

Werk

Label: Article Jahr: 1984

PURL: https://resolver.sub.uni-goettingen.de/purl?312901348_44-45|log27

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

UNIVERSITAS COMENIANA ACTA MATHEMATICA UNIVERSITATIS COMENIANAE

XLIV-XLV-1984

ON REGULAR VECTOR MEASURES

ERVÍN HRACHOVINA

Introduction

The purpose of the paper is to generalize certain results of the measure theory, above all [4]. The measure we are working with has values in a vector lattice. Since we have a vector measure, we cannot apply an ε -technique. Therefore we use an assertion from [12], which is presented in this paper as Lemma 1.

Let G be a vector lattice. If $x, y \in G$ we shall denote by $x \vee y(x \wedge y)$ the supremum (infimum) of elements x, y. We say that G is boundedly σ -complete if each sequence (x_n) in G, which is bounded from above (below), has the supremum (infimum) in G. We shall denote the supremum (infimum) of a sequence (x_n) by $\bigvee_n x_n$, sup $x_n \Big(\bigwedge_n x_n$, inf x_n). If (x_n) is a non-decreasing sequence converging to x, we shall write $\lim_n x_n = x$ or $x_n \nearrow x$. If (x_n) is a non-increasing convergent sequence, we shall write also $\lim_n x_n = x$ or $x_n \nearrow x$. We define the sum $\sum_{n=1}^{\infty} x_n$ of a sequence (x_n) in the following way:

$$\sum_{n=1}^{\infty} x_n = \bigvee_{n} \sum_{i=1}^{n} x_i.$$

We shall denote by ∞ the supremum of any unbounded set of elements in G^+ $(G^+ = \{x \in G; x \ge 0\})$ and $G \cup \{\infty\}$ by \tilde{G} .

Let X be an arbitrary non-empty set, \mathcal{G} be a σ -ring of subsets of X. A map $m: \mathcal{G} \to \bar{G}$ is called a vector measure if

- 1. $m(\emptyset) = 0$;
- 2. $m(B) \ge 0$ for each $B \in \mathcal{G}$;
- 3. m is σ -additive.

A regular measure

Let L be any infinite set, L^N the set of all functions $f: N \to L$. Let G be a boundedly σ -complete vector lattice and \tilde{G} be $G \cup \{\infty\}$.

Definition 1. We say that a family $\{a_{i,\lambda}; i \in \mathbb{N}, \lambda \in L\}$ has the property (P) if

- (i) $a_{i,\lambda} \ge 0$ for each $i \in \mathbb{N}$, $\lambda \in L$;
- (ii) for each $f \in L^N$ there is $\bigvee_i a_{i,f(i)}$ (we denote this supremum by a_f);
- (iii) for each $i \in \mathbb{N}$ holds $\bigwedge_{\lambda \in I} a_{i,\lambda} = 0$.

Let $m: \mathscr{S} \to \bar{G}$ be a measure, where \mathscr{S} is a σ -ring of subsets of an arbitrary non-empty set X. Let \mathscr{Z} , \mathscr{T} be non-empty subsystems of \mathscr{S} .

Definition 2. We say that $B \in \mathcal{F}$ with $m(B) < \infty$ is inner regular (with respect to m) if there is a family $\{a_{i,\lambda}; i \in \mathbb{N}, \lambda \in L\}$ with the property (P) such that for each $f \in L^{\mathbb{N}}$ there is $C_f \in \mathcal{L}$ such that $C_f \subset B$ and $m(B - C_f) \leq a_f$; it is outer regular (with respect to m) if there is a family $\{b_{i,\lambda}; i \in \mathbb{N}, \lambda \in L\}$ with the property (P) such that for each $f \in L^{\mathbb{N}}$ there is $U_f \in \mathcal{F}$ such that $B \subset U_f$ and $m(U_f - B) \leq b_f$.

Definition 3. We say that $B \in \mathcal{F}$ with $m(B) = \infty$ is inner regular if there is a non-decreasing sequence (B_n) of inner regular sets of a finite measure in \mathcal{F} such that $B = \bigcup_{n=1}^{\infty} B_n$; it is outer regular if there is $U \in \mathcal{F}$ such that $U \supset B$ (then trivially holds $m(B) = \bigwedge \{m(U); U \supset B, U \in \mathcal{F}\}$).

Definition 4. We say that $B \in \mathcal{S}$ is regular (with respect to m) if B is both inner and outer regular simultaneously.

