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AN OBSTACLE PROBLEM FOR A CYLINDRICAL SHELL

IGOR BOCK—RUDOLF KODNAR—JAN LOVISEK, Bratislava

We shall be dealing with the problem of the existence and the uniqueness of
a solution of a variational inequality for a cylindrical shell with an obstacle. We
assume that the bending of the shell is limited by the stiff obstacle. It menas that the
function of the bending w is greater or equaled to the prescribed function g. The
problem is approximated by the finite element method with the Argyris triangular
elements.

1. The existence and uniqueness of a solution
The circular cylindrical shell is an elastic body which occupies the domain:
1 1
G={ReE’|R=r(x, 9)+n(@), =5 e(x, )<z<5 e(x, 9), (x, P) € X}
where 0<eo<e(x, p)<e, (x, )€ 2, n(g) is the outward normal to the middle
surface and the middle surface is a part of a circular cylinder given by the equations
R=r(x,@): xaq=x,x2=a cos @, x3=a sin ¢, a>0, (x, p)e Q

where

Q=(-v,v)*x(a, B) (1.1)

We assume for simplicity that the shell is clamped at the edge 32 what implies that
the displacements of the shell u, v, w satisfy the homogeneous boundary
conditions.

aw
u—v—w—g;-—O on 3Q (1.2)

where v is the ontward normal to the boundary 3. The vertical displacement w
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satisfies the unilateral condition with respect to the obstacle

w(x, @)Z9g(x, @), V(x, p)e Q (1.3)
where the obstacle function g satisfies the conditions
geC(Q), g/aQ<0 (1.4)

Let us denote

Hy(2)={veH'(R2)/v=0 on 3Q}

m(9)={wem(g)/w=a—w—o - ag}

v

where H'(Q2), H*(L2) are Sobolev spaces. The space of wirtual displacements of
the middle surface of the shell is then the space

V =H;(Q) X Hy(2) x H3(L2) (1.5)
V is a Hilbert space equipped with a scalar product
(u, v)v=(u, P)i+ v, A+ (w, ©), (1.6)
for u=(u, v, w), v=(v, A, 0)
and a norm
lullv = (u, u)¥?, ueVv (1.7)
We introduce further the set of admissible displacements
K={v=(y,A, w)eV/io=g on Q} (1.8)

Lemma 1. The set K is convex and closed in V.

Proof.: The convexity of K can be seen directly from the definition (1.8). Let
us now consider such a sequence u, € K, n=1, 2, ..., that u, — u strongly in V. If
u=(u, v, w), t=_(U, va, w,), then w,—w strongly in H3(Q). Due to the

imbedding theorem for the space H3(Q) ([5]) we have lim w, (x, @)=w(x, @) for

every point (x, @) € Q. As w.(x, ) =g(x, @) in Q, we obtain w(x, @)=g(x, @)
in € and hence u € K what concludes the proof.
We introduce the system of six deformation operators {N;(u)},i=1,2, ..., 6

u _1(8v _1/13u v
ax’ Nz(u)—a(a(p w), N,(u)—z( + ),

Ni(u) = 1lou ov
1(u) adp 0Jx

_ 9w _1 *w 1 *w Qv 13du
N =5z N =g (55 +w). N =g, (2530457 -5 50)

1.9)
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and the matrix K of the form

FB Bo 0 0O 0 O ]
Bo B 0 0O 0 O
10 0 2B(1-u)0 O O
Lo 0O 0 O D 0 O (1.10
0o 0 O 0 Duo
o 0 O 0 0 2D(1-np)
- -
where
Ee Ee?
B_l——uz’ D—m, E>0,0<u<1
We define now the bilinear form
a(u, v)=j N(u)KN(v)a dx dg, u,veV (1.11)
Q

N(u)=(Ni(u), ..., Ns(u))

and the linear functional

eow e ow
l(“)—jQ [px(u—ia)+p,(v—ﬂéa)+pzw]a dxdep, ueVv (1.12)

Lemma 1.2. The bilinear form a(u, v) is on the space V bounded and
coercive i. e.:

Ia(u1 U)IsCo”u”v“U”v, Vu, veV (113)
a(u, u)=cl|lull}, ¢:>0,VueV (1.14)

Proof: We obtain the boundedness (1.13) affer using the Schwarz inequality.
Coercivity (1.14) is verified for instance in ([6], chapt. 10.4.5).

We formulate now

Problem P. To find such an element (vector-function) u € K that

a(u,v—u)=l(v—u),VvekK (1.15)

where the set K is defined in (1.8) and the forms a (.,.), I(.) in (1.11), (1.12)
Theorem 1.1. There exists a unique solution u € K of the Problem P.
Proof: A vector-function u € K is a solution of (1.15) if

](u)=runei}(1 J(v), (1.16)
where
J(v)=% i, )~ 1), vek 1.17)
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A functional J(.) is due to lemma 1.2 weakly lower semicontinuouns and the set K
as convex and closed is weakly closed ([1]). Then there exists due to [1] a function u
which fulfils (1.16) and hence the inequality (1.15) holds.

