

Werk

Label: Article Jahr: 1984

PURL: https://resolver.sub.uni-goettingen.de/purl?312901348_44-45|log30

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

UNIVERSITAS COMENIANA ACTA MATHEMATICA UNIVERSITATIS COMENIANAE XLIV—XLV—1984

A LIMIT THEOREM FOR WEIGHTED SUMS OF RANDOM VARIABLES IN F-LATTICES

RASTISLAV POTOCKÝ, Bratislava

In [1] Rohatgi proved the following theorem. Let f_n be independent real random variables with zero expectations such that $P\{|f_n| \ge a\} \le P\{|f_1| \ge a\}$ for all a > 0, $n \ge 1$. Let $\{a_{nk}\}$ be a double sequence of real numbers satisfying

$$\lim_{n} a_{nk} = 0 \ \forall k$$

$$\sup_{n} \sum_{k=1}^{\infty} |a_{nk}| < \infty$$

If $\max_{k} |a_{nk}| = 0 (n^{-v})$ for v > 0, then $E|f_1|^{1+\frac{1}{v}} < \infty$ implies $\sum_{k=1}^{\infty} a_{nk} f_k \to 0$ a.s.

This result belongs to the class of theorems which do not extend directly to Banach spaces. A counterexample can be found in [2]. My aim is to give an extension of Rohatgi's theorem to vector lattices. It turns out that an additional condition on weights $\{a_{nk}\}$ is needed. My terminology will follow [2] and [3].

Definition 1. Let (Z, S, P) be a probability space. A sequence $\{f_n\}$ of functions from Z to a vector lattice E converges to a function f almost uniformly if for every $\varepsilon > 0$ there exists a set $A \in S$ such that $P\{A\} < \varepsilon$ and $\{f_n\}$ converges relatively uniformly to f uniformly on Z - A; i.e. there exists a sequence $\{a_n\}$ of real numbers converging to 0 and an element $r \in E$ such that $|f_n(z) - f(z)| \le a_n r$ for each $z \in Z - A$.

Definition 2. A function $f: Z \to E$ is called a random variable if there exists a sequence $\{f_n\}$ of countably valued random variables such that $\{f_n\}$ converges to f almost uniformly.

From now on E means an Archimedean vector lattice, P a complete probability measure.

I have proved in [4] that each random variable with values in a Frechet lattice E is a measurable map from Z to E, i.e. a random element in the sense of [3].

Thanks to this, independent and symmetric random variables are defined in the usual manner, i.e. these definitions are straightforward extensions of the real case.

Theorem 1. Let E be a σ -complete F-lattice with the σ -property, $\{a_{nk}\}$ be a double array of real numbers satisfying

$$\lim a_{nk} = 0 \ \forall k$$

$$\sup_{a}\sum_{k=1}^{\infty}|a_{nk}|<\infty,$$

 $\{f_n\}$ be a sequence of pairwise independent, symmetric random variables in E such that $P\{|f_n| \le a\} \ge P\{|f_1| \le a\}$ for all $a \in E$, a > 0 and all n and, moreover, $\sum_{n=0}^{\infty} nP\{|f_1| \le na\}^c < \infty \text{ for some positive } a \in E. (C \text{ stands for the set complement.})$ If $\lim_{n} \sum_{k=1}^{\infty} |a_{nk}| = 0$, then $\sum_{k=1}^{\infty} a_{nk} f_k \to 0$ relatively uniformly on a set of probability 1. (for definition of σ -property see [4].)

Proof. For each n let $\{f_n^k\}$ be a sequence of countably valued random variables converging almost uniformly to f_n . By definition 1 there exists a set Z_0 of probability 1 such that $f_n^k(z) \rightarrow f_n(z)$ relatively uniformly on Z_0 for all n with at most countably many different regulators of the convergence. Because of this, the inequality

$$|f_n| \leq |f_n - f_n^k| + |f_n^k|$$

which holds for each natural n and k, and the assumption that E has the σ -property, we obtain that all the values of f_n belong to a principal ideal of E (i.e. the ideal generated by a single element, say $u, u \in E, u > 0, a \le u I_u$. Denote the set of all values of f_n^k by $\{y_n\}_{n=1}^{\infty}$ and put $y_0 = u$. Consider the countable set $A = \left\{ \sum_{i=0}^{n} a_i y_i; n = 0, 1, ... \right\}$ of all linear combinations of y_i with the rational coefficients a_i . The set $B = \bigcap_{r \in Q} \bigcup_{a \in A} \{x \in I_u; |x - a| \le ru\}$ where Q stands for the set

of all rational numbers is a linear subspace of I_{μ} . Denote this subspace by B.

