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Introduction

The nonstandard methods of the mathematical analysis are frequently used
also in the topology (see e.g. [2], [8]). Of course the methods of the mathematical
logic are used in a large extent. The aim of this paper is to present an elementary
nonstandard theory of metric spaces without deep methods of the mathematical
logic. ‘

The paper is more or less of a methodical character. We construct at first for
a given set X a set *X. The last serves as a basic set for the nonstandard
considerations. In case of X =R the set *R is a basic set for the construction of
hyperreal numbers. Having such a set *X for a metric space (X, o) we are able to
introduce, using the metric g, the nonstandard notions. Then we formulate in the
nonstandard language some necessary and sufficient conditions for sets to be
compact, closed, open etc. Nonstandard formulation of the convergence and some
related notions are given as well as nonstandard proofs of some well known
theorems in the theory of metric spaces. It is shown also that on the extended set
*X an extended metric *o may be defined. At last product spaces are studied and
the notion of continuity in the nonstandard formulation is discussed.

We do not give the definitions of the fundamental notions in metric spaces.
The fundamental theorems from standard theory of metric spaces are also
supposed to be known to the reader.

1. Extension of a set by means of an ultrafilter

An equivalence on the sets of all sequences of points of a given set X will be
defined. To define the equivalence an ultrafilter will be used. The collection of all
the equivalence classes will be the required extension of the set X.
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Definition 1.1. Let N be the set of all positive integers. By a nontrivial
ultrafilter of subsets of N we mean a collection & of subsets of X such that

(1) 0¢ 7,

(2) E, FEe¥>EnFe %,

(3) E€e#, EcFcN>Fe%,

(4) EcN>either E€e¥ or N-E€ %,
(5) ¥o%{={EcN N—E is finite} .

. Remark 1.1. The existence of such & follows from Zorn’s Lemma (see e.g.
[5]). Throughout all the paper & will be fixed.

Definition 1.2. Let X+ @ be any set and (a.)>-1, (b.)n=: sequences of points of
X. The sequences (a.)n-1, (b.)n=1 Will be called equivalent with respect to %
(notation (a,)r-1 ~ (b.)n-1 if there exists F e % such that a, = b, for any k € F.

Definition 1.3. Let X+ @ be arbitrary and let X be the set of all sequences of
points of X. The set *X of all the equivalence classes with respect to the
equivalence which was introduced above will be called the extension of X (with
respect to F).

Remark 1.2. a) The set X may be embedded into *X in the following way.
We identify any point a € X with the class a into which the sequence (a, a, ...)
belongs. Evidently a# b if a# b. In accordance with this identification we write
X c*X and sometime a instead of a.

b) If X is an infinite set then *X — X+ ), because the sequence (a1, a2, as, ...)
of mutually distinct points of X is not equivalent to any of the sequences
(a, a, a, ...), where a € X. Thus if a € *X is such that (a,, a3, as, ...) € a we have
a#da for any ae X.

¢) If (a,)7-: is a sequence of points of X then the unique class into which
(a.)=-1 belongs will be sometime denoted [(a,)=-1] or shortly [(a.)].

Definition 1.4. If A = X then the extension *A of the set A is defined as
follows

*A={ae*X|(a.)i-1ea>3Fe FVkeF: a.eA)

The definition of *A does not depend on the choice of (a,);-; € a. In fact, if
(b.)7-1€ a is any sequence, then b, = a, for k € E where E is some set belonging to
%. Thus b, =a, for any ke EnFe %.

The following properties are direct consequences of Definition 1.4 and of the
properties of %.

Theorem 1.1. Let X+#@; A, B< X. Then the following is true:

(a) *#=0; Ac*A in the sense of the “embedding” of X into *X,

(b) AcB>*Ac*B,

(c) *(AnB)=*AN*B,

(d) *(AuB)=*AuU*B,

(e) (A-B)=*A-*B,
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(f) *{a}=a for any a € X,

(g) The extensions in the sense of definitions 1.3 and 1.4 coincide.

