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A NONLINEAR ELLIPTIC BOUNDARY VALUE PROBLEM
GENERATED BY A PARABOLIC PROBLEM

VLADIMIR DURIKOVIC, Bratislava

1. Introduction. Let Q be a bounded domain in R™ (m=1) with the
sufficiently smooth boundary 3Q. We shall consider an elliptic boundary value
problem for the quasilinear system of p =1 equations with p-unknown functions
u=uy, ..., Up)

L(x, D,)u+Au:=| Z Ai(x)D¥u+ Au= f(x, Du) 1

in Q, where f=(fi,...,f,) and 0<|y|<2b—1 (b=1 is an integer) and A is
a complex parameter.

Our aim is to prove an existence theorem and to investigate a structure of the
classic solution of the given problem. Furthermore we state the relation between
this solution and the solution of the associated nonlinear parabolic system in
infinite cylinder Q.. = (0, ®) X £ from [3]. These questions are studied with help of
a priori estimates of the Green’s matrix for linear problem. The coefficients A, are
smooth matrix functions and the vector function f is assumed to be continuous in
the Holder sense on a bounded or unbounded set. Holder continuity on the
bounded set allows to solve the equations of the type (1) with the strong
nonlinearities for f.

2. Formulation of the problem. First of all we introduce some notions and
- notations which will be used throughout the whole paper.

By x =(xy, ..., x.) we denote the point of a bounded domain Q and H means
the Cartesian product

26-1 p 2b-1 p

prﬂoﬂ{ o<ul<w} and H(B): —Qx'no’”{ -B<ul<B}.

2b-1
Here B is a positive real number and s = 2} t(r), where t(r) means the number of
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multiindices y=(y, ..., ¥.) with the length |y|: =Zy,~ =r (y: is a non-negative
i=1

integer for i=1, ..., m). Then the number of all elements of the vector DYu =
{(D%uy, .... DXu,))ih2b from (1) or of the vector u, = {(uy, ..., ul)}inzs is ps. By
J, O, E, and E we shall denote the (p X 1)-unit vector, the (p X 1)-zero vector, the
(p X p)-matrix with all elements equal to 1 and the (p X p)-unit matrix respec-
tively. '

The set of all Holder continuous functions u: D =« R™— R? with exponent
0<p =<1 will be denoted by H, ,(x, D) and

1
S k
llulli.p:= max {Zﬂ ';:,_ sup IDxui(x)I}
for a non-negative integer /.
We shall investigate the system (1) for x € 2 with the boundary conditions
pi= B{?(x), D¥u
3 (B'(x), Diw)

B,(x, D.)u =0 ()

Ie]

aQ

for r,<2b—1and q=1, ..., bp. Here A.(.)=(a¥(.));. ;=1 is a matrix function for
|k|=2b and B&(.)=(bi'(.), ..., b#(.)) for |k|<r, and g =1, ..., bp is a vector
function on 2 and f=(f,, ..., f,): H— R”. Our results are essentially connected
with linear stationary parabolic problems for the equations

Du+ L(x, D))u+ Au=g(x), (t, x) € Q 3)
and
Du+L(x, D)u=g(x), (t, x)e Q= 4)
with the initial data
u(0,x)=0,xeQ 5)
and the boundary conditions
B(x, D:)u| =0 (6)

forq=1,...,bpand .= (0, ) X 3Q. The equation (1) and operator B{”(x, D,)
from (2) are assumed to satisfy the following correctness conditions (see [2] and

[4]):

(A) The operator L(x, D,) is such that the associated system (3) is uniformly
parabolic in the sense of I. G. Petrovskij.

(B) The operator B,(x, D,) and the system (3) are connected by the strong
“uniform supplementary‘‘ condition.
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(C) For the complex number A the inequality Re A > A holds.

A >0 is the constant from the following estimation of the Green’s function H,
for the problem (4), (5), (6) in the infinite cylinder Q. (see [1] and [3]):

|Df°DiHi(t -1, x, E)| < 7
S Cy(t — 1)kt kD2t exp (A(t—T)—c|x — E[**/(t —T)*} E; <
< C(t _ T)—“ Ix _ E,Zbu——(m+2bk0+|k]) eA(l—l’)El ,

where a=1/(2b—1),0<t<t<w and x, y, E€ R™, x# & and 2bko+ | k| <2b +1
(I=0is aninteger); u <(m +2bko+ |k|)/2b and C,, C, c are positive constants.

(Di+4) The coefficients A, and B{”’ and boundary 3Q satisfy the condition (C)
from [1] (or the modified condition (C,,) for the domain Q from [3]),
where 4€ (0, 1) and [=0 is an integer.

