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GALERKIN’S APPROXIMATION AND EXISTENCE THEOREMS
FOR A NONLINEAR BOUNDARY VALUE PROBLEM
IN ORDINARY DIFFERENTIAL EQUATIONS

ZDENEK SCHNEIDER, Bratislava

Consider the nonlinear boundary value problem

x"()+f(t, x(1))=0
Aox(0)+A;x'(0)=0
Box(1)+ B:x'(1)=0.

(Ao, A1, Bo, B, are real constants.)
The aim of this paper is to formulate sufficient conditions for

1. the existence of a solution y(t) for this problem
2. the existence of Galerkin’s approximation xg(t) for y(t)
3. an error bound of the difference y(t)— xo(t) for given xo(t).

1. Backkground

It is well known [1] that the linear boundary value problem (I>0)

x"(t)+Ax(t)=0 (1.1)

Aox(0)+ Ax'(0)=0 |Ao| + |A4| >0 (1.2)

Box(l)+ Bix'(1)=0 |Bo| + |B:| >0 (1.3)

has exactly countable many real eigenvalues A, ..., 4;, .... For A; there exists

a corresponding nontrivial solution of (1.1) (1.2) (1.3) — the eigenfunction g;(t)
which is unique up to a constant multiple. It holds

1. lim A=+

-
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2. the system {q;(1)} is a complete orthogonal system in the real separable
Hilbert space S=L?*(0, l).

The scalar product (., .) and the norm ||. || in S are defined as usually. Without
loss of generality we can suppose that the system { ¢;(¢)} is an orthonormal system
in L0, I).

For each x(1) e L*(0, I) let z X;@;(t) be its Fourier series with x; = (x(t), ¢;(1)).

i=1

For a bounded function x(r)€ S let

u(x)=sup |x(1)] (1.4)

0, 1)
If A =0 is not an eigenvalue of (1.1) (1.2) (1.3), then the series

St SR
=1 =1

are convergent [6].
The number A =0 is an eigenvalue of the problem (1.1) (1.2) (1.3) if and only
if the boundary conditions are of the form

(i) x'(0)=0
x'(N=0

(ii) Aox(0)+ A x'(0)=0 A, A, #0
x()=0 (L.5)
and A,l—A,=0,

(iii) x(0)=0
Box(1)+ Bix'()=0 By B,#0 (1.6)
and B()I+B]=O,

(iv) Aox(0)+Ax'(0)=0  Ao-A,#0
Box()+ Bix'(1)=0 Bo- B, #0 (1.7)
and Ao(BoI+B|)—A|Bo=O.

In the case (i) the positive 4; are
A=(r/l? j=1,2, ... (1.8)
In the cases (ii) and (iii) the positive A; are positive roots of the equation

E=1IVA, where tg (E)=E, (1.9)

and it holds jr<§&<jm+mn/2, j=1, 2, ....
Evidently, the series (4;>0)

276



8

Sat S

i=

for A; determined by the relations (1.8) (1.9) are convergent. In the case (iv) using
Theorem 8 ([1] p. 270) on the asymptotic distribution of the positive eigenvalues of

the regular Sturm—Liouville system, it can be proved that the series (1, >0) > Al
i=1

I
—2
> A;% are convergent.
=

For A; >0 the corresponding eigenfunction @;(t) is of the form

a; cos (Vi) + b, sin (VA1) (1.10)
Lemma 1.1.

There exists a positive number A such that for the coefficients a;, b; from (1.10)
the relation

la;| + |Bi|=A, j=1,2,... (1.11)
holds.

We can prove Lemma 1.1 using the orthonormality of {q;(t))}.

2. Basic conception

Let us consider a nonlinear boundary value problem

x"(t)+ f(t, x(£))=0 (2.1)
on(0)+A1x'(O)=0 |A0|+IA1|>O (2.2)
Box(I)+Bix'(1)=0  |Bo|+|Bi|>0 (2.3)

in a real separable Hilbert space S=L%0, /).

The linear boundary value problem (1.1) (1.2) (1.3) with the same boundary
conditions as in (2.1) (2.2) (2.3) is usually called the associate linear boundary
value problem to the problem (2.1) (2.2) (2.3).

