

Werk

Label: Article **Jahr:** 1984

PURL: https://resolver.sub.uni-goettingen.de/purl?312901348_44-45|log26

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

UNIVERSITAS COMENIANA ACTA MATHEMATICA UNIVERSITATIS COMENIANAE

XLIV-XLV-1984

THE CONSTRUCTION OF AN INVARIANT MEASURE

JOZEF KALAS, Bratislava

In the first part of the paper a measure μ is constructed on the σ -ring generated by some class of the closed subsets of a topological space X. The measure μ is invariant under a group of autohomeomorphisms of X.

In the second part two special cases are discussed. Let (X, \mathcal{T}) be a topological space, \mathcal{F} be a class of some closed subsets of the space X, G be a group of authomeomorphisms of the space X, \mathcal{P} be a class of open coverings of the space X. Let \mathcal{F} , \mathcal{P} and G fulfill the following conditions

- (i) Let F be any set in \mathcal{F} and \mathcal{U} be any open covering in \mathcal{P} . Then there exist $E_i \in \mathcal{U}$, $f_i \in G$, i = 1, 2, ..., n such that $\bigcup_{i=1}^n f_i^{-1}(E_i) \supset F$.
- (ii) For every disjoint sets F_1 , $F_2 \in \mathcal{F}$ there exists $\mathcal{W} \in \mathcal{P}$ fulfilling the following condition: for every $f \in G$, $E \in \mathcal{W}$ whenever $f(E) \cap F_1 \neq \emptyset$ then $f(E) \cap F_2 = \emptyset$
- (iii) for every \mathcal{U} , $\mathcal{V} \in \mathcal{P}$ there exists $\mathcal{W} \in \mathcal{P}$ such that $\mathcal{W} \ge \mathcal{U}$, $\mathcal{W} \ge \mathcal{V}$ (for every $\mathbf{B} \in \mathcal{W}$ there exists $\mathbf{C} \in \mathcal{U}$ or \mathcal{V} respectively, such that $\mathbf{B} \subset \mathbf{C}$).

Now let F be any set in \mathcal{F} . Put

$$\mathcal{H}_F = \{ U \subset X : U \text{ is an open set and there are } f_i \in G \ (i = 1, ..., n) \}$$

such that
$$\bigcup_{i=1}^n f_i^{-1}(U) \supset F$$
 .

Evidently $X \in \mathcal{X}_F$ for every $F \in \mathcal{F}$. Denote by $\mathcal{H} = \bigcap \{\mathcal{X}_F : F \in \mathcal{F}\}$

(iv) Suppose that there exists a set $A \in \mathcal{H}$ such that $\tilde{A} \in \mathcal{F}$.

Remark. Further we shall denote by A only this set.

Theorem 1. There exists a non-trivial set function λ on the class \mathcal{F} satisfying the following properties:

(a) λ is finite and non negative,

- (b) λ is monotone,
- (c) if $E, F \in \mathcal{F}$ and also $E \cup F \in \mathcal{F}$, then

$$\lambda(E \cup F) \leq \lambda(E) + \lambda(F)$$
 (i.e. λ is subadditive)

(d) if, moreover, $E \cap F = \emptyset$, then

$$\lambda(E \cup F) = \lambda(E) + \lambda(F)$$
 (i.e. λ is additive)

(a) if for $E \in \mathcal{F}$, $f \in G$ also $f(E) \in \mathcal{F}$, then

$$\lambda(f(E)) = \lambda(E)$$
 (i.e. λ is invariant under G).

Proof. For any set $F \in \mathcal{F}$ and for any $\mathcal{U} \in \mathcal{P}$ denote by $F: \mathcal{U} = \min \{n: \text{ there exist } E_i \in \mathcal{U}, f_i \in G \ (i = 1, 2, ..., n) \text{ such that}$

$$\bigcup_{i=1}^{n} f_i^{-1}(E_i) \supset F$$
 (1)

By the condition (i) it follows that such minimum exists.