The problem (1), (2) will be solved in a special space of Holder functions
C*71*9(Q) defined as follows: u € C3*~'*%(Q) iff

2b-1

[lull26-1+a: = max {2 ; sup | D*u;(x)| + (8)
i=L..p L iZ0 k=i xeQ
+ sup |D¥u;(x)— D¥u(y)| |x—y|‘“]<°°.
|k|=2b-1 x,yeQ

x#y

Remark 1. If we C?*7'*%(Q), then the derivative Diu for |k|=2b —1 can be
continuously and boundedly extended on the whole R™. Further, using the mean
value theorem and the relation

K,,.zllx.-ISleszilx,-I 9)

for xe R™ and K, €(0, (1/V2)"') one obtains that D*u € H; ,(x, Q) if |k|=
0,1, ...,2b—2.Inour consideration we shall need the estimations for the Green’s
matrix of a linear elliptic problem from
Theorem 1. (See [1].) Let the assumptions (A), (B), (C), (D..a) be satisfied.
Then there is the Green’s matrix function G(x, &; 1) of (1), (2) (with f= O) such
. that (a=1/2b)
|DXG(x, &; A)| <EiC exp {—co6°|x — E|} X (10)
1 for m+|k|<2b
x{1+ |In |x—E&|| for m+|k|=2b
|x — E|"™M*2 for m+ |k|>2b

forx,y, Ee R™, x# E and |k|<2b +1 - C, c, are positive constants independent of
x,y,Eand A and § =ReA — A.
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The integral representation of solution of linear problems is given by
Theorem 2. (See [1].) If (A), (B), (C), (D:+.) hold and ¢ € H,, ,(x, ), then
the function u: Q— R” given by

u(x)= [ﬂ G(x, E; V)o(E) dE

is a solution of the linear equation L(x, D,)u + Au= @(x) on £ and satisfies data
(2).

For brevity, in the following text L denotes an arbitrary positive constant.

3. The existence of a solution. To derive the fundamental existence theorem,
we must prove some preliminary results.

Lemma 1. The space (C2*7'*%(Q), ||.||26-1+4) is complete.

Proof. Let {u,}.-; be the Cauchy sequence of vector functions u,=
(Unty ..., Up): 2— R? such that u, e C2*7'*%(Q) for n=1, 2, .... Then the sequ-
ence of derivatives {D*u,;}s-; uniformly converges on Q for j=1, ..., p and

|k|=0,1, ...,2b—1. If we denote v;(x): =’l‘1_r’101° u,;(x) so ’1|1_r.£1a D*u,;(x) = Dv;(x).
Hence and by the inequalities
| Diuyi(x) — Diu(x) — Diu(y) + Diug(y)| <e|x —y|J,
ID:U,,-(X) - D:un’()’)l <L ,x - y,aji
|D¥u,;(x)|<LJ

letting r — co,we obtain ||u, — v||25-1+a < Le for all n > nee, where no(¢) is a positive
integer (¢>0) and v=(vy, ..., v,) € C2*7'*%(Q). This proves Lemma 1.

Lemma 2. Let the conditions (A), (B), (C), (D.) (I =0) be fulfilled. Then for
any Be(0,1) and x, ye Q and |k|=0, 1, ..., 2b—1 we have

Lo o) = | L IDG(x, &; )| dEl <LE, an

and

Lo, ¥):= | [ Ipt6(x, &5 1)~ D260, E5 ) d;=| < @
<L|x-yl|’g(|x —y|)E:,

where g(z)=z'"#-elll@-Dl gpd 0< g <1—B(<1) for z>0. (The expression [x]
in the exponent denotes the integer for which [x]<x<[x]+1.)

Proof. The estimation (11) for m + |k| <2b follows directly by (10). In the
case m+|k|=2b let us choose O0<r<m. Since the function h(x, &)=
|x —&|"|In |x — &|| is bounded on 2 x £, then we get from (10)
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1,_k(x)s5.f (1+|In |x — £|]) d& < {means Q+LI lx—&|- dE} E,

which proves the inequality (11).

For m+ |k|>2b (11) is true. Really, in the corresponding estimation from
(10) the exponent satisfies the condition O0<m+ |k|—2b<m for |k|=
0,1,...,2b—1.