Assume that there exists u*e K, u*# u, which is also a solution of the
inequality (1.15). Then we have

a(u, u*—u)=1l(u*—u),
a(u*, u—u*)=1l(u—u*)

and after adding a(u — u*, u — u*)<0, what is possible only if u=u*.
Hence there exists a unique solution u € K of the inequality (1.15).

2. Finite elements approximation

The approximation of the Problem P consists of two steps.
. 1. Substituing the Problem P by the finite dimensional Problem P,.
2. Numerical solution of the Problem P;.
The Problem P, means in this case the finite element approximation of the
Problem P. Let {1,}, 0<h < ho, < be the regular system of triangulations of the
region Q. That means that

1.9=UT, i=1,2, .., nh)

Tiet
where h>0 is the maximal length of sides of all triangles from T,

2. There exists 3,>0 such that
min " =90, Vhe (0, ho)

e,

where 9" is an arbitrary interior angle in an arbitrary triangle of the triangulation
Th.
If M, denotes the set of all nodes of the triangulation 7,, then we assume

MthMhz, lf h1>h2 (2.1)

; ; . . ; 1
Let T € 1, be the triangle with vertices a;, a,, as, mid-points b; =3 (aj-1+a;+1) and

¢; the intersections of the sides a;-i, a;,; and their normales v;, j=1, 2, 3. (We
denote ap=as, a;,=a,). (See fig 1).

It is known from the interpolation theory ([2]) that following 21 values
— degrees of freedom

r={p(a), Dp(a)(a;-1 — a;), Dp(a;)(ai+1 — &), (2.2)

1<i<3; D?’p(a)(aj+1—a)* 1<i,j<3;
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Dp(b)(ai—c), 1<i<3}

uniquely determine the polynomial of fifth degree ps € Ps(T;) — Argyris element.
We introduce now for every triangulation 7, finite dimensional spaces

Xh = {Uh € C'(.Q)/v;./T,— € Ps(’T,), V’I; € Thy Un =0 on GQ} (2.3)

Y, = {vn € CY(Q)/v4/T, € Ps(T), VT, € T, vh=%=0 on Q)  (2.4)

The space
Vh = Xh X X;, X Yh (2.5)

is a finite dimensional subspace of the space V. We define now a finite dimensional
approximation of the convex set K by

K}. = {u,, =(u;., Vh, Wh)E V;./w;,(a,»)?g(a.-), Va,' EM}.} (26)

We can now proceede to the finite dimensional approximation of the
Problem P:
Problem P,. To find such a vector-function w, € K,,, that

a(u,,, Un — u,.)él(v;. = llh), Yu, € K, (2.7)

It can be verified in the same way as in the case of the set K< V, that the set
K, <V, is convex and closed. Then we obtain the theorem analogous to the
Theorem 1.1. '

Theorem 2.1. There exists for every h € (0, ho) a unique solution u, € K, of
the Problem P,

We further show that a sequence w, of solutions of the Problems P, converges
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to the solution u of the problem P. We verify at first a weak convergence.
Lemma 2.1. Let u, € K, be a solution of the Problem P, for every h € (0, ho),
u € K be a solution of the Problem P. Then

u,—u in V (weakly) (2.8)

Proof. Choose such a sequence vy, € K, that ||v.||v < C; for every h € (0, ho).
We obtain then due to coercivity of a form a(.,.) the boundedness of the sequence
uy € K, of solutions of Problems P,

lunllv < C, Vhe (0, ho) (2.9)
Then there exists such a subsequence chosen from u, (denoted again by w,) that
u,—u* in V (weakly) (2.10)

We have to verify that u* = u is a solution of the Problem P. We show at first that
u*=(u*, v*, w¥)ekK i.e.

w*(x, @) =g(x, @), V(x, )€ Q (2.11)
As u, = (un, vn, W) € Ki, we have
w;.(a,-)?g(a,-), Va.- GM;‘ ‘ (2.12)

Let € >0. As the functions w, g are uniformly continuons on £, there exists such
a number h; € (0, ho) that

wi(x, @)=g(x, p)—¢,V(x, p)e Q (2.13)

The set K. ={u=(u, v, w)e V/w(x, ¢)=g(x, ¢)—¢, Y(x, )€ Q} is convex,
closed and hence weakly closed in V. Then we have with respect to (2.10) u* e K.
and hence

w(x, @) =g(x, @) — €, V(x, p) e Q (2.14)