Denote further by

F:
$$A = \min \left\{ n: \text{ there exist } f_i \in G \ (i = 1, ..., n) \text{ such that } \bigcup_{i=1}^n f_i^{-1}(A) \supset F \right\}$$
 (2)

Finally, denote by

A:
$$\mathcal{U} = \min \left\{ n: \text{ there exist } E_i \in \mathcal{U}, f_i \in G \ (i = 1, ..., n) \text{ such that } \bigcup_{i=1}^n f_i^{-1}(E_i) \supset A \right\}$$
(3)

Define now for every $\mathcal{U} \in \mathcal{P}$ the set function $\lambda_{\mathcal{U}}$ on the class \mathcal{F} by

$$\lambda_{u}(F) = \frac{F: \mathcal{U}}{A: \mathcal{U}} \text{ for every } F \in \mathcal{F}$$
 (4)

We show now that it holds $\lambda_{\mathcal{U}}(F) \leq F$: A for any $\mathcal{U} \in \mathcal{P}$ and $F \in \mathcal{F}$.

Let F: A = s. Then by the definition of F: A it follows that there are $g_i \in G$ (j = 1, ..., s) such that $\bigcup_{j=1}^{s} g_j^{-1}(A) \supset F$.

Let A: $\mathcal{U} = n$. Analogously, there are $E_i \in \mathcal{U}$, $f_i \in G$ (i = 1, ..., n) such that

$$\bigcup_{i=1}^n f_i^{-1}(E_i) \supset A.$$

Since

$$\bigcup_{j=1}^{s} \bigcup_{i=1}^{n} (f_{i} \circ g_{j})^{-1}(E_{i}) = \bigcup_{j=1}^{s} \bigcup_{i=1}^{n} g_{j}^{-1}(f_{i}^{-1}(E_{i})) =$$

$$= \bigcup_{j=1}^{s} g_{j}^{-1} \left(\bigcup_{i=1}^{n} f_{i}^{-1}(E_{i}) \right) \supset \bigcup_{j=1}^{s} g_{j}^{-1}(A) \supset F$$

it holds with respect to the definition of $F: \mathcal{U}$ that $F: \mathcal{U} \leq s \cdot n$ and hence

$$\lambda_{\mathcal{U}}(F) \leqslant F \colon A \,. \tag{5}$$

Consider now the following system of the compact topological spaces $\{\langle 0, F; A \rangle, \mathcal{F}_F\}$; $F \in \mathcal{F}\}$, where \mathcal{T}_F is the relative topology of the usual topology on the real line.

Denote by Ω a topological product of these compact topological spaces. It follows by the Tychonov theorem that Ω is a compact topological space. By (5) it follows that $\lambda_{\mathcal{U}} \in \Omega$ (evidently, $\lambda_{\mathcal{U}}(F) \ge 0$ for every $F \in \mathcal{F}$) for every $\mathcal{U} \in \mathcal{F}$. Denote by \mathcal{L} the following class of subsets of the space Ω

$$\mathcal{L} = \{ \delta_{\mathcal{U}} : \delta_{\mathcal{U}} = \{ \lambda_{\mathcal{V}} : \mathcal{V} \ge \mathcal{U}, \mathcal{V} \in \mathcal{P} \}, \mathcal{U} \in \mathcal{P} \}$$

By the condition (iii) it follows that for any $\delta_{\mathcal{U}_i}$ (i=1,...,n) there exists $\mathcal{W} \in \mathcal{P}$ such that $\delta_{\mathcal{W}} \subset \bigcap_{i=1}^n \delta_{\mathcal{U}_i}$. Since $\delta_{\mathcal{W}}$ always contains $\lambda_{\mathcal{W}}$ and it is therefore non empty, the class \mathcal{L} has the finite intersection property. The compactness of Ω implies that there is a point λ in the intersection of the closures of all $\delta_{\mathcal{U}_i}$, i.e. $\lambda \in \bigcap \{\bar{\delta}_{\mathcal{U}_i} : \mathcal{U} \in \mathcal{P}\}$ (Further we shall denote $\mathcal{L}_0 = \bigcap \{\bar{\delta}_{\mathcal{U}_i} : \mathcal{U} \in \mathcal{P}\}$.)