Many sufficient conditions given by several authors are known for the
existence of a solution of (2.1) (2.2) (2.3). Some of them are given in Cesari’s
papers [2] [3].

Let us consider an operator equation Kx = Ex — Nx = 0 with E linear operator
and N nonlinear operator. The main idea about solving this operator equation is
proposed by Cesari [2]. Essentially this method consists in splitting of Kx =0 into
an equivalent system x = Tx, P(Kx) =0 of two equations. The equation x = Tx is
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called auxiliary equation, the other equation is called bifurcation or determining
equation. )

Let S be a direct sum of the subspaces S, S, i. e. S =S,@S;, and let P, H be
the operators with the following properties:

P is a projection, P: S—S,, R(P)=S,, N(P)=S,, Pxe 9(E), H: $i—S,,
H(I—P)Nx € D(E) for x € @(N) and

H(I-P)Ex=(I—-P)x x € D(E)
PEx = EPx x € 9(E) (2.4)
EH(I-P)Nx=(I-P)Nx xe%(N).

Then the problem Ex = Nx is equivalent to the system of two equations

x=Px+H(I-P)Nx=Tx
P(Ex — Nx)=0.

In our case let us define the operators E, N in the following way:
E: 9(E)cS—S Ex)(t)=x"(t) te(0,1)

D(E)={xeS|Awx(0)+ A;x'(0)=0, Box(I)+ Bix'(I)=0, x(t) e C°(0, [)),
x"(t)e L*(0, 1)}

and

N: B(N)=S— S, N(x)(t) = —f(t, x(1)) t (0, I),
D(N)=C((0, I)).

Let

(p1) f(t, &) be continuous and Lipschitzian, in variable & and with constant L,
function on (0, /) XR. ’
From (p1) immediately it follows that

INx — Nz||SL||x—z]| for x, ze B(N).

Let

(p2) m be a natural number such that

a) for the associate linear boundary value problem (1.1) (1.2) (1.3) is 4,>0
for j>m :

b) L-AMi<1 (2.5)

For this number m let
o=span (¢:(1), ..., gum(1)),
S =span(@n+1(t), ...)
be closed subspaces. (The eigenfunctions ¢,(t) are determined by the associate
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linear boundary value problem (1.1) (1.2) (1.3).) Obviously, So®S:=S and
Soc D(E).

For x €S let Y, x;,;(1) be the associated Fourier series.
=1

Let the operators P, I — P, H be defined as follows:
P: S——)So, P(x)(t)=zx,(p,(t),
j=1

[-P: S5, (I-PYx)(0= 3 x¢(1).

Operators P, I — P are projections of S.

H: $i—S:, Hx)()=- 3 A 'x¢(1).
j=m+1

Lemma 2.1.

H is a linear operator and H: S,— %(E).
Sketch of the proof.

Let g(t)=H(x)(t)= — ._i A;'x;(a; cos (V) + b; sin (\/x,t)).

From Weierstrass’s theorem and Cauchy’s—Schwarz’s inequality it follows that
g(t), g'(t) are continuous functions on (0, [). It holds

g'(t)=— i A72x(— g sin (VAt) + b, cos (VAt)).

The eigenfunctions g;(t) satisfy the boundary conditions (2.2) (2.3), thus g(¢) also
satisfies the boundary conditions (2.2) (2.3). Let us define v(t) as follows

v(t)=— i x,(—a; cos (VAt) = b; sin (VA)).

j=m+

Obviously, v(t)e L*(0, )= L(0, I) and so we can define the function

h(t)=g'(0)+J:v(s)ds te(0,1).

Using Theorem IX.3.4. [7] p. 247 it is easy to see that g'(t)= h(t) for te (0, 1),
thus g"(¢) exists a.e. and belongs to L*(0, [). Q.E.D.
It is apparent that the relations

H(I- P)Ex=(I- P)x x € 9(E)
EPx = PEx x€ D(E)
EH(I-P)Nx=(I-P)Nx xe%(N)
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are valid and so the problem Ex = Nx is equivalent to the system of two equations
x=Px+ H(I-P)Nx
P(Ex —Nx)=0.

