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THE PROBLEM OF THE RAILWAY GOODS TRAFFIC

MARTA FRANOVA, Bratislava*)

I
We consider the problem
d (O _ (.,
a0 )= (0 +55) ()
x(0)=x,>0, (2)
where
n (3)
is an increasing, continuous and positive function on (0, ®);
n(x)
x )

is a decreasing and locally absolutely continuous function on (0, «). This function
maps the interval (0, ©) on (u;, u,), where

u; =lim n(x)
x—o X
u, = lim n_x)
x—0 X
and O0<u; <uy(<);
>0, ¢;>0. (5)

*) I wish to express my warmest thanks to Mr. V. Seda for his advice and valuable consultations
which have greatly enhanced the quality of this paper. I also thank Mr. J. Klima for numerous valuable
suggestions regarding my awkward English.
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The differential equation (1) can be interpreted in various transportation
systems. For our purposes we shall use the terminology and the interpretation of
the railway goods traffic.

n(x) are the transporting charges of the transportation of the load weighing x
ton for some unit distance. The function n is an increasing one, because the
transportation of the heavier goods train is more expensive than that of a lighter
one. On the other hand ﬁf—) must be a decreasing function else it would not have
sense to accumulate the load to the heavy goods trains, but each ton of the
comming load should be transported immediately.

In other words, the price of the transportation of one ton of the load in the
heavier train is lower than in the lighter one (a number of engine drivers and train
dispatchers does not change).

¢, >0 is a price of one hour of the idle time of one ton of the load.

¢;>0 is a price of one hour of the idle time of the train and railwaymen serving
the train.

The solution x =x(t) of the equation (1) gives such a dependency of the
growth of the load weight on time. under which the charges of the idle time of the
load and of the goods train are compensated with an effect following from the
lower price of the transportation of one ton of the load in the heavier goods train.

The solution of (1) will be a curve serving for the decision how the load must
grow in dependance on time, so that it would still be advantageous to wait for it.

The proof of the existence and of the uniqueness
of the solution to the problem (1)—(2)

By the solution of the problem (1)—(2) we will understand (if there exists) any
n(x(t))
x(t)
absolutely continuous on (0, T) and x fulfils (2) and satisfies (1) almost

everywhere in (0, T).

Let us denote S(x) =n_gcx_) (x €(0, »)).

function x defined and continuous on {0, T) and such, that is locally

Lemma 1. If there exists the solution of (1), it must be an increasing function.
Proof: According to our assumptions, the function S is the decreasing one.
From (1) we have

d _dax@®)]_
;,—,[sum)]—a[-——x(,) ]—
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= —(clr+%)<0 (te (0, T)). (6)
Thus the composite function S(x(t)) is a decreasing one. Hence x must be an
increasing function, otherwise we would get t,, ;€ (0, T) such that t,<t, and
x(t1)=x(t,). Then S(x(#,))<S(x(t,)) which would be in controversy with (6).

In the next part we shall show that the problem (1)—(2) is equivalent to the
problem

y' () =£(t, y(1)) (7)
y(0)=0, (8)
where f will be given below.

The problem (1)—(2) can be transformed to the form

_nx©) [ L

S(x()= %(0) at—c L X0) ds. 9)

S is a decreasing and continuous function on (0, ©), thus there exists an

inverse function S~! defined on (u,, u,), this function being also a decreasing and
continuous one.

Let us apply S™' to (9). Then we get
_g(nG)_ | o) |
x(t)=S ( -t~ | cEsds). (10)

Let us assume that there exists a solution of the problem (1)—(2) and let us
choose the substitution

y(t)=L‘%5ds, 0<t<T). 1)
Then y’(t)=;1t—) and in view of (10) we get
e 1
’ (t)—S_l(Yo—Clt—CZY(t)) (12)
n(xo)

. If we define the function

where yo,=
. 0

1
f(t’ Y)=s—1(yo_ it —c2y)

(13)

(0<t<o, u;<yo— ¢t — c;y <u) then y fulfils (7), (8).
f is defined in the set D ={(t, y)|0<t<o, s <yo— 1t — 2y <up}.
The following cases must be considered
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(i) u;<o. Then

S T W el L (14)
Cr C2 C2 C2
(0<t<w).
(ii) uz=o0. Then
ye—H_ Sty (0<si<m). (15)
6] C2

Lemma 2. The function x is a solution of the problem (1)—(2) on an interval

(0, T) if and only if the function y(t)=f x(l—s) ds is a solution of the problem
0 R

y'()=f(t,y), (7
y(0)=0 (8)

on the same interval and f(t, y) is given by (13).

Proof: In the previous remark we have proved that if the function x is the
solution of (1)—(2) defined on some interval, then the function y from (11) is the
solution of the problem (7)—(8) defined on the same interval and f is given by
(13).

On the other hand, let y be the solution of (7)—(8), where f is from (13). Then
obviously the function

x(t)=—7%
=y
(t from the interval of the definition of the function y) is the solution of the
problem (1)—(2) on the same interval, on which y is defined.
Lemma 3. The point T of the interval (0, T) of the definition of the solution
to the problem (1)—(2) fulfils

1
t

- Yo— Uy
C Yo— Uy
= 5
T &<T o (16)
Xo C2

Proof: For the interval of the definition of the solution of (1)—(2) by (9) we
get

nG@) _nGw) ]

at—c| ——=ds<yo—cit,
A O R O e
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o must be for t € (0, T). Therefore, for the point T of the interval

-1
and so t<y°———
e

1
(0, T) of the definition of the solution to (1)—(2) holds

Pttt (17)

Cq
In view of (14), (15) and (16) we may consider f in the triangle

Ost<&(:_l—“—‘, ()sy<y";l;'2——c'—'}. (18)

D={(t.y)

By Lemma 1 and (11) y is an increasing and strictly concave function. therefore

,V(t)<x—t0 holds for t € (0, T) (y'(():x_(]t_)

, y'(0) =xl and a tangent to y in the poin
0

t =0 has the form -t—).