For 0=<|k|<2b -2 the inequality (12) will be proved by the mean value
theorem. There is % =(y1, ..., Yi-1, &, Xi+1, ..., Xm)€ R™ such that for x, y=
(y15 ..., ym) and & from Q we have

|ID}G(x, E; ) —DiG(y, &; V)| < |xi—y:| IDX?G(%;, E; )], (13)
i=1
where the modulo of the multiindex k(i) satisfies the condition 0<|k(i)|=
|k| +1<2b—1 and & lies between x; and y; and |x —y|>|% — x| for all i=
1, ..., m. From (13) and (10) by the same way as in the proof of (11) one obtains
Iz_k(.x, y)st |x.—y.|E1S(L/K,,.)|x—y|E|
i=1
For |k|=2b—1 we proceed as follows:
Denote Q,={Ee Q: |E—x|>2|x—y|} and Q,= Q — Q,. Then from (13) for
|k(i)|=2b(m + |k(i)| >2b) we have

L, <L - l [ 15-grm aglEis (14)

+|[ 1D2G (x5 2)] ag

+|f IDAG(y, &; V)| dE|:=J, + Ta+ .
22

If Ee Q, then we get |x —y|<|% —&| and by |% — x| <|x —y| we have [x—&|<
2 |x — E|. Hence

I,S2"'Ll2:|x,-—y.~| |L |x—.§|-"'+'|x—§|-'d§| E <
sz"'"(L/K.,)lx—yl“’”m Ix—EI""*’d§| E,<L:|x—y[""E,, Li>0.
If m+|k|=2b(|x—&|<2|x—y|) so
L[ @+imix—gDl- gl le-gl agl Bi<
<2 Llx—y~|[ A+ linlx-glDIx- £ Bl E,
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and for m + |k|>2b
]zSZ"'le—yll”’II 'X—El_m+rd§ E,.
2

In both cases we have
L<L;|x—y|'""E,, L,>0.
Using |& — y| <3|x — y| for & € £, similarly as in the case of J, we estimate
JL<Ly|x—y|'"Es, Ly>0.

Putting the estimation for Jy, J,, J; into (14) we get (12) which finishes the
proof. :
In the following consideration we shall need the operator

A(x)u= fn G(x, &; MfE, Du(E)] dE. (15)

Lemma 3. Let the condition (A), (B), (C), (D.) be fulfilled and let f: H— R*
be continuous and bounded in the sense ||f|lo, n<M, M>0. Then there is a real
number B(M)>0 such that A(x)C? '**(Q)cSs, where the sphere Sp=
{ue C® Q) ||ull2-1+a<B}.

Proof. Let u e C2>"'*%(Q). Then for |k|=0,1,...,2b—1

IDL‘A(X)H' < MI1 k(X)]
and
|DXA(x)u — DXA(y)u| <ML, «(x, y)J .

Hence and by (11) and (12) for B=a we see that it is sufficient to take
B(M)=L[s+t(2b—1)].

Remark 2. If we assume the boundedness of f only on H(B,), B, >0 instead
of one on H so A(x)Ss, = Ss. If moreover Bo=B then A(x)Sg, < Sg,.

New we are able to formulate the existence

Theorem 3. Let hypotheses (A), (B), (C), (D.) be satisfied and let f: H— R”
be continuous and bounded vector function in the norm ||. ||o, x by M > 0. Further,
the Holder condition

|f(x, w,) = f(y, v,)| <{qo|x = y|® +(qy, |, — vy |*)}T (16)

holds for B,B,€(0,1) and (x,w), (y,v,)eH, where q>0 and gq,=
{(q% ..., 4%)}=6 is a vector of R” with non-negative components. Then the
problem (1), (2) has at least one solution u € C3*~'*%(£2) such that ||u]|2s-1+ < Bo,
where B,=B(M) and B(M)>0 is the constant from Lemma 3.

Proof. Consider the non-empty, convex, bounded and closed sphere Sg, in the
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Banach space C3*~'*%(L2) (see Lemma 3). Then for any v € Sg,(D*v € H, ,(x, Q)
for |[k|=0, ...,2b—2 and D*v € H,, ,(x, Q) for |k| =2b — 1) the function f,(x) =
flx, Dv(x)] satisfies the inequality

[£.(x) = f.(0)| = f[x, D2v(x)] = fly, Dv(y)ll <
ﬂ’J) + le;’_l (Cim IX - E

2b-2
<{qolx—yl"+ 3 2 (@ lx =& )},

where x,yeQ and §G. = (Gu ..., G5)=R? and gq, = {G.}f42s. Put v =
min (B, af,)<a. Then f,eH, (x, Q) and from (D,) follows (D,).