We shall prove that λ is the required set function, i.e. it satisfies the properties (a)—(d).

- (a) it is obvious that λ is a finite and non negative set function
- (b) let E and F be any sets in $\mathscr F$ such that $E \subset F$. By (1) it follows that $E: \mathscr U \leq F: \mathscr U$ for any $\mathscr U \in \mathscr P$. Then also

$$\lambda_{\mathcal{U}}(E) \leq \lambda_{\mathcal{U}}(F) \text{ for any } \mathcal{U} \in \mathcal{P}$$
 (6)

Denote by Ω_1 the following subset of Ω

$$\Omega_1 = \{t \in \Omega : t(E) \le t(F), \text{ for given } E, F \in \mathcal{F}\}$$

Evidently, Ω_1 is a closed subset of Ω and by (6) it follows that $\lambda_{\mathcal{U}} \in \Omega_1$ for every $\mathcal{U} \in \mathcal{P}$. This means that $\delta_{\mathcal{U}} \subset \Omega_1$ for every $\mathcal{U} \in \mathcal{P}$. Since Ω_1 is closed, then also $\mathcal{L}_0 \subset \Omega_1$ and hence $\lambda(E) \leq \lambda(F)$. This means that λ is a monotone set function.

(c) Let E, F be any sets in \mathscr{F} such that $E \cup F \in \mathscr{F}$. Evidently, it holds for any $\mathscr{U} \in \mathscr{F}$ that

 $E \cup F$: $\mathcal{U} \leq E$: $\mathcal{U} + F$: \mathcal{U} and hence also

$$\lambda_{a_{\ell}}(E \cup F) \leq \lambda_{a_{\ell}}(E) + \lambda_{a_{\ell}}(F)$$

Denote again by $\Omega_2 = \{t \in \Omega: t(E \cup F) \le t(E) + t(F)\}$

It follows from the same reasons as in the proof of the property (b) that $\lambda \in \Omega_2$, i.e.

$$\lambda(E \cup F) \leq \lambda(E) + \lambda(F)$$
 for any $E, F \in \mathcal{F}$ such that $E \cup F \in \mathcal{F}$.

(d) Moreover, let E and F be disjoint. By the condition (ii) it follows that there exists $\mathscr{U}^0 \in \mathscr{P}$ such that for every $f \in G$ and $C \in \mathscr{U}^0$ whenever $f(C) \cap E \neq \emptyset$, then $f(C) \cap F = \emptyset$. (7)

Let now $\mathcal{V} \in \mathcal{P}$ and $\mathcal{V} \geqslant \mathcal{U}^0$. If we put $E \cup F$: $\mathcal{V} = n$ then it follows (by the definition of $E \cup F$: \mathcal{V}) that there exist $E_i^0 \in \mathcal{V}$, $f_i \in G$ (i = 1, ..., n) such that

$$\bigcup_{i=1}^{n} f_i^{-1}(E_i) \supset E \cup F \tag{8}$$

Let $T_1 = \bigcup \{f_i^{-1}(E_i^0) \cap E \neq \emptyset\}$ and $T_2 = \bigcup \{f_i^{-1}(E_i^0) \cap F \neq \emptyset\}$. Then by (7) and (8) we have $T_1 \supset E$, $T_2 \supset F$ and $n = \text{card } T_1 + \text{card } T_2$. This implies the following inequality $n = E \cup F$: $\mathcal{V} \geqslant E$: $\mathcal{V} + F$: \mathcal{V} and hence also $\lambda_{\mathcal{V}}(E \cup F) \geqslant \lambda_{\mathcal{V}}(E) + \lambda_{\mathcal{V}}(F)$. Then it holds (the opposite inequality has been proved abready)

$$\lambda_{\mathcal{V}}(E \cup F) = \lambda_{\mathcal{V}}(E) + \lambda_{\mathcal{V}}(F) \text{ for any } \mathcal{V} \geqslant \mathcal{U}^{0}$$
 (9)