3. Auxiliary equation

Let x € S, then using Cauchy’s—Schwarz’s inequality and standard technique
of mathematical analysis, it is easy to see that the relations

IH(I-P)x||=k - ||x]]
u(HI-P)x)=k’- ||x||
are valid for

k=a-( 3 A,-"’)m (3.2)

j=m+1

with the constant A determined in Lemma 1.1.
Let

Xo(t)= Yo @i(t) + ... + Yom@Pm(t) (3.3)

be a fixed element from S,. (The initial — given or computed approximation for the
“solution” y(t).)
Let us denote A= H(I— P)(Ex,— Nx).
If
(2, xo(£)) = w(1) (3.4)
and

W(t)=2 wigi(t), then A= — i A7 wig(1),
= j

j=m+1

and so the bounds

=m+

o 1/2
lal<aza-lwl, w@)y<a-( 3 27%) - lwl

are valid.
Let us denote

b=2A%|lwl| 3.5)
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p=a-( 3 A7) Il (3.6)

j=m+1
Using Theorem iv [2] p. 393: if there exist numbers c, d, r, Ro so that

(i) O<c<d, O<r<Ro
(i) kL<1
(iii) kLd<d—c—b
(iv) k'Ld<Ro—r—b’

(v) the implication z € So, ||z|| <c = u(z)<r holds, then the operator Tx =
Px+ H(I-P)Nx is contractive mapping on complete set S§=
{x € S|Px =Px*, ||x — xo|]| <d, u(x — x0)= Ro}, where x* is an arbitrary, but fixed
element from the set V={xeSo|||x — xo||=c}.

Remember that the choice of the number m in (2.5) is such that the inequality
(ii) in (3.7) is satisfied.
Let us denote

(3.7)

B = max (supl(p,-(t)l) (3.8)

1sjsm \(0, 1)
By easy calculations we can prove

Lemma 3.1.
If for a ¢>0 we have

d>(c+b)/(1-kL) (3.9)
r=B-Vm-c (3.10)
Ro>k'Ld+r+b’, (3.11)

then the conditions (i), (iii), (iv), (v) from (3.7) are satisfied.

Thus the equation x = Px + H(I — P)Nx has exactly one solution x(x*) € S¥ if
the conditions (2.5), (3.9), (3.10), (3.11) are satisfied. This solution depends
continuously on x* € V. From Lemma 2.1 we see that x(x*) e D(E)n%(N) and so
x(x*) will be the solution of the problem Kx =0 if and only if

P(E(x(x*)) ~ N(x(x*)))=0 (3.12)

4. Determining equation

The system of equations (3.12) is in [2] analyzed by considerations based on
the degree of a mapping [4].
Let us denote, for given m determined by (2.5) and w(t) by (3.4),
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With

x()=11@:i(t) + ... + Vm@u(t), Y=(Y1, ..., V)

w(n=(Kx, @)= Ao+ [ 16 xO)a(0) d @.1)
n.=(Kxo, @)=—Ayoi +wi, i=1,...,m 4.2)
n=Mmi+...+n)"” (4.3)

this notation the  Galerkin’s approximation xg(t) =

Yo1@:(t) + ... + Yom@n(t) of the solution y(¢) is determined by the nonlinear system

of equations

u(vs)=0, i=1,..,m (4.1.G)

We can distinguish two cases m=1 and m>1. For m =1 we have only one
nonlinear equation in (3.12) and for m>1 we have a system of m nonlinear

equations.

The case m=1.

Let

(p3) there exist a number ¢*>0 such that for numbers
g1 = (K((Yor + c*)@1), @)= ti(Yor + c*)

g2 = (K((Yor — ¢*)@1), @1) = ts(Yor — ¢*)

d determined by (3.9) for ¢ =c*

b determined by (3.5)

it holds

Sgn(gl . gz) <0
L(A;'Ld + b)<min (|gi|, |g2]).