Remark 1.3. If R is the set of all real numbers then the extension *R with
suitable defined sum product and ordering is the set of all hyperreal numbers. The
sum and the product is defined as follows: If @, B € *R, a =[(a.)7-1], B =[(ba)r-1]
where (a,)n-1, (b.)n-1 are arbitrarily chosen then o+ p=[(a.+ b.)7-1], af=
[(a.bn)7-1]. If there is F € & such that a, < by for k € F, then we write a <f. It can
be easily seen that the sum, product and the ordering are unambigously defined.
Futher one can see that *R with the above operations and ordering is an ordered
field. The zero element is the class 0 containing the sequence (0, 0, 0, ...) while the
class 1 containing the sequence (1, 1, 1, ...) is the unit of the field. The field is not
Archimedean because e.g. for the class a containing (1, 2, 3, ...) we have a>n=n

for any neN. Thus O<%<% for any neN. So we see that *R contains

infinitesimal elements.

2. Metric space. Monad of a point

It will be perhaps usefull to explain the relation of our approach to that one
given in systematic theories on nonstandard analysis. (Compare e.g. [2], [8]).
Roughly speaking we are showing that to obtain the basic results in theory of metric
spaces one need not develop the complete nonstandard theory with the “complete”
superstructure (see e.g. [8] pp. 43—46). It is not necessary to go “too far” from the
basic set on which usually the superstructure is constructed. Since we restrict to
relatively simple case, deep principles of nonstandard analysis are omitted because
the results are obtained in a direct way.

Define the relation =~ which will mean that a, € *X are infinitely near.

Definition 2.1. Let (X, ¢) be a metric space, *X the extension of X. The
elements a, 8 € *X will said to be infinitely near (notation a = ) if for (p,).-1 € a,
(g-)~-1€ B and any £ >0 (¢ real) there exists F € ¥ such that o(p., q.) <e¢ for any
neF.

Definition 2.2. If p € X then the set u(p) of all g € *X which are infinitely
near to p will be called the monad of p. So u(p)={qe*X|q=p}.

Theorem 2.1. Let (X, o) be a metric space, p,qeX. If p#q then
u(p)op(q)=0.

Proof. Suppose u(p)nu(q)#@. Let y e u(p)nu(q) and (a,)r-1€ y. Then we
have for any real number £>0.

o(a., p)<e for n belonging to a set E € ¥ and simultaneously

o(a., q)<e for n belonging to a set Fe %. Hence for ke ENnF

o(p, 9)=o(ax, p)+o(a, q)<2e
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So o(p, ¢)=0. Thus p=gq.
The notion of the monad of a point enables to characterize the important
topological notions as are open, closed, compact sets etc.

Theorem 2.2. Let (X, o) be a metric space, xoe X. Then u(xo) = ﬁ *O(x0) =
n=1

() *O.(xo) where for a real positive 8 Os(x0) = {y e X|o(x0, y) <8}

Proof. a) If yeu(x,) than for any (a.)--1€y and any £€>0 we have
o(a., xo0)<e on a set Fe %, i.e. y € *O.(x0). Thus u(x,) =*O.(xo) for any £>0,

hence u(xo) = [) O*(xo). The inclusion [ ]*O(x,) = u(xo) may be proved similarly
e>0 >0

b) The equality ﬁ*O*(xo)= [1*0.(xo) is evident from the monotonicity of
n=1 >0

the * operation.

Theorem 2.3. Let (X, o) be a metric space. A set G < X is open if and only if
u(xo0) € *G for every point x,€ G.

Proof. a) If G is open, xo € G, then there exists £,>0 such that O.(x,)<G.
Hence *O,,(xo) c*G. Thus

u(xo)= Do*Oe(xo)c *Op(x0)=*G -

b) Let G be not open. Then there exists xo € G such that O.(xo) ¢ G for any
€>0. Thus for any n there is y, € Oyxo) with y, é*G. Put F,={keN|k>n}.
Then F, € %. For any k € F, we have y. € Oyx,) hence

1 1
o(ye, XO)<E<;

Thus y =[(y.)] € u(xo). But it follows from the construction y that y ¢ *G. Hence
M(XO) &*G. g

Theorem 2.4. Let (X, o) be a metric space. A set F — X is closed if and only if
for every pe X

u(p)n*F+@=>peF.

Proof. F is closed if and only if X — F is open. But X — F is open if and only if
for any p € X — F we have u(p) = *(X — F) =*X — *F. But the last is equivalent to
the implication p e X — F > u(p)n*F=4.
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3. The convergence in a nonstandard formulation

In a nonstandard form the convergence of a sequence may be described as
follows.