Denote again by

$$\Omega_3 = \{t \in \Omega : t(E \cup F) = t(E) + t(F)\}$$

The subset Ω_3 is evidently closed. Then it follows by (9): $\bar{\delta}_{u_0} \subset \Omega_3$ and hence also $\mathcal{L}_0 \subset \Omega_3$, i.e.

$$\lambda(E \cup F) = \lambda(E) + \lambda(F)$$
 for any $E, F \in \mathcal{F}$ such that $E \cup F \in \mathcal{F}$ and $E \cap F = \emptyset$.

(e) Let $F \in \mathcal{F}$, $f \in G$ and let also $f(E) \in \mathcal{F}$. It follows from the equalities

$$f^{-1}\left(\bigcup_{i=1}^n f_i^{-1}(E_i)\right) = \bigcup_{i=1}^n (f_i \circ f)^{-1}(E_i)$$

and

$$f\left(\bigcup_{i=1}^{n} f_{i}^{-1}(E_{i})\right) = \bigcup_{i=1}^{n} (f_{i} \circ f^{-1})^{-1}(E_{i}) \text{ that } E \colon \mathscr{U} = f(E) \colon \mathscr{U}$$

for any $\mathcal{U} \in \mathcal{P}$ and hence also

$$\lambda_{\mathcal{U}}(E) = \lambda_{\mathcal{U}}(f(E)) \text{ for any } \mathcal{U} \in \mathcal{P}$$
 (10)

Denote again by $\Omega_4 = \{t \in \Omega: t(E) = t(f(E))\}.$

The subset Ω_4 is closed. By (10) it holds $\lambda_{\mathcal{U}} \in \Omega_4$ for any $\mathcal{U} \in \mathcal{P}$. Then $\delta_{\mathcal{U}} \subset \Omega_4$ and hence also $\mathcal{L}_0 \subset \Omega_4$. Since $\lambda \in \mathcal{L}_0$, we get

$$\lambda(E) = \lambda(f(E)).$$

We shall suppose that the class \mathcal{F} still fulfils the following conditions:

(K₁) Let $E \in \mathcal{F}$, $E \subset \bigcup_{i=1}^{\infty} U_i$, U_i be open sets (i=1, 2, ...).

Then there exists $n \in \mathbb{N}$ such that $E \subset \bigcup_{i=1}^{n} U_{i}$.

- (K₂) If $F \in \mathcal{F}$ and U and V are open sets such that $F \subset U \cup V$, then there exist F_1 , $F_2 \in \mathcal{F}$ such that $F_1 \subset U$, $F_2 \subset V$, and $F = F_1 \cup F_2$.
- (K₃) For every $E \in \mathcal{F}$ there exist sets U and F such that U is an open set, $F \in \mathcal{F}$, and $E \subset U \subset F$.
- (K₄) If $E \in \mathcal{F}$, $f \in G$, then also $f(E) \in \mathcal{F}$

We shall now construct (going out from the set function λ) on the σ -ring $\mathcal{G}(\mathcal{F})$ generated by \mathcal{F} a non trivial measure, invariant with respect to the group G. Define first on the system of all open sets a set function $\lambda *$ by

$$\lambda * (U) = \sup \{ \lambda(F) \colon F \subset U, F \in \mathcal{F} \}$$
 (11)

Remark. By (K_2) it follows that $\emptyset \in \mathcal{F}$.

Theorem. The set function $\lambda *$ vanishes at \emptyset , it is monotone, and countably subadditive.