Xo

By (18)
Osy(:)<l‘%"‘—'—“ 0=<t<T).
2

Thus the solution y gives us the following condition for T

I>yo'_ u; — C|T,
Xo Cy

from which we get

Yo— Uy
C2

1 o

Lal

Xo C3

T>

Lemma 4. The problem (7)—(8), where f is given from (13), has exactly one
solution on the interval (0, T).

Proof: It is clear, that the function f is a continuous one, therefore there exists
the solution of the problem (7)—(8) defined on (0, T). f is also a decreasing
function of y, so by Peano’s theorem there exists exactly one solution of (7)—(8).

Theorem 5. The problem (1)—(2) has exactly one solution x on (0, T),

where T fulfils (16) and 'l_l.r# x(t) =0,
Proof: The first part of this theorem is obvious from the previous lemmas. We
have to prove only lim x(t)=c.
In view of (11):*(T7) and (13) we get
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lim x(f)= lim —— = lim S~'(yo— cxt — c2y(t)).
t—T" t—»T" y (t) t—T~

The function y is an increasing, concave and locally absolutely continuous one,
therefore in view of (18), (14) and (15) we get

)’o—ul_C_lt] _Yo—ui—aT
C2 C2 =T C2

lim y(t)=[
t—T~
and on (13) we get

u=yo—aT—c, im y(t).

t—T"

Thus
lim S™'(u)=S""(yo—c:T—c, lim y(t))=o0
t—»T~

+
u—uy

and

lim S7'(yo—cit—cy(£))=S"(yo—c: T —c, lim y(t)) =,
t—-T~

=T~

from which it is evident, that lim x(t)= .

—T"

11
Approximate solution of the problem (1)—(2)

In the previous part we have proved that there exists exactly one solution of
the problem (1)—(2) on the interval (0, T), where T is determined by (16).

In the next part we shall look for an approximate solution of the problem
(1)—(2).

On Theorem 5 the problem (1)—(2) is equivalent to the problem (7)—(8),
where the relation between the solutions of the problem (7)—(8) and the problem
(1)—(2) is determined by (13).

Let us choose >0 and let us consider the problem (7)—(8) in (0, T—1n).
The function f=f(t, y) is a ‘continuous one on the rectangle

V=(0, T—n) x<0, I”—"}
Xo

because

T;n (te (0, T—1n)).

T—n 1
y(t)SL oy &5
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END

START

l

=
=
Xo=
Yo=n(xo)/Xo
fozl/xo
to=0
L=0
n=
h=
y=0
f=fo

l':l()

> input data

L

2

y=y+f-h

1

t=t+h

T

f= l/S—l(YQ_ C|t"'C2y)

L

x=1/f

l

PRINT [1, x]

|

L=L+1

Figure 1
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Therefore the function f is a bounded one on V with some constant. Let us sign
it K.

Let ¢ =min {T— n, %7} Then there exists the Euler’s polygon, which is an

0.

e-approximate solution of the problem (7)—(8). We shall get the approximate
solution of the problem (1)—(2) on the interval (0, c) from the relation (11).

In the next part we shall give a flow sheet for the solution of this problem on
a computer.

Let us choose a step h, so that a division of the interval (0, c) given by
dividing points

L=0<ti=h<t,=2h<..<t,=c

would be equidistant and sufficiently fine. From the construction of the Euler’s
polygon
y(O)=y(t) + f(te, y(t)) - (t =) (t€ (b, tis1))

we get the value of y in the point t,,,

)’(tk+1) =y(&) +f(tka Y(tk)) “h.
Let us denote y(&)= yx, f(t, y«) = f. Then we get

Yee1 =Y+ fih and x(&)=xx =f1—k.

The flow sheet is in Fig. 1. It is clear, that if the function n is given from
practice, then the programmer will be able solve this problem on a computer.

As a result from the computer we shall get a table of the values of the function
x. Then, if in practice the train dispatcher has this table, he will easily decide
whether the goods train can leave a station, or it is more advantageous to wait for
additional load. .

We have to note that in solving of this problem for the concrete function n
given on the interval (0, T), the real time interval must be mapped on to on (0, T).
The flow sheet in Fig. 1. must then be regulated in view of this note.
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SUHRN
PROBLEM Z NAKLADNEJ ZELEZNICNEJ DOPRAVY
M. Franova, Bratislava
V préci sa dokazuje existencia a jednoznacnost riesenia pre podiatoéni dlohu, ktord mi
interpretaciu v doprave.
PE3IOME
MMPOBJIEMA M3 XEJE3HOJOPOXHOI'O TPAHCIIOPTA
M. ®panboBa, Bpatucnasa

B paGo're OKa3bIBA€TCA CyLIECTBOBAHHE H €IMHCTBEHHOCTDb pellleHHs 3a[1auu C uHTepnpeTauueﬁ
B XKE€JIE3HOAOPOXHOM TPAHCIIOPTE TOBAPHBIX MO33[10B.
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