Theorem 3.1. A sequence (p.)n-1 of points of a metric space (X, o) converges
to a point p € X if and only if u(p) is the unique monad containing all [(p.,)] where
(Px.)a=1 is any subsequence of (p.)n=1-

Proof. Take any (p.).-: converging to p. Let (p«,)~-1 be any subsequence of
(p.)=-1. For any & >0 there exists n, such that o(p.«., p) < € whenever n = n,. Since
~ the set F={n|n=n,} belongs to %, we have [(p..)] € u(p). It follows from
Theorem 2.1 that u(p) is the unique monad containing [(px.)]-

Now let (p.)»-1 be not convergent to p. Then a number £>0 and
a subsequence (px, )--1 exists with @(p«,, p)Z € (n=1, 2, ...) Thus [(ps,)]lem(p).

Similarly we can prove the following.

Theorem 3.2. Let (p.)--1 be a sequence of points of (X, o). If [(p.)] € u(p),
where p € X, then there is a subsequence (px, )~-1 of the sequence (p,)a-1 such that
(px.)n-1 converges to the point p. '

Theorem 3.2. Let (p,);-; be a sequence of points of (X, ¢). If [(p.)]eu(p),
a Cauchy sequence if and only if for any subsequence (pi,)s-1 we have [(pi,)]=
[(p)].

Proof. Suppose (p.)--: to be a Cauchy sequence and (p., )»-1 its subsequence.
Then for any £ >0 there exists n, such that for m, n = n, we have o(p.., p.) <e. If
n = ny, then k, = no. Hence o(p., pr.) <€¢. Since {n|n=n,} € ¥, we have [(p:,)]=
[(pa)]-

Conversely, let [(p«.)]=[(p.)] for any subsequence (ps.). Suppose (p.)r-; not
to be a Cauchy sequence. Then there exists a subsequence

DPns Psis Pr2s Ps2s -++5 Pras Dsas ---
such that o(p.., p..)=€ (n=1,2, ...).
Since [(p..)]=[(p.)] there exists a set F, € % such that o(p,., p,.)<§ forneF,.

Similarly o(p.n, p,.)<-§ on a set F,e %. The last two inequalities are satisfied on
FinF,e %. So for ne FinF,
o(p.., p.)=e(p.., p») + 0(ps, P..) <€

It is a contradiction.
Remark 3.1. A nonstandard consideration how to see that a convergent
sequence is a Cauchy sequence goes in the following manner. If (p.)--: converges
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to p, then for any subsequence (pi,) we have [(pi,)] € u(p), [(p.)]€u(p). So
[(P«.)]=[(p.)]. Using Theorem 3.3 we obtain that (p,);-, is a Cauchy sequence.

Theorem 3.4. A Cauchy sequence (p.).-: is convergent if and only if there
exists a point p € X such that [(p.)7-1] € u(p).

Proof. The necessity is evident from Theorem 3.1. Let us prove the sufficien-
cy. Take any subsequence (pi,)--i. We have [(px.)]=[(p.)], because (p,)i: is
a Cauchy sequence. Since [(p.)] € u(p) we have [ps,]eu(p). The proof now follows
by Theorem 3.1.

Corollary 3.1. A metric space (X, o) is complete if and only if for any Cauchy
sequence (p, )~ of points of X there exists a point p € X such that [(p,)] € u(p).

Let us give a nonstandard formulation of the separability.

Theorem 3.5. A metric space (X, @) is separable if and only if a countable set
A c X exists such that u(p)n*A+##@ for any p e X.

Proof. Suppose X to be separable. Then there is a countable dense set A = X.
So given pe X a sequence [(p.):-1] of points of A exists such that (p,)i-,
converges to p. So [(p.)] € u(p). Evidently [(p.)]€e*A. Thus u(p)n*A+0.

Now let u(p)n*A #0 for any p € X. Take a e u(p)nA. We have a =[(p.)]
where p, € A for any n belonging to a set F; e %.

Since a € u(p) we obtain for any £ >0 a set F, e % such that o(p,, p)<e for
n € F>. Thus for n € FinF, we have p, € A and o(p., p)<¢. Thus A is dense in X
and the separability is proved.

Theorem 3.6. A subset K = X where (X, @) is a metric space is compact if
and only if for any p € *K there exists q € K such that p e u(q).

