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ON CERTAIN INTEGRAL EQUATION WITH DELAY

VLADISLAV ROSA, Bratislava

The purpose of this paper is to discuss the problem of a global existence of
a solution (as well as a maximal and a minimal solution) for integral equation with
delay

lz(t)=r(t), teE, W

z(t)fr(t)+f' K(t, s, 2(s), z[Mi(5)), ..., z[hn(s)] ds, tZto

Here hi(t) e C[I, R], I =(a, =) such that h(t)=t for each tel, i=1, ..., m;
E,= OE},, is the initial set, t € (a, ), where Ei = (11151; hi(t), to], i=1, ..., m and

i=1

we shall assume that for every i=1, ..., m there exists t €[to, ©)=J such that
h(t)=to. If inf h(£)=min k(¢) we shall put E,= [inf h(1), to].
tel telJ teJ

Several properties of solutions of (1) are demonstrated and accompanying
estimates of solutions are obtained. A :

Let us denote zr(t) the continuous solution of (1) which exists on the interval
[To, T)<=J.

Definition 1. If T<T(T, T € (to, ©)) and zr(t)=2z+(t) for te[to, T), then
a solution zz(t) is called an extension of the solution zr(t) to [to, T) and the solution
zr(t) is called a restriction of the solution z+(t). Moreover, the solution zr(t) is
called total (outside the [t, T)) if it is not a restriction of no one solution of (1).

Theorem 1. Let K(¢t, s, v, us, ..., Un)€ C[L XR"™*P R], where L =
{(t,5): aSs=t<wx}, be the nondecreasing function in each of variables
v, Uy, ..., Un for all (t, s)e L. Let r(t) e C[E,uJ, R]. Let ¢ >0, b <= and let there
exist a continuous solution z,(t) of (1). Then, if for every y: 0 <y <c there exists
a function m,(t, s)e C[L, R.]suchthat sup |K(t, s, v, uy, ..., Un)| = m,(t, s)

|v|Sy, |ulSy,
m
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and sup |z(t)| <, there exists a number d >0 such that the solution z,(¢) can be

to=t<b
extended to [t, b + d).

Proof. Since |K(t, s, 2:(s), z[hi(s)], ..., zs[An(s)])] = m,(t, s) where y=
sup {[z(D)], |z[h:(D]], ..., |z6[hm(D)]]}, Lt=s5=b, the function K(t, s, z(s),
te(to, b)
z[hi(s)], ..., z[hn(s)]) is an integrable function for se[ty, b] and for each
te[b, ) and the function

v(1) =J:b K(t, s, 2(s), 2o[(s)]), ..., zo[hm(s)]) ds (2)

is continuous for b =t< as well. We will show that

lim 2,()=r(b) + v(b). 3)

Indeed, for te(to, b) we have |z,(t)—r(b)—v(b) éj |K(t, s, z(s),

()], ..., 2[ha(s)]) — K(b, s, 2(s), z[h:(s)], ..., z[hn(s)])| ds +f|K(b, s,

2(8), [h(s)], ..., z[ha(s)])| ds + |r(b)—r(t)| wherefrom with respect to the
continuity of r we obtain (3).

Let y>0 be such that |r(b) + v(b)| <y (we may observe that from the above
conditions it follows |r(b)+ v(b)| < ). We denote

S={ueCll, R]: [u()|=c, lu[h()]|Sc, bSt=b+d,i=1,...,m}.
On the set S we define an operator Z in this way: for ue S

Zu(t)=r°(t), teE,

Zu(t)=r(t) +Il K(t, s, u(s), u[hrl(s)], weos U[B()]) ds + v(2),
where

r°(t)=r(t)’ te E,nE,
Z(I), te[to, b)ﬁEb

and the set E, (an initial set) is defined by E, = | JEi, Ei =[ inf k(1) b],

te[b, b+d
i=1,..., m and we assume that for every i=1, ..., m there exists e[b,b+d)
such that h(t)=b.