As £>0 is an arbitrary positive number, we obtain

w*(x, )=g(x, @), V(x, p)e 2 (2.15)

what means u* € K.
It remai_ns us to show that u* is a solution of the Problem P. Let
v € Kn[C"(LQ)]’. Denote v the Hermit interpolation polynomical belonging to
the function v € K. Obviously v € K, because vi(a)=v(a)=g(a) for every
a; € M,,. That means
a(un, vi — u)=1(vh — u,) (2.16)
Using the estimate ([2])
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lv—vil|lv<ch|v|lv, Yve VA[C(R2)] (2.17)
we obtain from (2.16) after limiting
a(u*, v—u*)=1l(v—u*), Vve Kn[C*(Q)] (2.18)
It is verified in ([3], chapt. 3.3.2) that the set Kwn[C~(£2)] is dense in Kw, where
Kw={we Hy(Q)/w(x, )=g(x, 9), V(x, ¢) € 2}

Then the set Kn[C~(Q2)]® is dense in K and the inequality (2.18) holds also for
arbitrary v € K. Hence u* is a solution for the Problem P. We have then u* = u due
to the unicity of a solution of P and the Lemma is verified.
The following theorem expresses the strong convergence of the sequence uj,.
Theorem 2.2. Let u,, € K,,, h € (0, ho) and u € K are solutions of the Problems
P, and P respectively. Then

Ji. s = ully =0 (219)

Proof.: Using the inequalities (1.14), (2.7) we obtain the estimates

e lun — ull¥<a(u,— u, u, —u)<a(u, u—u,)+ a(un, vi —u)—l(vi — ),
c1>0; Vve Kn[C*(Q)]

After limiting we arrive at

Osclhl—ir(l;l+ ||, — ul¥<a(u, v—u)—Il(v—u), (2.20)
Vo e Kn[C™()F

As the set Kn[C=(Q)]® is dense in K the inequality (2.20) holds for every v € K.
We can now pat v =u and arrive at
0< lim ||u, — ul|3< lim |lus — u|}<0
h—0* h—0
and the relation (2.19) follows immediately.
Some of the methods of quadratic programming can be applied to the solving
the Problem P,. We shall use the same approach as in [4] in the case of plate. Let
@1, ... Qn, and Yy, ..., Y., be the interpolating basis of X, and vy. Then the system

of vector-functions @, ..., D, 2., defined by
0, 0, y), j=1, ..., m,
¢f= (09 Qj—mps 0)9 j=mh+17 vy My + 1y (221)
((pi—rnh—nm Oa 0), j='mh +n, + 1’ vy My +2nh

is the basis of V,, = X, X X, X Y,,. Let the first L, functions correspond to the values
of the basis functions {v;} in the inner nodes of the triangulation 7,. Then every
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vector-function v =(y, A, w) € V,, can be expressed in the form

Py,
V= 2 qid)i’ Ph =my + 2";, (2.22)
i=1
where
g=w(a),qeMy, j=1, .., L, (2.23)

M, is the set of all interval nodes of triangulation 7,. The definition of the convex
set K, implies

veK,<q=(qi, ..., q) €K, (2.24)
where
Ki,={qu€EL/q,=49(q), ae M}, j=1, ..., L.} (2.25)

Substituing (2.22) into (2.7) and using a variational formulation, we obtain the
equivalent problem to the Problem P,
Problem P#: To find such g*e€ K, that

L(gq%)= min L(q.)
qEKLh
where
1
L(g)=J(v)=75 q"Aq - I'q,

A =(a;) %=1, a;=a(Pi, ), [;=1(D),
i,j=1, S P;.

One of the effective numerical method for solving the Problem P# is the modifica-
tion of SOR method [3]:
Let ¢g°€ K., be the starting element,

+ 1 < m+ L m
q'"' 172 — —z— (2 a;iq 1+ 2 aiiq; —In>
i \j=1 j=i+1
q"*'=max {q(a), (1~ w)qT +wq""?}, i=1, .., L,
' =(1-w0)qT+wgi*"?, i=Li+1,.., Py m=1,2, ..

where w € (0, 2) is a chosen weighting factor.
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SUHRN
ULOHA S PREKAZKOU PRE VALCOVU $KRUPINU
I. Bock, R, Kodnir, J. Lovisek, Bratislav'a
V prici je skimana jednostranna uloha pre valcovi $krupinu. Dok4zani je existencia rieSenia,
jednoznacnost rieSenia a pouZitelnost pribliznej metédy.
PE3IOME
3AIAYA C MPEMISTCTBUEM I HWIMHAPUYECKOM OBOJIOYKH
H. Bouk, P. Kognap, SIu JIosuwek, Bpatucnasa

PaccMaTpuBaeTcs OHOCTOPOHHAs 3ajjaya /s LMIMHAPHYECKOH 060n0uku. JoKa3aHo cymiecT-
BOBaHHE PELICHHUs, EAWHCTBEHHOCTb PEILICHHA M MPUMEHMMOCTb NPUOIU3NTENLHOTO METOA.

273






	
	Article