The following assertion is proved in [12].

Lemma 1. Let $\{a_{n,i,\lambda}; i \in \mathbb{N}, \lambda \in L\}$ be a sequence of families with the property (P), i.e. for each $n \in \mathbb{N}$ holds

- (i) $a_{n,i,\lambda} \ge 0$ for each $i \in \mathbb{N}$, $\lambda \in L$;
- (ii) for each $f \in L^N$ there is $\bigvee_i a_{n,i,f(n+i)}$ (this supremum we denote by a_f^n);
- (iii) for each $i \in \mathbb{N}$ holds $\bigwedge_{\lambda \in L} a_{n,i,\lambda} = 0$.

Then for every $a \in G^+$ there is a family $\{a_{i,\lambda}; i \in \mathbb{N}, \lambda \in L\}$ with the property (P) such that for each $f \in L^{\mathbb{N}}$ holds

$$a \wedge \sum_{n=1}^{\infty} a_f^n \leq a_f$$
.

Let \mathcal{Z} , \mathcal{T} and \mathcal{S} be families of subsets of an arbitrary nonempty set X with the following properties:

P1
$$\emptyset \in \mathcal{Z} \cap \mathcal{T}$$
;

P2 if $U_i \in \mathcal{T}$ (i = 1, 2, ...), then $\bigcup_{n=1}^{\infty} U_n \in \mathcal{T}$; P3 if $C, D \in \mathcal{L}$, then $C \cup D \in \mathcal{L}$;

P4 if $U, V \in \mathcal{T}$, then $U \cap V \in \mathcal{T}$;

P5 for each $C \in \mathcal{Z}$ there is $U \in \mathcal{T}$ and $D \in \mathcal{Z}$ such that $C \subset U \subset D$;

P6 for each $C \in \mathcal{Z}$ and $U \in \mathcal{T}$ is $U - C \in \mathcal{T}$, $C - U \in \mathcal{X}$;

P7 $\mathcal{T} \subset \mathcal{S}$, where \mathcal{S} is a σ -ring generated by \mathcal{Z} .

Definition 5. A set $B \subset X$ is said to be bounded if there exists $C \in \mathcal{F}$ such that

Lemma 2. a) For any sequence of sets (C_n) from \mathcal{Z} , the intersection $\bigcap_{n=1}^{\infty} C_n \in \mathcal{Z}.$

- b) If $B \in \mathcal{G}$, then there exists a non-decreasing sequence (B_n) of bounded sets in \mathcal{S} such that $B = \bigcup_{n=1}^{\infty} B_n$
 - c) If $B \in \mathcal{G}$, then there is $U \in \mathcal{T}$ such that $B \subset U$.

Proof. ([4], 38—40).

Let m be a finite measure in \mathcal{Z} in the following text.

 $\lambda \in L$ } with the property (P) such that for each $f \in L^N$ holds

Definition 6. Let m be a \bar{G} -valued measure on \mathcal{G} . m is said to be regular at ∞ if for each $B \in \mathcal{F}$ with $m(B) < \infty$ there exists $U \in \mathcal{T}$ such that $B \subset U$ and $m(U) < \infty$.

Theorem 1. Let m be a \bar{G} -valued measure which is regular at ∞ . Then the union of a sequence of outer regular sets in $\mathcal F$ is outer regular.

Proof. Let (B_n) be a sequence of outer regular sets in \mathcal{S} , $B = \bigcup_{n=0}^{\infty} B_n$. If $m(B) = \infty$, evidently B is outer regular. Let $m(B) < \infty$. From the assumption it follows that there is $U \in \mathcal{T}$ such that $B \subset U$ and $m(U) < \infty$. Since B_n is outer regular, there is a family $\{a_{n,i,\lambda}; i \in \mathbb{N}, \lambda \in L\}$ with the property (P) such that for each $f \in L^N$ there exists $U_n \in \mathcal{T}$ such that $B_n \subset U_n \subset U$ and $m(U_n - B_n) \leq a_f^n$. Put $V = \bigcup_{n=1}^{\infty} U_n$, then $V \in \mathcal{F}$, $B \subset V \subset U$. By Lemma 1 there is a family $\{a_{i,\lambda}; i \in N, \}$

$$m(U) \wedge \sum_{n=1}^{\infty} a_f^n \leq a_f$$
.

Then

$$m(V-B) \leq m(U) \wedge \sum_{n=1}^{\infty} m(U_n - B_n) \leq a_f$$
.