Then following Theorem viii [2] p. 398 it holds
Theorem 4.1. (m=1)
Suppose that hypotheses (p1), (p2) (for m =1), (p3) are satisfied. Then there

1. exists
2. exists

a solution y(t) of the equation Ex — Nx =0,
a Galerkin’s approximation xg(t) for y(t) and it holds

lly = xoll =d, [Py — xol| <c, u(y—x0)=Ro, u(Py—x0)=r.

Remark.

The element xo(¢) is given by (3.3), the numbers r, R, are determined by
(3.10) and (3.11).

In the paper [5] it was shown how this theorem can be used to establish
existence theorem for certain Fucik’s nonlinear boundary value problem.

The case m>1.

Let

(p4) functions f:(¢, &),f::(t, E) exist and be continuous on (0, [) XR.
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Let
(p5) for given xo(t), 4 =(a;) be a regular matrix with elements

y=(yo1. . Yom)

= 6,-,-(—)&,-)+J;’ it xe())@i(D@(t)dt i, j=1,...,m (4.4)

If B=oA"",let €=(B" - B). If o4, ..., 0. are the (necessary positive) roots of the
equation det (€ — ol)=0, let

o=min (07" ..., 0..'?). (4.5)
Furthermore denote
azu.-(}')l o s
M(¢c)=max |——=| i,j,n=1,...,m, 4.6
(c) o T j (4.6)

where G = (¥, — yo;)* <c? for some, yet undetermined, c e R, ¢>0.
=1

Firstly let us consider the case M(c)=0 for arbitrary ¢ >0.

Let

(p6) for given xo(t) it hold o> kL?*/(1 — kL)

(p7) M(c)=0 for arbitrary ¢>0.

Theorem 4.2. (M(c)=0)

Suppose that for given x,(¢) hypotheses (p1), (p2) (with m>1), (p4), (p5),
(p6), (p7) are satisfied. Then there

1. exists a solution y(t) of the equation Ex — Nx =0,

2. exists a Galerkin’s approximation xs(t) for y(¢) and it holds

ly — xoll <d, [|Py = xol| < c*, u(y — x0) = Ro, u(Py — xo) <r

(1-kL)n+Lb

*
for c >(1 “kL)o —kL*"

Proof.

From Theorem viii [2] p. 398 it follows that it is sufficient to show that there
exists a number c* such that L(kLd + b)<c*o — 1 for d determined by (3.9). By
(3.9) we see that the inequality

c*+b<c*o—n—Lb
1-kL kL?
must be satisfied. Using (p6) it clearly follows that the condition (4.7) is satisfied if

(1—kL)n +Lb
(1—kL)o— kL?

4.7)

c*>
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and the proof of the theorem is concluded. (Q.E.D.
Secondly let M(c), for given xo(t), as a function ¢, be bounded on (0, ).
More precisely

(o(1 - kL) — kL2y?
(P8) M()<5 L @m (1—kL)-(n- (1~ kL)+Lb)

Theorem 4.3.

Suppose that for given xo(¢) hypotheses (pl), (p2) (with m>1), (p4), (p5),
(p6), (p8) are satisfied. Then there

1. exists a solution y(t) of the equation Ex — Nx =0

2. exists a Galerkin’s approximation xg(¢) for y(t) and it holds

ly = xoll <d, ||[Py — xol| < c*, u(y — x0) = Ro, u(Py — xo) <r
for some c*>0.

Proof.
From Theorem viii [2] p. 398 it follows that it is sufficient to show that there
exists number c¢*>0 such that

L(kLd+b)<c*o—27"-M(c*)- m®?-(c*)*—n
for d determined by (3.9) with ¢ =c*. From (3.9) we see that the inequality

c*+ b<c*—2-1 “M(c*)- m®? - (c*2—n—Lb
1—-kL kL2

(4.8)

must be satisfied. Using (p6) and (p8) clearly follows that for some c*>0 the
inequality is satisfied. Q.E.D.

In previous theorems it is stated that there exists Galerkin’s approximation
xg(t) for the solution y(tz). That means that the nonlinear system of equations
(4.1G) for coefficients yg1, ..., Yo has (at least one) solution. In a concrete case we
can also determine bounds for [|y(t)— xs(t)|| and u(y(t) — xs(t)). We can use
previous theorems with xo(t) = xs(t). Of course for the first approximation of the
,,solution* we did not have to choose xo(¢) but some Galerkin’s approximation if
we were able to solve the nonlinear system of equations (4.1.G).