Proof. The first two properties of $\lambda *$ are evident. We prove now the third property. We show a subadditivity of the function $\lambda *$ at first. If U and V are open sets and if $E \in \mathcal{F}$ is such that $E \subset U \cup V$, then by (K_2) there exist $E_1 \in \mathcal{F}$ and $E_2 \in \mathcal{F}$ such that $E_1 \subset U$, $E_2 \subset V$, and $E = E_1 \cup E_2$. Since

$$\lambda(E) \leq \lambda(E_1) + \lambda(E_2) \leq \lambda_*(U) + \lambda_*(V), \text{ it follows that}$$
$$\lambda_*(U \cup V) = \sup \{\lambda(E) \colon E \subset U \cup V, E \in \mathcal{F}\} \leq \lambda_*(U) + \lambda(V).$$

i.e. that λ_* is subadditive. It follows immediately, by the mathematical induction, that λ_* is finitely subadditive. If $\{U_i\}_{i=1}^{\infty}$ is a sequence of open sets and if $E \in \mathcal{F}$, such that $E \subset \bigcup_{i=1}^{\infty} U_i$, then by (K_1) there is a positive integer n such that $E \subset \bigcup_{i=1}^{n} U_i$. It follows that

$$\lambda(E) \leq \lambda * \left(\bigcup_{i=1}^{n} U_{i}\right) \leq \sum_{i=1}^{n} \lambda * (U_{i}) \leq \sum_{i=1}^{\infty} \lambda * (U_{i})$$

and therefore

$$\lambda * \left(\bigcup_{i=1}^{\infty} U_i\right) = \sup \left\{\lambda(E) : E \subset \bigcup_{i=1}^{\infty} U_i, E \in \mathscr{F}\right\} \leq \sum_{i=1}^{\infty} \lambda * (U_i)$$

i.e. $\lambda *$ is countably subadditive.

Let now E be any subset of X. Put

$$m^*(E) = \inf \{\lambda_*(U) : E \subset U, U \text{ is a open set.} \}$$

Theorem. The set function m^* is an outer measure defined on the system of all subsets of X.

Proof. The set function m^* is non negative, monotone and vanishes at \emptyset evidently. We prove that m^* is also countably subadditive (i.e. it has all properties of an outer measure).

If $\{E_i\}_{i=1}^{\infty}$ is a sequence of subsets of X, then, for every $\varepsilon > 0$ and for every i = 1, 2, ... there exists an open set U_i such that $E_i \subset U_i$ and $\lambda * (U_i) \leq m^*(E_i) + \frac{\varepsilon}{2^i}$.

$$m^* \left(\bigcup_{i=1}^{\infty} E_i\right) \leq \lambda * \left(\bigcup_{i=1}^{\infty} U_i\right) \leq \sum_{i=1}^{\infty} \lambda * (U_i) \leq \sum_{i=1}^{\infty} m^*(E_i) + \varepsilon$$

the arbitrariness of $\varepsilon > 0$ implies the countable subadditivity of m^* .

Remark. It follows immediately by the definition of m^* , that $m^*(U) = \lambda_*(U)$ for any open set U.

Denote by \mathcal{B} the system of all m^* -measurable sets. We use the terminology according to [1]. In [1] it is proved that \mathcal{B} is a σ -ring and the set function μ^* defined on \mathcal{B} by $\mu^*(E) = m^*(E)$ for any $E \in \mathcal{B}$ is a measure on the \mathcal{B} . By the same method as in [1] (p. 234) it is possible to prove: any set F in \mathcal{F} is m^* -measurabe. Then it follows that if $\mathcal{F}(\mathcal{F})$ is the σ -ring generated by \mathcal{F} , it holds $\mathcal{F}(\mathcal{F}) \subset \mathcal{B}$. Hence the set function μ defined on $\mathcal{F}(\mathcal{F})$ by $\mu(E) = m^*(E)$ for every $E \in \mathcal{F}(F)$ is a measure on $\mathcal{F}(\mathcal{F})$.