Theorem 2. The intersection of a non-increasing sequence of outer regular sets of a finite measure in $\mathcal G$ is outer regular.

Proof. Let (B_n) be a non-increasing sequence of outer regular sets of a finite measure. Then $\lim m(B_n) = m(B)$. Since B_n is outer regular, so there exists a family $\{a_{n,i,\lambda}; i \in N, \lambda \in L\}$ with the property (P) such that for each $f \in L^N$ there is $U_n \supset B_n$, $U_n \in \mathcal{T}$ and such that $m(U_n - B_n) \leq a_f^n$. Put $V_n = \bigcap_{i=1}^n U_i$. Then $V_n \in \mathcal{T}$, $V_n \supset B_n$, $m(V_n - B_n) \leq a_f^n$ and $m(V_n) \leq m(U_1)$. Since $m(U_1) = m(B_1) + m(U_1 - B_1) \leq m(B_1) + a_1^1 < \infty$, so by Lemma 1 there is a family $\{c_{i,\lambda}; i \in N, \lambda \in L\}$ with the property (P) such that

$$m(U_1) \wedge \sum_{n=1}^{\infty} a_f^n \leq c_f$$
.

Therefore,

$$m(V_n) \leq m(B_n) + c_t$$
.

Put $b_n = m(B_n) - m(B)$ and let $\{\lambda_i; i = 1, 2, ...\}$ be a simple sequence of elements in L (i.e. holds, if $n \neq m$ then $\lambda_n \neq \lambda_m$). Put $b_{n,\lambda_1} = b_1, ..., b_{n,\lambda_k} = b_k, ...$ and for $\lambda \in L - \{\lambda_i; i = 1, 2, ...\}$ $b_{n,\lambda} = b_n$. Then the family $\{b_{i,\lambda}; i \in N, \lambda \in L\}$ has the property (P) and hence there is a family $\{a_{i,\lambda}; i \in N, \lambda \in L\}$ with the property (P) such that $c_f + b_f \leq a_f$.

Since $m(B) = m(B_n) - b_n$ and for each $f \in L^N$ there is n such that $b_f \ge b_n$, so $m(B) \ge m(V_n) - a_f$.

Theorem 3. The intersection of a sequence of inner regular sets of a finite measure in $\mathcal S$ is inner regular.

The proof ot this Theorem is similar as in Theorem 1.

Theorem 4. The union a non-decreasing sequence of inner regular sets of a finite measure in \mathcal{G} is inner regular.

The proof of this Theorem is similar as in Theorem 2.

Theorem 5. The difference of two regular sets of a finite measure in $\mathcal G$ is regular.

Proof. Let A, B be regular sets of a finite measure. Then there are families $\{a_{i,\lambda}; i \in \mathbb{N}, \lambda \in L\}, \{b_{i,\lambda}; i \in \mathbb{N}, \lambda \in L\}$ such that for each $f \in L^{\mathbb{N}}$ there are $C, D \in \mathcal{Z}, U, V \in \mathcal{T}$ such that

$$U \supset A \supset D$$
, $m(U-A) \leq a_f$, $m(A-D) \leq a_f$,
 $V \supset B \supset C$, $m(V-B) \leq b_f$, $m(B-C) \leq b_f$.

By P6 $U-C \in \mathcal{T}$, $D-V \in \mathcal{Z}$ and $U-C \supset A-B \supset D-V$. Let $\{c_{i,\lambda}; i \in \mathbb{N}, \lambda \in L\}$ is a family with the property (P) and such that

$$a_f + b_f \leq c_f$$
.

Then

$$m((U-C)-(A-B)) \leq m((U-A)\cup(B-C)) \leq c_f$$

$$m((A-B)-(D-V)) \leq c_t$$
.

Theorem 6. The union of two regular sets of a finite measure is regular.

Proof. This assertion is trivial. It follows from Lemmal, Theorem 1 and relation

$$m(A \cup B - C \cup D) \leq m((A - C) \cup (B - D)),$$

where $C \subset A$, $D \subset B$.

Theorem 7. A necessary and sufficient condition that every set in \mathcal{Z} be outer regular is that every bounded set in \mathcal{T} be inner regular.

