is connected and non-orientable, then M’ is non-orientable. The
assumption on M’ implies that x5'(M — M’) does not locally decompose O(M)
because sy is a surjective local homeomorphism. An immediate application of
Proposition 1 concludes now the proof of Theorem 1.



3. Applications

1. Let m, n be integers such that 0<m <n. Let us consider the Grassmann
manifold G,.(RP") or G,(E") consisting of all m-dimensional planes in the
n-dimensional real projective space RP" or in the n-dimensional real auclidean
space E", respectively. The manifold G,(E") can be regarded as an open
submanifold of G,.(RP"):

G..(E")=G.(RP")- G.(RP"™),
where RP"! is a fixed hyperplane in RP". We have

dim G,.(RP")—dim G,.(RP" " )=(m+1)(n—-m)—(m+1)(n—-m—-1)=m+1

>1
what means that the assumptions of Corollary 1 are fulfilled. It is well-known that
G..(RP") is orientable if and only if n is odd. So we have proved

Theorem 2. The manifold G,.(E"), 0 <m < n, is orientable if and only if n is
odd.

2. Let E=(E, p, S") be a fibre bundle®) over the n-dimensional sphere S"
with the fibre F and let n>1. Let us choose a point xo€ S". Then dim E —
dim p~'(xo) =n, hence dim p~'(xo) <dim E — 1. According to Corollary 1 E is
orientable if and only if E — p~'(x,) is orientable. But E — p~!(xo) is the total space
of the restricted fibre bundle &|(S" — {xo}) which is a trivial fibration because its
base space S" — {xo} is homeomorphic to R” and R" is contractible. Therefore
E — p~'(xo) is homeomorphic to the product-manifold R” X F which is orientable if
and only if F is orientable. Thus we have proved the following

Theorem 3. The total space of a fibre bundle & over ", n>1 is orientable if
and only if the fibre of & is orientable.

3. Let E=(E, p, B) be a vector bundle with the fibre F, g a riemannian
metric on & and o: B— E the zero cross section of &. We have dim E —dim o(B)
= dim F. If dim F>1, then Corollary 1 implies that E is orientable if and only if
E — o(B) is orientable. On the other hand, E — o(B) is naturally homeomorphic to
SE xR, where SE={x€E; g(x, x)=1} is the total space of the sphere bundle
SE. Thus we have proved the following

Theorem 4. The total space of a vector bundle with the fibre dimension n>1
admitting a riemannian metric is an orientable manifold if and only if the total
space of the corresponding sphere bundle is an orientable manifold.

3) Under a fibre bundle we mean a fibration associated with a locally trivial principal fibration in
sense of [4]. We shall assume that all fibrations belong to the category of topological manifolds and
continous maps.
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Remark 5. The assumption of Theorem 4 on the existence of a riemannian
metric is fulfilled if the base space is a separable manifold.

4. As an illustration of the above Theorems 3 and 4 let us consider the total
space E; of the canonical vector bundle yi over G,(R"), n>k =1. Recall that E}
is the submanifold of G,(R") X R" consisting of all couples (x, v) € G.(R") X R" for
which v € x.

Theorem 5. The total space E} of the canonical vector bundle y; over Gi(R")
is orientable if and only if n is odd.

Proof. The case n =1 is trivial. First assume n=2 ank k> 1. Let SE} be the
total space of the sphere bundle corresponding to yi with respect to the riemannian
metric on yi induced by the standart inner product in R*. Then SE; can be
regarded as the total space of a fibre bundle over S"~! given by the projection
(x, v)— v for all (x, v) € SE%. The fibre of this fibre bundle is G«_;(R"™"). Using
the known result on orientability of Grassmann manifolds and Theorems 3 and
4 we see that Theorem 5 holds for all n, k=2.

Now, let n=2 and k =1. Let us consider a map f: R" — B"— E} defined by
f(v)=(v), (lv||—1)v) for all v eR"— B", where B" is the standart unite open
ball in R" and (v) is the vector-subspace of R" spanned by the vector v. It is not
difficult to show that the map f induces a homeomorsphism of the factor space
(R*—B")/f with E7. However, (R" — B")/f is homeomorphic to the open sub-
manifold RP" — {point} of the real projective space RP" and, by Corollary 1,
RP" — {point} is orientable if and only if RP" is orientable, i.e. if and only if n is
odd.
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SUHRN
NEORIENTOVATELNOST OTVORENYCH PODVARIET
M. Bozek, Bratislava

V prici sa dokazuje, Ze ak doplnok M — M’ otvorenej podvariety M’ topologickej variety M
lokalne nerozklad4 varientu M, tak varieta M’ je orientovatelna prave vtedy, ked je orientovatelna
varieta M. Pomocou tohoto vysledku sa dokazuji nutné a postatujice podmienky orientovatelnosti
niektorych variet. Okrem iného sa ukazuje, Ze totalny priestor fibrovaného priestoru & nad sférou S”,
nZ2, je orientovatelnou varietou prave vtedy, ked je orientovatelnou varietou fiber fibrovaného

priestoru &.

PE3IOME

HEOPUEHTUPYEMOCTb OTKPBITBIX [TOOMHOI'OBEPA3U
M. Boxek, Bpatucnasa

B pa6oTe qoKka3bIBaeTcs, YTO OTKPLITOE MOAMHOroo6pa3sue M’ MHOroo6pa3usi M He obs3aTennb-
HO CBSI3HOTO WJIM cenapaGesibHOro, JONOJIHEHNE KOTOPOTO JIOKAJLHO He pa3pe3aeT M, OpHeHTHpyeMO
TOrga M TOJILKO TOT[a, KOT[a OpHEHTHpyeMO MHorooGpasume M. B kadecTBe MpHIOXEHHs pellleHa
npoGiieMa OPHEHTHPYEMOCTH HEKOTOPBIX MHOTOOOGpa3Mi CBfi3aHbIX ¢ MHOroo6pa3usimu I'paccMaHHa
M C paccioeHbIMH MPOCTPaHCTBAMH.
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