Theorem. The measure μ fulfils the following conditions:

- (a) μ is a non trivial measure,
- (b) μ is a finite measure on \mathcal{F}
- (c) μ is an invariant measure under G.

Proof

It follows that

(a) First we show for any F in \mathcal{F} that $\mu(F) \ge \lambda(F)$. Let U is any open set such that $F \subset U$. Since $\lambda * (U) \ge \lambda(F)$ it follows that

$$\mu(F) = m^*(F) = \inf \{\lambda_*(U) \colon F \subset U\} \ge \lambda(F).$$

Since $A \subset \overline{A}$ it follows that

$$\lambda_{\mathcal{U}}(\bar{A}) = \frac{\bar{A} : \mathcal{U}}{A : \mathcal{U}} \ge 1 \ (10) \text{ for any } \mathcal{U} \text{ in } \mathcal{P}.$$

The set $\Omega_5 = \{t \in \Omega : t(\bar{A}) \ge 1\}$ is closed and by (10) $\lambda_{\mathcal{U}} \in \Omega_5$ for every \mathcal{U} in \mathcal{P} . It follows that $\mathcal{L}_0 \subset \Omega_5$ and hence also $\lambda(\bar{A}) \ge 1$. Since $\mu(\bar{A}) \ge \lambda(\bar{A})$, then also $\mu(\bar{A}) \ge 1$.

(b) Let F is any set in \mathscr{F} . By (K_3) there exist an open set U and a set E in \mathscr{F} such that $F \subset U \subset E$. Let C be any set in \mathscr{F} such that $C \subset U$. Since $\lambda(C) \leq \lambda(E)$, it follows that

$$\lambda_*(U) = \sup \{\lambda(C) : C \subset U, C \in \mathcal{F}\} \leq \lambda(E).$$

It follows from the following inequalities that μ is finite:

$$\mu(F) = m^*(F) \leq m^*(U) = \lambda_*(U) \leq \lambda(E) < \infty$$
.

(c) First we prove for any open set u and for any f in G that

$$\lambda * (U) = \lambda * (f(U))$$
:

$$\lambda_*(U) = \sup \{\lambda(E) : E \subset U, E \in \mathcal{F}\} = \sup \{\lambda(f(E)) : E \subset U, E \in \mathcal{F}\}$$

$$E \subset U, E \in \mathcal{F}$$
 = sup $\{\lambda(F): F \subset f(U), F \in \mathcal{F}\} = \lambda * (f(U)).$

Analogously $m^*(E) = \inf \{\lambda_*(U) : E \subset U, U \text{ is an open set} \} = \inf \{\lambda_*(f(U)) : E \subset U, U \text{ is an open set} \} = \inf \{\lambda_*(V) : f(E) \subset V, V \text{ is an open set} \} = m^*(f(E))$ and hence if $E \in \mathcal{S}(\mathcal{F})$ then $\mu(f(E)) = m^*(f(E)) = m^*(E) = \mu(E)$ i.e. that μ is invariant under G.

II

We show now some special cases of our general theory.

Example 1. Let X be a locally compact topological group (the group operation is denoted by \cdot), \mathcal{F} be a class of all compact sets in X and

$$G = \{f_a: f_a(x) = a \cdot x, a \in X\}$$

Denote by \mathcal{U}_{e} the class of all neighbourhoods of the identity element e of the topological group X.

Put

$$\mathcal{P} = \{ \{ a \cdot U : a \in X \}, U \in \mathcal{U}_e \}.$$

We show that the conditions (i)—(iv) given in section I. are fulfilled:

(i) Let F be any compact set and

$$\mathcal{U} = \{a \cdot U : a \in X\}$$
 be any element in \mathcal{P} .

Since $\bigcup \{a \cdot U : a \in X\} \supset F$ by the compactness of F and by the properties of the topological group, there is a positive integer n such that $\bigcup_{i=1}^{n} a_i U \supset F$, i.e.

$$\bigcup_{i=1}^n f_e^{-1}(a_iU)\supset F.$$

(ii) The validity of this condition follows from the properties of the topological group.