Proof. Let K be compact, p € *K. Susspose p ¢ u(q) for any q € K. Then for
any g € K there exists g >0 such that p ¢ *O,,(q). Evidently K = | J Og,(q). By

qekK

the compactness of K there exist O.,(q:), i=1, 2, ..., n such that K CLI'JOt,,,((Ii)
”n : i=1

which implies *K = J O%,(q:). Consequently p ¢ *K. It is a contradiction.
i=1

Suppose now that for any p € *K there is q € K with p € u(q). Let (p.)r-1 be
a sequence of points of K. Take p =[(p.)]. Then p € *K. So p € (q) for some q € K.
It follows from Theorem 3.2 that there exists a subsequence ( Px,)n-1 converging to
q € K, proving that K is compact.

4. Some applications

All the theorems in Chapters 2 and 3 give a correspondence between
a standard and nonstandard notions. They state always some necessary and
sufficient condition. So they give a potential possibility to define the fundamental
notions in the nonstandard metric spaces. It may be interesting if there is a good
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possibility to prove some other (of course well known) theorems in the nonstan-
dard theory. Here we give some examples of such proofs.

Theorem 4.1. Any compact set K < X is closed.

Proof. Suppose that for a point pe X u(p)n*K+#@. Then there exists
aeu(p), ae*K. Since K is compact there is g€ K such that aeu(q). So
u(p)nu(q)#0. Thus (see Theorem 2.1) p =q € K. The proof is finished.

Theorem 4.2. Let (K.)7-: be a descending sequence of nonempty compact

sets. Then ﬁ K. #0.
n=1

Proof. Let p, € K, for n=1, 2, ... Take (p,):-.. Evidently a =[(p,)] € *K. for
n=1,2, ... Since K, compact there exist g, € K, such that a € u(q,) forn =1, 2, ...
Thus g1 =q.=... Denoting g =q,=..., we have g€ ﬁ K.. Thus [ K,.#0.

n=1 n=1
Theorem 4.3. Let (X, o) be a complete metric space. Let (F,):-, be
a descending sequence of nonempty closed sets with diameters tending to zero.
Then () E, #9.

n=1

Proof. Take p,eFi (k=1,2,...). Then a=[(p:)]€*F, (n=1,2,...). Since
(pn)=-1 is a Cauchy sequence, there exists by Corollary 3.1 peX such that
aeu(p). By Theoem2.4 peF, (n=1,2,..).

Theorem 4.4. Let K = X be a compact set in a metric space (X, ¢) and Fc K ‘
a closed set. Then F is compact.

Proof. Let p e *F. Then p € *K. Thus p € u(q) for some q € K and we have
u(q)n*F+#@. Thus qeF.

S. Extension of mappings. Hypermetric space

Let Xi, X, be nonempty sets and X, X X, their product. If A c X;, X X, the
extension was defined (definition 1.3). Thus *A ={a|a =[(p., g.)], (P», g.) € A
for n belonging to a set Fe %).

Taking ae*A we have a possibility to choose two elements a, =[(pa)n-1]s
@2=[(gn)=-1] such that a, € *X;, a;€ *X; and (p., g.)€ A for any n belonging to
a set F e # Evidently (ai, @) is independent on the choise of [(p,, g. )n=1] € a. The
converse is also true i.e. if we tke (o, a2) €*X, X*X, such that a;=[(p,)],
a:=[(q.)] and (p.,g.)eA for n belonging to some Fe%, we have
[(pn; gx)7-1] € *A. Thus we have a natural “isomorphism” between *A as defined
in 1.3 and the set of all pairs (a1, a,) as constructed above. The situation is quite
similar for the product X; X X; X ... X X,. So there will be no confusion if we shall
understand *A in the following slightly different form given in

Definition 5.1. Let X, X;, ..., X, be nonempty sets and *X;, ..., *X, their
extensions (see definition 1.3). Let A = X; X X, X ... x X,. Then we define
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*A={(ay, ay, ..., a,)e* X, X*X; ... *X, |a.=[(p,‘,)], ity

o =[(p?)]), ... @ =[(pR)], where (pi, pi, ..., pi)e A
for k belonging to a set F € &}

Remark 5.1. Obviously we have *(A; X A, X ... X A,)=*A,; X *A, X ...*A, if
AcX (i=1,2, .., n).

The set X; X X; X ... X X, can be again naturaly embedded in its extension.

Theorem 5.1. Let fc X, XX, be a mapping of X; into X,. Then *f is
a mapping of *X; into *X,. Moreover

*(D(f))=D(*f), *(H(f))=H(*f),

where D and H denote the domain and range respectively.