o<|y|=2b-1
Theorem 2 guarantees the mutual equivalence between the operator equation
A(x)u=u and the problem (1), (2) on Sg,. Therefore the existence may be
investigated by Leray—Schauder fixed point theorem. The inclusion A (x)Sg, < S,
is true (Lemma 3). It is sufficient to prove the continuity and compactness of A (x)
on Sz,

Let u, u, € Sg, for n=1, 2, ... such that ||u, — u||2p-1+a—0 as n— . In virtue
of (11), (12) and (16) there is n, such that for all n >ne and |k| =0, 1, ..., 2b—1

|D*A (x)u, — DA (x)u| <

{| L IDG(x, &; 1)| (4, IDIu,.(E)—DZM(E)I“v)ldEI}J 17)

<Lel, «(x)J
and for |k|=2b—-1
|D*A (x)u, — DXA(x)u — D¥A(y)u, + DXA(y)u| <

<{|[, Ipt6x. &: 1)~ D1G(s. &: M) (a,. 1D () - D@ a]}s

(18)
< LEIZ, k(x, y)J

for any £>0. From (17) and (18) we have ||A(x)u, — A(x)u||2-1+a—0 as n—
what proves the continuity of A(x).

Now we derive the relative compactness of A(x)Sg,.

Let {v,}n-1 be a subsequence of A(x)Sg,, where v,(x)=(va1(x), ..., U,p(x))
for n=1, 2, .... There exists u, € Sg, such that v,(x) = A(x)u,. Hence and by the
inequality

| D*v,(x) — D*v,.(y)| <ML, «(x, y)J<L|x—y|*J, x, ye Q

the uniform boundedness and equicontinuity of sequence {D*v,(x)}>-; holds on
Q. Then there is a subsequence {v,(x)}izi={A(x)u.(x)}iz: of the sequence
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{va(x)}a-1 and a vector function vo=(Voi, ..., Uop): 2—R” such that
|| D¥v,, — D¥vollo, a—0 as [— for all |k|=0, 1, ..., 2b—1.
Letting [— « in the following estimations

| DXvo(x)| < | D%vo(x) — D¥v,, (x)| + M1, i(x)J,
| D¥ve(x) — Divo(y)| <
< |D*vo(x) — D¥v., (x)| + ML, i(x, y)J + |D%v, (y) — Dive(y)|

we get voe C2*1*%(Q). The closure S§ of A (x)Ss, in the norm ||. ||,  is a subset
of C2*~'*%(Q). We must prove the same inclusion in the norm ||. ||2»-1+a.
From the estimation (12) for v = (v, ..., U,) € S

lim (Dv;(x))a: =lim | Div;(x) - Diy(y)| [x—y|™=0
XY, x—y
if |k|=2b—1and j=1, ..., p. Then we find 6 >0 such that for every x € Q and
|k|=2b—1 for which 0<|x —y| <& the estimation
(D¥v,i(x) — D¥vei(x))a <&, >0 (19)

is true for j=1, ..., p. Since lim ||v, — vo||26-1,e=0 so for all />n(e)>0 and
[—»00
[x—y|=6

(Dtv",,'(x) = Dﬁvo;(X) > <

<46™* max {sup | D v, (x) — D¥vo;i(x)| +

i=L...p LxeQ

+8up lva,,L,-(y)—Dﬁvo,-(y)I}<e, Ik|=2b-1. (20)

xef

From (19) and (20) we get

”‘Un, = Uo”2b—1+as igﬂ?‘p {”Un,i = U0j||2b—1, at

+ max [ sup (DZXvni(x) — D¥vej(x))a; 4
k|=2b-1 x,yef
o<|x—y|<8
sup {D*vy(x) — D¥ve,(x) )]} <els+12b-1)]
x, yeR i
|x—y|=8

for | > n(g), hence lim || v, — vo||25-1+a = 0. This concludes the proof of Theorem 3.
{—00

This proof of Theorem 3 and Remark 2 allow to weaken the assumption on
boundedness of f. ‘

~ Corollary. Let (A), (B), (C), (D,) be satisfied and let f: H(B,)— R” be
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continuous and bounded in the norm ||.||o, sy, Where Bo=B (B is the constant
from Lemma 3). If (16) holds on H(B,), then there exists a solution u of (1), (2)
from C2~'**(Q) such that ||u]|25—1+a< Bo.

Remark 3. a) For 0<g <a the solution of (1), (2) belongs to be space
C21+e(Q2) too.

b) The Corollary of Theorem 3 permits to consider the rapidly increasing
functions f on H(B,) which are unbounded on H.