It is well-known that I_{μ} equipped with the o-unit norm is a B-space. So is B as a closed subset of I_u . Moreover, B is separable. Indeed, for each $x \in B$ and each $\varepsilon > 0$ there exists an element $a \in A$ such that $||x - a||_u < \varepsilon$; $|| \cdot ||_u$ means the norm induced by u. This space will be denoted by $(B, \| \|_u)$.

I shall prove that f_n are pairwise independent, symmetric random variables from Z_0 to B. Since B is separable, its Borel σ -algebra is generated by open balls. Denote this Borel σ -algebra by W_s and denote by W_T the σ -algebra generated by subsets of B open with respect to the original topology. It is sufficient to show that $W_s \subset W_T$. We have the following equality for an open ball

$$\{x \in B \; ; \; ||x - x_i||_u < \varepsilon \} = \bigcup_n \{x \in B \; ; \; ||x - x_i||_u \le \varepsilon (1 - n^{-1}) \} =$$

$$= \bigcup_n B \cap \{x \in I_u \; ; \; ||x - x_i||_u \le \varepsilon (1 - n^{-1}) \} = B \cap \bigcup_n \{x \in I_u \; ; \; |x - x_i| \le \varepsilon (1 - n^{-1})u \} \; .$$

It means that f_n are pairwise independent and symmetric random variables in $(B, || \cdot ||_u)$.

By hypothesis we have

 $P\{\|f_n\|_u \ge b\} \le P\{\|f_1\|_u \ge b\}$ for all b > 0. Moreover, for 1 < v < 2

$$E \|f_1\|_u^{1+\frac{1}{\nu}} \leq 1 + 3 \sum_{u=1}^{\infty} nP\{\|f_1\|_u > n\} = 1 + 3 \sum_{u=1}^{\infty} nP\{|f_1| \leq nu\}^C < \infty.$$

Now an application of [5], th. 2 yields that $\sum_{k=1}^{\infty} a_{nk} f_k \to 0$ in norm almost surely. Owing to the definition of the order-norm and because $P\{Z_0\} = 1$, we have that $\sum_{k=1}^{\infty} a_{nk} f_k \to 0$ relatively uniformly on a set of probability 1.

REFERENCES

- [1] Rohatgi, V. K.: Convergence of weighted sums of independent random variables. Proc. Cambridge Philos. Soc. 69 (1971), 305—307.
- [2] Padgett, W. J.—Taylor, R. L.: Almost sure convergence of weighted sums of random elements in Banach spaces. Springer, Berlin 1976.
- [3] Taylor, R. L.: Stochastic convergence of weighted sums of random elements in linear spaces. Springer, Berlin 1978.
- [4] Potocký, R.: A weak law of large numbers for vector lattice-valued random variables. Acta F.R.N. Univ. Comen., to appear.
- [5] Bozorgnia, A.—Rao, M. Bhaskara: Limit theorems for weighted sums of random elements in separable B-spaces. J. Multivariate Anal. 9 (1979), no. 3, 428—433.

Author's address:

Received: 1. 7. 1982

Rastislav Potocký Katedra teórie pravdepodobnosti a matematickej štatistiky MFF UK Mlynská dolina 842 15 Bratislava

SÚHRN

LIMITNÁ VETA O VÁŽENÝCH SÚČTOCH NÁHODNÝCH PREMENNĆH V F-ZVÄZOCH

R. Potocký

Autor rozširuje platnosť Rohatgiho limitnej vety o vážených súčtoch náhodných premenných na prípad, keď hodnotový priestor je F-zväz.

РЕЗЮМЕ

ОДНА ПРЕДЕЛЬНАЯ ТЕОРЕМА ДЛЯ СУММ СЛУЧАЙНЫХ ВЕЛИЧИН В РЕШЕТКАХ ФРЕШЕ

Р. Потоцки

Доказываемая в работе предельная теорема о сходимости по упорядочению сумм случайных величин является обобщением одного результата Рохатги.