Proof. Since f is a mapping of X into X;, we have (a, b) € f, (a, c) € f implies
b=c. Let (a, B), (a, y)e*f and a =[(a.)], B=[(b.)], ¥ =[(c.)]. Then in view of
Definition 5.1 there exist E, F € # such that for any k € ENnF we have (ax, by),
(ax, o) € f. Hence b, = ¢, for any k € ENF. Since EnF e %, we have 8 =1y. Thus
*f is a mapping.

Further a € D(*f) exactly if there is 8 € * X, such that («, ) € *f. This happens
(according to Definition 5.1) if and only if for any sequences (a.)~-1 € @, (b,)r-1€ B
there is Fe % such that (ax, b.) € f for any k € F. Hence a, € D(f) for any k € F.
The last happens if and only if a € *(D(f)). The proof H(*f)=*(H(f)) goes in
a similar way.

Now let (X, o) be a metric space. Since g is a mapping of X X X into R we can
prove in the same way as in Theorem 5.1 that *g is a mapping of *(X X X)=
*X X *X into *R where *R is the set of all hyperreal numbers. Suppose p, q € *X,
a€e*R such that a=*p(p, q) i.e. (p, g, a)e*p. By Definition 5.1 for any
sequences (P )n=1 € P, (qn)i-1€ q (a,)n-1 € a there is F € F such that for any ke F
we have (pi, qx, ax) € 0. So a. = o(px, qv), proving that for any p, g€ *X the
number *o(p, q) is that one containing (o(p., ¢.))~-1. From the last property one
easily obtains the following:

(a*) *e(p, q)=0 for any p, ge*X

(b*) *o(p, q)=0if and only if p=gq

(c*) *o(p, q9)=e*(p, r) +*o(q, r) for any p, q, re*X.

Definition 5.2. Let (X, o) be a metric space. Let *X, be extensions of X and
*o respectively. The pair (*X, *) is called a hypermetric space and it is said to be
an extension of the metric space (X, @). The function *g is called a hypermetric.

Theorem 5.2. Let (X, o) be a metric space, pe X and ee R*=(0, ). Let
O.(p)={qeX|o(p, q)<e}. Then *O(p)={qe*X|*o(p, q9)<e}.

Proof. The assertion q € *O,(p) is true if and only if for any sequence
(g.)~-1€ q there is F € & such that g, € O.(p) for any n € F. The last holds if and
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only if 0(g., p)<e for any n € F, which is equivalent to *o(p, q)<e.
Theorem 5.3. Let (X, o) be a metric space and (*X, *p) its extension. Then
for any pe X

u(p)={qe*X|*o(p, q)<e for any real number £ >0}.
Proof. According to Theorems 2.2 and 5.2 we have

u(p)=Q)*Os(p)=Q){qe *X|*o(p, 9)<e)

6. Product of metric spaces

Given metric spaces (Xi, 01), (X2, 02) their product is usually said to be the
metric space (X; X X;, o) where o is defined as

o((p, q), (r, s))=Voil(p, r) + 03(q, s)

for any (p, q), (r, s)e X; X X,.

There are of course other metrics on X; X X, defining the same topology as the
above metric i.e. the usual product topology (see e.g. [7]).

Take now the extension (*X; X *X,, *0) of the metric space (X; X X3, 0). We
are able to prove the following.

Theorem 6.1. Under the above assumptions

*o((p, 9), (r, s))=V(*ei(p, r))*+ (*ox(q, 5))*

for any
(p’ q)a (f, S)E*Xl X *Xz-

Proof. Take (p.)7-1€p, (qx)7-1€ 4, (r.)7-1€7, (s.)7-1€ 5. Then (*o((p, 9),
(r, 5))? is the hyperreal number into which belongs the sequence ((o((pa, g.),
(Tns 52)))n-1 i.e. the sequence (03(pn, 7.) + 03(Gn, 5.))n-1. By the definition of the
sum and the product of hyperreal numbers we have

(Voi(pn, g.) + 03(1n, s ))e-1€ V(*u(r, @))* + (*eu(r, )

Since the square root of a hyperreal number a =0 is the (unique) hyperreal
number B=0 for which §?>=a we have )

(Voi(pn, gn) + 03(1n, 5.))2-1 € V(*0u(p, @))* + (*0u(r, 5))
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*o((p, q), (r, )=V (*o:(p, Q)Y + (*ou(r, 5))’

It is now quite natural to denote *p = *p, X *@..
Theorem 6.2. Let (X, 01), (X, 0.) be metric spaces and (X; X X;, 01 X 02)
their product. Let (p, q) € X; X X; (r, s) € *(X; X X;). Then we have

(r, s)eu((p, q)) ifandonlyif reu(p)

and simultaneously q € u(s).