i=1

Since for u(t)€ S the inequalities |Zu(r)| = Jﬂ |K(t, s, u(s), u[hi(s)], ...,
ulha(s)) ds + |r(t) + v(t)| = LIK(t, 8§, € ..y ©)| ds + |r(t) + v(t)| =
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I' m(t, s)ds + |r(t)+ v(t) — r(b) — v(b)| + |r(b) + v(b)| are true we see that for

d sufficiently small ZS < S. Besides Zu e C[[b, b + d), R] and by [4], p. 123, Z is
a completely continuous operator. Therefore, by Schauder’s theorem there exists
a solution w(t) of the equation u = Zu. It can be easily shown that

r(t), teE,
x(t)={z(t), t€[t, b)
w(t), te[b, b+d)
is a continuous function on [t, b + d) satisfying (1) and it is an extension of the
solution z,(t) which completes the proof.
Corollary. If [t, b), b<o is the maximal interval of existence of the

continuous solution z(t) of (1) then lim sup |z(2)] = .

Proof. This result follows immediately from Theorem 1.

Theorem 2. Let K, r possess the same properties as in Theorem 1. Then each
continuous solution zr(t) (T € J) of (1) is either a total solution or it is a restriction
of at least one total solution.

Proof. To each continuous solution z,(t), (L =t<t, of (1) we appoint T,
— supreme of those values of ¢, for which there exists an extension of z,(t). (We
remark that there can be T; =1, as well as T, = »). First of all we consider the case
T: <. We form an extension z(t) of the solution z;(¢) up to ,<T; —1=t, —if
such a one exists. Obviously T, = T, (the meaning of T for z,(t) is the same as of T,
above). Therefore T, —t,<1. By proceeding analogically a sequence of solutions
{z.(2)} of (1) can be constructed each of which is an extension of preceding one up
to t, such that

1
T, -t <;. (3)

The sequence {T,} is nonincreasing. Unification of all z,(¢) is denoted z(¢). Then
z(t) is the solution of (1) which exists for (,=t<T,= lim .. We claim this solution

is total. If not, there exists its extension up to To+d (d>0) and simultaneously
each of z,(t) can be extended up to To+ d. This is a contradiction with (3) for

%< d. The claim is proved.

Now let T, = . If the solution z,(¢) is a restriction of the solution z,(t) for
which T, < o, then z,(t) — and therefore also z,(t) — are in accordance with the
above proved restrictions of a total solution of (1).

Finally, let T = o for all extensions z(t) of the solution z,(t). Then a sequence
of solutions {z.(t)} can be constructed such that each of which is an extension of
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the preceding one up to t; + n. Unification of all z,(t) is again a solution of (1)
which is an extension z;(¢) into infinity, i.e. a total solution.

Theorem 3. Let K, r possess the same properties as in Theorem 1. If for
a function p(t) e C[E,uJ, R] the inequalities

p()<r(t), teE,

@)

PO<r(+ [ K(t,5,p(s), IS, . plhn()) ds, te]

hold and z(¢) is a (continuous) solution of (1) existing on J, then
p(t)<z(t) (5)

is true for each teJ.

Remark. For any given r, a solution of (1) need not be unique. Theorem 3
gives the estimate for every continuous solution z(t) of (1).

Proof. From (1) and (4) we have p(t)<z(t). Since the both functions p
and z are continuous, the inequality (5) holds on some right neighbourhood of .
Now suppose that (5) does not hold for all teJ. Then there exists ¢ >t such
that p(1)<z(t), tt=t<t, p(t:)=z(t;). But from (1) and (4) it follows z(t;)—

—P(ln)>I [K(t, s, 2(5), 2[m(s)], ..., z[Am()]) = K(ti, 5, p(s), p[hi(s)], -

p[hn(s)])] ds =0 since K is nondecreasing function. This is a contradiction and,
thus (5) holds on whole J.

Remark. If the inequality (4) is replaced by reverse, then (5) changes its sign
analogically as well.

Definition 2. A solution z(t)(z(t)) is called the maximal (the minimal)
solution of (1) if for any other solution z(t) of (1) the inequality z(¢)=
Z(t)(z(t)Z z(t)) holds on the common interval of existence.

Remark. From the above definition it follows that every restriction of the
maximal (the minimal) solution is also the maximal (the minimal) solution and if
7:(t), zo(t) are maximal (minimal) solutions of (1) on [to, to+ b1), [to, to+ b2)
respectively, where b, <b, then z,(t) = z(t) for te=t<ty+ b,.