Proof. Let every set in \mathscr{Z} be outer regular, $U \in \mathscr{T}$ be a bounded, i.e. $U \subset C$, where $C \in Z$. Then by P6 is $C - U \in \mathscr{Z}$ and, therefore, there is a family $\{a_{i,\lambda}; i \in N, \lambda \in L\}$ with the property (P) such that for each $f \in L^N$ there is $V \in \mathscr{T}$ such that

$$V\supset C-U, m(V-(C-U))\leq a_t$$

Since $U = C - (C - U) \supset C - V \in \mathcal{Z}$, so

$$m(U-(C-V)) \leq m(V-(C-U)) \leq a_t$$

hence U is inner regular.

Let now every bounded set in \mathcal{T} be inner regular, $C \in \mathcal{Z}$. Let $U \in \mathcal{T}$ be bounded and such that $U \supset C$. Then U - C is bounded and $U - C \in \mathcal{T}$. Evidently, for each $f \in L^N$ there is $D \in \mathcal{Z}$ such that

$$D \subset U - C$$
, $m((U - C) - D) \leq a_t$.

Since $C = U - (U - C) \subset U - D \in \mathcal{T}$, so

$$m((U-D)-C)=m((U-C)-D)\leq a_f.$$

Hence C is outer regular.

Theorem 8. If m is regular at ∞ , then the outer regularity of every set in \mathcal{Z} or the inner regularity of every bounded set in \mathcal{T} is necessary and sufficient condition for the regularity of m.

Proof. The necessary condition is evident. We prove the sufficient condition.

Let every set in \mathscr{Z} be outer regular. With respect to Theorem 1 and 4, Lemma 2 is sufficient, when we prove that each bounded set in \mathscr{S} is regular.

Let $E \in \mathcal{G}$ be an arbitrary bounded set, $E \subset C$, where $C \in \mathcal{Z}$, let

$$\mathcal{Y} = \{ A \in \mathcal{S}; A \subset C, A \text{ is regular} \}.$$

Evidently, $C \cap \mathcal{Z} \subset \mathcal{Y}$, where $C \cap \mathcal{Z}$ is a system of all sets A for which there exists $B \in \mathcal{Z}$ such that $A = B \cap C$. Further, \mathcal{Y} is a σ -ring (with respect to Theorems 1—6 and ([2], Theorem A, p. 27)). We denote by \mathcal{W} the least σ -ring generated by

 $C \cap \mathcal{Z}$. Then $W \subset \mathcal{Y}$ and with respect to ([2], Theorem E, p. 25) we obtain that $W = \mathcal{G} \cap C$, hence $\mathcal{G} \cap C \subset \mathcal{Y}$.

Therefore, if $E \in \mathcal{G}$, $E \subset C$, thus $E \in \mathcal{G} \cap C$, i.e. E is regular.

Corollary 1. Let m be regular at ∞ . If for every bounded set $U \in \mathcal{T}$ there is a sequence of sets (C_n) in $\mathscr Z$ such that $U = \bigcup_{n=1}^{\infty} C_n$, then m is regular. Corollary 2. Let m be regular at ∞ . If for $\mathscr Z$ and $\mathscr T$ holds $\mathscr Z \subset \mathscr T$ or $\mathscr T \subset \mathscr Z$,

then m is regular.

Theorem 9. Let m be regular at ∞ and $\mathcal{W} = \left\{ A \in \mathcal{T}; A = \bigcup_{n=1}^{\infty} C_n, C_n \in \mathcal{Z} \right\}$. Then m is regular measure on a σ -ring $\mathcal{S}(\mathcal{W})$ generated by \mathcal{W} .

Proof. The proof of these assertions is simple.

Example 1. Let X be a locally compact Hausdorff space, \mathcal{Z} be a family of all compact subsets of X, \mathcal{F} be a family of all open sets belonging to \mathcal{F} , where \mathcal{F} is a σ -ring generated by \mathscr{Z} . \mathscr{S} is said to be a family of Borel sets. \mathscr{Z} , \mathscr{T} and \mathscr{S} have the properties P1—P7 ([4], ex. 1, p. 45).

Example 2. Let X be a locally compact Hausdorff space, \mathcal{Z} be a family of all compact G_{δ} 's subsets of X, \mathcal{F} be a family of all open sets belonging to \mathcal{F} , where \mathcal{F} is a σ -ring generated by \mathscr{Z} . \mathscr{S} is said to be a family of Baire sets and a measure on \mathscr{S} finite on \mathcal{Z} is said to be Baire measure. \mathcal{Z} , \mathcal{T} and \mathcal{S} have properties P1—P7.