Let F_1 , F_2 be any disjoint compact sets of X. There exists U in \mathcal{U}_e such that $(F_1 \cdot U) \cap (F_2 \cdot U) = \emptyset$. Let V be a set in \mathcal{U}_e such that $V^{-1} \cdot V \subset U$.

Denote by $\mathcal{W} = \{a \cdot V : a \in X\}$. We show for any b in X: whenever $f_b(a \cdot V) \cap F_1 = (b \cdot a \cdot V) \cap F_1 \neq \emptyset$ then $f_b(a \cdot V) \cap F_2 = (b \cdot a \cdot V) \cap F_2 = \emptyset$. We prove this implication by the contradiction.

Let there be $c \in (b \cdot a \cdot V) \cap F_1$ and $z \in (b \cdot a \cdot V) \cap F_2$. Then $c = b \cdot a \cdot v_1$, $z = b \cdot a \cdot v_2$, v_1 , $v_2 \in V$ and this implies that $z = c \cdot v_1^{-1} \cdot v_2$ i.e. $z \in c \cdot V^{-1} \cdot V \subset C \cap F_1U$.

This is a contradiction, since $z = z \cdot e \in F_2U$.

(iii) Let $\mathcal{U} = \{a \cdot U : a \in X\}$ and $\mathcal{V} = \{a \in V : a \in X\}$, where U and V are in \mathcal{U}_{\bullet} .

Put $\mathcal{W} = \{a \cdot (U \cap V) : a \in X\}$. Then evidently $U \cap V$ is in \mathcal{U}_e and $\mathcal{W} \geqslant \mathcal{V}$, $\mathcal{W} \geqslant \mathcal{U}$.

(iv) Let U_e^0 be such neighbourhood of the identity element e that \bar{U}_e^0 is a compact set and let F be any compact set. Since $\bigcup \{aU_e^0: a \in F\} \supset F$, by the compactness of F there is a positive integer n such that

$$\bigcup_{i=1}^n a_i U_e^0 \supset F \text{ i.e. } \bigcup_{i=1}^n f_{a_i-1}^{-1}(U_e) \supset F.$$

We proved the existence of a set A considered in the section I.

The conditions (K_1) — (K_4) are evidently fulfilled. We get now the following known theorem from the results of the section I.

Theorem. Let X be a locally compact topological group. There exists a non trivial Borel measure μ such that $\mu(E) = \mu(a \cdot E)$ for any $a \in X$ and any Borel set E.

Remark: The measure μ is called a Haar measure.

Example 2. Let (X, ϱ) be a compact metric space, \mathscr{F} be a class of all compact sets and G be a group of autohomeomorphisms of the space X such that for any $\varepsilon > 0$ there exists $\delta > 0$ such that $\varrho(f(x_1), f(x_2)) < \varepsilon$ for every $x_1, x_2 \in X$ such that

$$\varrho(x_1, x_2) < \delta$$
 and for every $f \in G$. (1)

Put $\mathcal{P} = \{\{O(a, \varepsilon), a \in X\}, \varepsilon > 0\}$, where $O(a, \varepsilon) = \{x \in X: \varrho(a, x) < \varepsilon\}$

We show again that the conditions (i)—(iv) are fulfilled.

(ii) Let F be any compact set

 $\mathcal{U} = \{O(a, \varepsilon), a \in X\}$ be any element in \mathcal{P} and f be any autohomeomorphism in G. Since

 $\bigcup \{f^{-1}(O(a, \varepsilon)); a \in X\} \supset F$, by the compactness of F there exist $a_1, ..., a_n$ such that

$$\bigcup_{i=1}^n f^{-1}(O(a_i,\,\varepsilon))\supset F.$$

(ii) Let F_1 , F_2 be any disjoint compact subsets of X and f be any autohomeomorphism in G. Denote by $d = \inf \{ \varrho(x, x_2) : x_1 \in F_1, x_2 \in F_2 \}$. The distance d is positive since X is a compact metric space. By the condition (1) it follows that there exists $\delta > 0$ such that $\varrho(f(x_1), f(x_2)) < d$ for every $f \in G$ whenever $\varrho(x_1, x_2) < \delta$.