Theorem 4. Let K, r possess the same properties as in Theorem 1. Let
functions z;(t) € C[E,,uJR], j =1, 2 be such that |z ()| <c, |z[(D)]| <c, j=1, 2;
i=1,..,m; 0<c<oo and let the following inequalities

u(t)>r(t), teE,

Zn(t)>’(t)+1‘ K(t, s, 21(5), za[M(5)], ..., za[Am(s)]) ds, tET

(1) <r(t), to:fE,o (6)
() <r(t)+ f K(t, 5, 22(5), zlM(S)] ... 2alhn(s)]) ds, teJ
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hold. Then the following statements are true:

i) each continuous solution z,(t) of (1) (b < ®) can be extended on whole J ;
ii) both maxj!nal and minimal solutions of (1) Z(¢), z(t) respectively, existon J ;
iii) the inequalities

() <z()=°()=z()<zu(t), tel (7)

hold, where z°(t) is a total solution of (1).

Proof. First of all we will show that the solution z(t) of (1) can be extended on
whole J. If we suppose the contrary, then by Theorem 2 there exists a number d
such that [t, d) is the maximal interval of its existence. By Theorem 3 for ¢ € [to, d)

it holds z5(t) < z(t) < z:(t) wherefrom one obtains |z(t)| <max |z;(¢)|, |z[h(1)]| <
j=1,2

max |z[h(D)]], i=1, ..., m for t €[to, d) which yields the inequality sup |z(t)|=
i=h

telto, d)

sup max |zi(¢)|. This is a contradiction with the Corollary of Theorem 1. Thus

tefto, d) 1=
each continuous solution z(¢) of (1) can be extended on whole J and for this total
solution z°(t) the inequalities z(t)<z°(t)<z:(t) hold for all teJ.

To prove the existence of a maximal and a minimal solutions of (1) it is
sufficient to consider the only one case since the latter one is similar. To prove the
existence of a maximal solution of (1) on J, let { u.(¢)} be a sequence defined by

u.,()=r(t), teE,, n=1,2, ...,
w(t)=z(1), tel (8

Unri(t)=r(t) + f K(t, s, un(5), u[P1(5)], .., un[ A (s)]) ds +

+

e v(t), tel, n=1,2, ...,

where

)=z — f "Rt 5, 2i6) GlRADL, szl )] ds — 202, 6T,

Then for teJ z;(t) — u2(t) = us(t) — uz(t) =% v(t)>0, wherefrom u,<c and also

uz(t)—Zz(f)gﬂ [K(t, s, 21(s), za[i(5)], ..., za[Hn($)]) — K (2, 5, 22(5), z2[hs(5)],

eevs 22[Am($)])] ds +% v(t)>0, from where u,> —c so that |u.(t)|<c, tel.

Now let for some integer n=2
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() <u.()<u.(1)<zu(t), tel )
is true so that |u,(t)|<c, teJ. Then the function u,.(t) is defined on J and

u,,(r)—-u,.+|(t)=J:’ (K(1, s, u,._.(s), s [1e()]s e Ui Bm(S)]) = K1, 5, Un),

w,[hi(s)), ..., uu[hm (D] ds +——= ( D v(1)>0, U, (1) — z;,(l)éJ” [K(I, s, u,(s),

w, [ (5] -.os [ (5)]) — K(1, 5, 22(5), Z2[ i (5)]s --., Z2[Am(s)]) ds + v(r)>O

Thus the inequalities (9) are true for all integer n and we get from the above
lu.(t)|<c, tel, n=1,2, ...