Proof. By Theorem 5.3 (r, s)e u((p, q)) exactly if *o((p, q), (r, s))<e for
any real £ >0, the last being true if and only if *0:(p, r) <€ and simultaneously
*0.(q, s) < ¢ for any £ >0. The last two inequalities mean the same as r € u(p) and
s € u(q).

Theorem 6.3. (Tichonoff’s theorem). Let (X;0.), (X2, 0.) be compact spaces.
Then (X; X Xz, 01 X @2) is compact.

Proof. Let (r, s) e *X; X *X,. Then r € *X,, s € *X,. The last and the compact-
ness of both X; and X, implies that r e u(p), s € u(q) where p € X;, q € X;. By
Theorem 6.2 ((r, s))e u((p, q)) and (p, q) € X, X X,. So (see Theorem 2.5)

Xi X X;, 01X 02) is a compact space.

7. Nonstandard formulation of the continuity

Let (Xi, 01), (X3, 02) be metric spaces. The continuity in the nonstandard
formulation may be motivated by the following

Theorem 7.1. A mapping f of the metric space (X, 0:) into a metric space
(X, 02) is continuous at a point p € X, if and only if *f(u(p)) = u(f(p)).

To prove the above Theorem we use the following.

Lemma 7.1. Let f< X, X X; be a mapping of (Xi, ¢:) into (X3, 0;). Then for
A =D(f)

*(f(A))=*f(*A)

The proof of Lemma 7.1 uses the same reasoning as that one of Theorem 5.1
and therefore will be omitted.

Proof of Theorem 7.1. Suppose f to be continuous at p. We have for any € >0
a positive é such that f(Os(p)) = O.(f(p)). Using this inclusion and Lemma 7.1 we
obtain

*((0s(p)) = *(*0s(p)) = *{ [ *0s(p)) = *f(u(p))

Thus
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*f(u(p)) =*f(O0s(p)) = *O:(f(p))

for any £>0, hence

*f(u(p)) = *O0.(f(p)) = u(f(p)).

£>0

Conversely, let *f(u(p)) = u(f(p)). Let (p.)=-: be a sequence of points of X,
converging to p. Then by Theorem 3.1 [(ps,)] € u(p) for any subsequence (px, )i-:

So *f([(p.D] € u(f(p)),
and we have

[f(pe)w-1] € *f([(P)]) € u(f(p))

©

Using again Theorem 3.1, we obtain that (f(p.))i-: converges to f(p).

As an application of the nonstandard formulation of the continuity let us give
a nostandard proof of the following.

Theorem 7.2. The image f(A) of a compact set under a continuous mapping f
is a compact set.

Proof. Let Be*f((A))=*f(*A). We have B =*f(a) where a € *A. Since A
is compact a € u(q) for some q € A. Thus B € *f(u(q)) = u((f(q)). The compact-
ness of (f(A)) is proved.

Concluding remark. We mention e.g. [1] [3] [4] [6] as elementary approaches
to nonstandard ideas of analysis.
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SUHRN
ELEMENTARNY NESTANDARDNY PRISTUP K METRICKYM PRIESTOROM
T. Neubrunn—Z. Rieanovi, Bratislava

V é&lénku sa ukazuje, ako mozno budovat metédami nestandardnej analyzy teériu metrickych
priestorov bez toho, aby bolo potrebné pouZivat komplikované metédy matematickej logiky.

PE3IOME

NEMEHTAPHBINI HECTAHJIAPTHBIN MMOOXOI K METPUYECKUM
ITPOCTPAHCTBAM

T. Hoit6pyn—3. PueuaHoBa, BpaTuciasa

INoxka3bIBaercs, 4TO TEOPHIO METPHYECKHX MPOCTPAHCTB MOXHO H3JIOXKHTbL METONAaMH HECTaH-
AApPTHOIO aHAJIH3a HE MOJIL3YACh CJIOXKHBIMH CPENCTBAMH MaTeMaTHYECKOH JIOTHKH.
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