Example 3. Let X be an arbitrary topological space, \mathcal{Z} be a family of all closed sets, \mathcal{T} be a family of all open sets, \mathcal{F} be a σ -ring generated by \mathcal{Z} . Then \mathcal{T} , \mathcal{Z} , \mathcal{S} have properties P1—P7.

Consequently, we can apply Theorem 8 in the examples 1—3.

Theorem 10. Let X be a metric space, \mathcal{Z} be a family of all closed sets, m be a measure defined on a σ -ring \mathcal{G} generated by \mathcal{Z} . If m is regular at ∞ , then m is regular.

Proof. Let $U \in \mathcal{T}$, then $U = \bigcup_{n=1}^{\infty} C_n$, $C_n \in \mathcal{Z}$. By Corollary 1 is m regular.

Theorem 11. Every Baire measure is regular if and only if it is regular at ∞ . **Proof.** If m is regular, then m is regular at ∞ . It is evident.

Let m be a Baire measure regular at ∞ . If $C \in \mathcal{Z}$, then $C = \bigcap_{n=1}^{\infty} G_n$, $G_n \in \mathcal{T}$,

 $G_n \supset G_{n+1}$ and G_n is a finite measure for each n. Consequently $\lim m(G_n) = m(C)$. Put $b_n = m(G_n) - m(C)$, then $b_n \searrow 0$. We define a family $\{b_{i,\lambda}; i \in \mathbb{N}, \lambda \in L\}$ in the following way: let $\{\lambda_n; n=1, 2, ...\}$ be a simple sequence of elements in L, then $b_{i,\lambda_1} = b_1, \ldots, b_{i,\lambda_n} = b_n, \ldots \text{ and for } \lambda \in L - \{\lambda_n; n = 1, 2, \ldots\} \ b_{i,\lambda} = b_i \text{ for each } i.$ The family $\{b_{i,\lambda}; i \in \mathbb{N}, \lambda \in L\}$ has the property (P) and for each $f \in L^{\mathbb{N}}$ there is nsuch that $b_f \ge b_n$. Since $m(C) = m(G_n) - b_n$, then $m(C) \ge m(G_n) - b_f$ for suitable n.

REFERENCES

- [1] Fremlin, D. H.: A direct proof of the Mathes-Wright integral extension theorem, J. London Math. Soc., 11, 1975, 276—282.
- [2] Halmos, P. R.: Measure theory, Springer-Verlag, Berlin, 1974.
- [3] Riečanová, Z.: On regularity of a measure on a σ-algebra, Mat. čas. 19, 1969, 135—137.
- [4] Riečanová, Z.: O regularnosti mery, Mat. čas., 17, 1967, 38-47.
- [5] Riečanová, Z.: On an abstract formulation of regularity Mat. čas. 21, 1971, 117-123.
- [6] Riečanová, Z.: On two strenghtenings of regularity of measures, Math. Slov. 30, 1980, 281—288.
- [7] Panchapagesan, T. V.—Shivappa, Veerappa Paled: On vector lattice valued measures II, to appear.
- [8] Riečan, B.: On the lattice group valued measures, Čas. pěst. mat. 101, 1976, 343-349.
- [9] Riečan, B.: On regular measures in ordered spaces, to appear.
- [10] Riečan, B.: A simplified proof of the Daniel integral extension theorem in ordered spaces, Math. Slov. 32, 1982, 75—79.
- [11] Riečan, B.-Volauf, P.: On a technical lemma in lattice ordered groups, to appear.
- [12] Riečan, B.: A note on measures, to appear.
- [13] Vulich, B. Z., Vvedenie v teoriju poluuporiadočennych prostranstv, Moskva, 1961.
- [14] Wright, J. D. M.: An algebraic characterization of vector lattices with the borel regularity property, J. London Math. Soc. 7, 1973, 277—285.

Author's address:

Received: 5. 10. 1982

Ervín Hrachovina Katedra teórie pravdepodobnosti a matematickej štatistiky MFF UK Matematický pavilón Mlynská dolina 842 15 Bratislava

РЕЗЮМЕ

О РЕГУЛЯРНОЙ МЕРЕ

Э. Храховина, Братислава

В этой стати определенна регулярная векторовая мера и доказаны необходимые и достаточные условия для регулярности мери. Это какое-нибудь разьирение [4].

SUMMARY

ON REGULAR VECTOR MEASURES

E. Hrachovina, Bratislava

The article is introduced a notion of a regular vector measure and are proved the necessary and sufficient conditions for the regularity of measure. It is generalized of [4].