Becase of u,.(t)—f K5, s, :(s) (el o dalhals)) ds—r(t) =
u, (1) — u,,+,(t)+n—i—1 v(t)>0, from (9) with the aid of Theorem 3 one obtains

() <()<u, () <u.(1)<zi(t), tel. (10)

Hence

u(t)=1i_{2 u,(1)=2z°%1), tel. (11)

To finish the proof we will show that the function u(t) satisfies (8) and
u(t) e C[J, R]. Since the function K is continuous, K(t, s, u.[hi(s)], ..., U.[h-(5)])
is uniformly bounded for any fixed te€J and any u,(t) satisfying (10) and the
inequalities K(t, s, z[hi(s)], ..., z[h.(S)D=K(t, s, u.(s), u.[hi(s)],

u.[h.(s)D=K(t, s, z1(s), ..., zi[hn(s)]) are valid, we have 'lll_IB K(t, s, u.(s),
u[hi(s)], ..., U[Bn(S))=K(t, s, u(s), u[h(s)], ..., u[h.(s)])-

Hence, applying Lebesgue’s theorem the formula (8) leads to

u(t)=r(t), teE,

u(t)=r(t)+f K(t, s, u(s), u[hi(s)], ..., u[h.(s)]) ds, tel.
Consequently, u(¢) is the solution of (1) for all teJ.

Let to=t,<d <. Then, appealing to conditions of the theorem it follows
from (10) that |u(t)|<c, |u[h(t)]|<c, i=1, ..., m. Since for t,, t, € [to, d) (t: > 1)

the inequality Iu(tz)—u(tl)l_-<=J"2|K(t2, s, u(s), u[hi(s)], ..., u[hn(s)]) — K(ts, s,

u(s), u[hi(s)), ..., u[h.(s)])| ds +‘[:|K(t1, s, u(s), u[hi(s)], ..., u[h.(s)])| ds +

|r(t:) — r(t:)| holds, the continuity of u(t) by t, tends to t, from the left is evident.
The continuity from the right can be proved in a similar way. Because of
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'lirq u(t) = r(t) and the formula (11) is true, u(t) is the maximal solution of (1) for

teJ and the proof is complete.

Remark. It can be seen that the Theorems 1—4 remain correct without
a change also in the case if we consider vector functions instead of the scalar ones.
It is necessary only to introduce an appropriate partially ordered vector space and
to choose a fixed, convenient vector norm.

The author thanks to prof. Seda for his many helpful comments and sugges-
tions.

REFERENCES

[1] Krasnoselskij, M. A. et al.: Integralnye operatory v prostranstvach summiruemych funkcij.
Nauka, Moskva 1966.

[2] Krasnoselskij, M. A.—Krein, S. G.: K teorii obyknovennych differencialnych uravnenij
v Banachovych prostranstvach. Trudy Voronezh. gosud. univ., 1956, vyp. 2, pp. 3—23.

[3] Filatov, A. N.—Sharova, L. V.: Integralnye neravenstva i teorija nelinejnych kolebanij. Nauka,
Moskva 1976.

[4] Collatz, L.- Funktionalanalysis und numerische Mathematik, SNTL, Praha 1970.

Author’s address : Received: 13. 6. 1980

Vladislav Rosa

MFF UK, Katedra matematickej analyzy
Milynska dolina

842 15 Bratislava

SUHRN
O ISTEJ INTEGRALNEJ ROVNICI S ONESKORENIM
V. Rosa, Bratislava
V priéci sa skiima tloha globalnej existencie rieSeni istej integrilnej rovnice s oneskorenim. Sd

uréené podmienky existencie rieSenia (tieZ maximélneho a miniméineho rieenia) na nekoneénom
intervale, vy$etrené niektoré ich vlastnosti a stanovené odhady tychto rieSeni.

PE3IOME
OB OJTHOM UHTETPAJIBHOM YPABHEHHH C 3ATTA3IBIBAHUEM

B. Poca, Bpatucnasa

B pa6oTe uccnemoBaHa 3aga4a OGILEro CyIECTBOBAHHS PELIEHHH KaKOTO-TO MHTErpaibHOro
yPaBHEHMS C 3ana3blBaioUiMM apryMeHToM. OnpefiesieHb! YCJIOBHS CYLIECTBOBaHHMS pELICHUH (Takxke
MaKCHMaJIbHBbIX # MHHMMAJIbHBIX pElLIeHHI) Ha 6ECKOHEYHOM MPOMEXYTKE, H PACCMOTPEHBI CBOMCTBA
M YCTAHOBJIEHBbI OLIEHKM 3THX PELICHHH.
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