5. An example
Let us consider the problem
x"(t)+ L sin (x(t))+ p(t)=0 (5.1)
x'(0)=x'(1)=0. (5.2)

where L >0 and p(t)e C({0, 1)).
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For the associate linear boundary value problem it is
M=0,4=((-Dx) j=2,3,..
@i()=1, g(t)=V2cos ((j—1)mt) j=2,3,....
For A in Lemma 1.1 we have A =V2.

The nonlinear part of the problem (5.1) (5.2) is Lipschitzian with the constant
L>0.

We choose m = m,=2 arbitrary, but fixed. In (2.5) it is
k=Anbe1=1/(mom)? (5.3)

thus let us consider the problem (5.1)(5.2) for L <(mom)>.
For k' in (3.2) we get .

k'=V2-(1/7%) - (/90— (1 +1/16 + ... + 1/mi))"? (5.4)
Let n be an arbitrary, but fixed odd integer
n=..,—5-3,-1,1,3,5; ...
and
xo(t) =(nm)@:i(t)+0- @(t)+...+0 -I(p,,.n(t) (5.5)

By this definition we see that f(t, xo(t)) = p(t) and so let

b= \/ ,»j:'n (p/h)y=k-lpll (5.6)

b'=k"-|lpll- (5.7)
From (4.1)(4.2)(4.3) we have

u(y)=—Ay: +LIL sin (Y1@1(8) + ... + Yoo @oo(1)) @i (1) dt + pi
i=1,...,mo
and n=\/m. From (3.8) it follows that B=V2. The matrix .+ is
diagonal matrix
oA=diag (-L, —a*—L, ..., —(me—1)’m*—L) (5.9)
and so we have o=L.

For M(c) from (4.6) we obtain the bound M(c)=<2-V2-L for
(71 = na) + ()2 + ... + (Ym)* < 2.

All these relations are valid for arbitrary n=..., -5, =3--1,1, 3, §5, ...
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The assumption (p6) is valid for

L <(mom)*/2 (5.10)
Finally from (p8) it follows that the inequality
L(1-2kL)
4-V2-mi*< ( ) (5.11)

(1-kL)((1—-kL)n+Lb)
must be fulfilled.

Theorem 5.1.

The nonlinear boundary value problem (5.1) (5.2) has at least countable many
solutions if for the function p(t) and constant L are the conditions (5.10) and
(5.11) fulfilled.
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SUHRN

GALERKINOVSKA APROXIMACIA
A EXISTENCNE VETY PRE ISTU NELINEARNU OKRAJOVU ULOHU
PRE OBYCAJNE DIFERENCIALNE ROVNICE

Z. Schneider, Bratislava

V c¢lanku st uvedené postacujice podmienky pre existenciu rieSenia y(t) uvedenej nelineirnej
okrajovej tlohy, pre existenciu galerkinovskej aproximacie xc(t) tohto rieSenia. Je uvedeny spdsob
odhadu chyby rozdielu y(r) — xo(t) pre dand funkciu xo(t).

PE3IOME

TEOPEMbI CYIECTBOBAHHUS U METO[ TAJIEPKMHA JIsi HEJIMHEMHBIX
KPAEBBIX 3ANTAY /11 OBBIKHOBEHHBIX JU®®EPEHLIMAJIbHBIX YPABHEHUM

3. lllHaiipep, Bpatucnasa

Ina 3apaum

x"(6)+f(t, x(1))=0
Aox(0)+ Aix'(0)=0
Box(1)+ B:x'(1)=0.

NOKa3aHbl NOCTATOYHbIC YCJIIOBUS IS CYUICCTBOBAHHUS pELICHUS 3TOW 3apayM, s CyLLECTBOBAHHUS
anMnpoOKCHUMAllMK THIMA Faﬂepxuﬂa. IToka3aH cnoco6 oneHWBaHUsI OIIMOKH.
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