4. The structure of solution. In this section we deal with the relation between
the solution of an elliptic and parabolic boundary value problem.

We easily see that if H;(t — 7, x, &) is the Green’s matrix of problem (4), (5),
(6), then the Green’s matrix of (3), (5), (6) is given by formula

H(t—1,x,§:A)=e*“PHy(t—1, x, §).
We can formulate

Theorem 4. If the hypotheses (A), (B), (C), (D2s-1+.) hold and f satisfies the
conditions from Theorem 3 for 8,=1 and |y| = 0, 1, ..., 2b—1 and spCL,L,
max g, <1, then the solution u of (1), (2) fulfils the equation lim ||u —
lyl=0,1, ..., 2b—-1 (—s00
v(t, )|l2p-1.a=0, where v is a solution of the nonlinear stationary parabolic
problem for equation

Do+ L(x, D,)v+ Av =f(x, DIv) 21)

on Q. with data (5), (6). Here L,, L, are positive constants from estimations

J'e“""(p"‘d<p<L1 for te (0, x),
0

I |x — E[P-m+DdE<L, for xeQ,
Q

where e {|k|/2b, 1) for 0<|k|<2b—1.

Proof. By Theorem 3 we have a solution u e Cz*"'*%(Q) of (1), (2). With
respect to Theorem 3 from [3] the solution v € C2°; j{ 255 ?(Q.) of (21), (5),
(6) exists too. The Green’s matrix G(x, &; A) of the linear elliptic problem (1), (2)
with (f = O) can be expressed by the Green’s matrix H, as follows (see [1])

G(x, & W)= [ e™*Hi(g, x, §) do.
Then
we)= [ [[ e *Hio. x. & do|fl&, D@1 d
for x € Q and
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vt )= [ {[ e**Hu(. x 18 Div(E, ] do} d

for (t, x) € Q., whereat @ =t— 1. Hence the difference

[D¥u(x) — D¥v(t, x)| <

<||fllo, &

[ [ e Dt x, o] ag] ags+
+|[ [ e ItHco. x, 01| & Du®)] -

—fl&, Dw(E, 1)] d(p}d§|:=||f||,,,,,11+]2 for |k|=0, 1, ..., 2b—1. Using the

estimations from (7) and the Lipschitz condition on f we get

f{f e—&wq)—(m+|k|)/2bx
a LU

xexp [—c|x — E[*/(t - 1) dq)} dEI J<pL, diam Q e™*

for t>1 and

]1 SPC1

L=<pC max QY”u"v(ts »)”2h—1,ax
lyl=0,1,...,2b-1

I |x — E|Pu-Cm+ikd g

Xf e_b"(p—“ do
o

Because both last integrals are bounded functions in their variables for |k|/2b<pu
u <1 then

(1-spCL,L, ' max2 a) llu—=v(t, )ll2o-1, a<spC; diam Q ||f]]o, €™
Y e 2b-1 .

|=0,1, ...,

for t>1. This finishes the proof of Theorem 4.
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SUHRN

NELINEARNA ELIPTICKA OKRAJOVA ULOHA GENEROVANA
PARABOLICKOU ULOHOU

V. Durikovi¢, Bratislava

Préca sa zaober4 existenciou klasického rieSenia u nelinedrne;j eliptickej okrajovej tlohy (1), (2)
metédou apriérnych odhadov Greenovych funkcii pre linedrne dlohy. Dalej sa vySetruje 3truktira

rieSenia a dokazuje sa rovnost lim [lu=v(t, )ll2-1+a=0, kde v je rieSenie asociovanej parabolickej

ulohy v nekoneénom valci.

PE3IOME

HEJIMHEVHAS 3JUIMITTUYECKASI KPAEBAS 3AJAUYA MOPOXIEHHAS
MAPABOJIMYECKOW 3AI0AYEN

B. Iropukosuy, Bpatucnasa
B aTo#i cTaThe HCCleyeTcsl CyLIECTBOBaHME KJIACCHYECKOTO DELIEHHS U HENTWHEHHON 3JLTHII-
THYeCKOH KpaeBoil 3aauH (1), (2) MeTOIOM anpHOpHBIX OLIEHOK (yHKIMK ['pHHa A% THHEHHBIX 3a/1ay.
KpoMe Toro uccreiyeTcst cTpyKTypa pellieHHsi M OKa3bIBAaeTC PaBEHCTO

!_l{g ||u —v(t, )||lz6-1+2=0,

K[€ v 3HAaYMT pellleHHe OTBedarouled napaGonuyeckolt 3ajaun B GECKOHEYHOM IMJITMHJpE.
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