Put $\mathcal{U} = \left\{ O(a, \frac{\delta}{2}), a \in X \right\}$. We show by a contradiction that whenever $f\left(O\left(a, \frac{\delta}{2}\right)\right) \cap F_1 \neq \emptyset$ then $f\left(O\left(a, \frac{\delta}{2}\right)\right) \cap F_2 = \emptyset$:

Let
$$z_1 \in f\left(O\left(a, \frac{\delta}{2}\right)\right) \cap F_1$$
 and $z_2 \in f\left(O\left(a, \frac{\delta}{2}\right)\right) \cap F_2$. Then $z_1 = f(x_1)$, $x_1 \in O\left(a, \frac{\delta}{2}\right)$, $z_2 = f(x_2)$, $x_2 \in O\left(a, \frac{\delta}{2}\right)$. Since $\varrho(x_1, x_2) < \delta$, we get that $\varrho(f(x_1), f(x_2)) = \varrho(z_1, z_2) < d$. This is a contradiction since $z_1 \in F_1$, $z_2 \in F_2$.

- (iii) Let $\mathcal{U} = \{O(a, \varepsilon_1) : a \in X\}$, $\mathcal{V} = \{O(a, \varepsilon_2) : a \in X\}$. Denote by $\varepsilon = \min\left(\frac{\varepsilon_1}{2}, \frac{\varepsilon_2}{2}\right)$ and put $\mathcal{W} = \{O(a, \varepsilon) : a \in X\}$. Then $\mathcal{W} \geqslant \mathcal{U}$ and $\mathcal{W} \geqq \mathcal{V}$.
- (iv) Since $X \in \mathcal{H}$ (the definition of \mathcal{H} is given in the section I.) we can put A = X.

Evidently the conditions (K_1) — (K_4) are satisfied too. Then we get the following theorem from the results of the section I.

Theorem. Let X be a compact metric space and G a group of autohomeomorphisms of X fulfilling the condition (1). There exists a probability Borel measure P invariant under G, i.e. P(f(E)) = P(E) for any Borel set E and $f \in G$.

REFERENCES

- [1] Halmos, P. R.: Measure theory, New York 1950
- [2] Taylor, A. E.: An introduction to functional analysis, New York Wiley 1967
- [3] Корнфельд, И. П.—Синай, Я. Г.—Фомин, С. В.: Эргодическая теория, Москва «Наука» 1980

Autor's address:

Received: 25. 8. 1982

Jozef Kalas, Katedra teórie pravdepodobnosti a matematickej štatistiky MFF UK, Mlynská dolina — Matematický pavilón, 842 15 Bratislava

SÚHRN

KONŠTRUKCIA INVARIANTNEJ MIERY

J. Kalas, Bratislava

Prvá časť práce sa zaoberá konštrukciou miery na σ -okruhu generovanom istou triedou uzavretých množín nejakého topologického priestoru X. Konštruovaná miera je invariantná vzhľadom na nejakú grupu autohomeomorfizmov priestoru X.

V druhej časti práce sú uvedené dva špeciálne prípady uvažovanej konštrukcii.

РЕЗЮМЕ

ПОСТРОЕНИЕ ИНВАРИАНТНОЙ МЕРЫ

Й. Калас, Братислава

Первая часть работы содержит построение меры, определенной на σ -кольце порожденном некоторым классом замкнутых множеств какого-нибудь топологического пространства X. Построенная мера является инвариантной относительно даной группы гомеоморфных отображений пространства X.

Вторая часть работы содержит два специальных случая этого построения.