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THE CONSTRUCTION OF AN INVARIANT MEASURE

JOZEF KALAS, Bratislava

In the first part of the paper a measure p is constructed on the o-ring
generated by some class of the closed subsets of a topological space X. The
measure y is invariant under a group of autohomeomorphisms of X.

In the second part two special cases are discussed. Let (X, 7) be a topological
space, ¥ be a class of some closed subsets of the space X, G be a group of
authomeomorphisms of the space X, ? be a class of open coverings of the space X.
Let #, ? and G fulfill the following conditions

(i) Let F be any set in % and U be any open covering in 2. Then there exist

E €, feG, i=1,2, ..., n such that | Jfi'(E)>F.
i=1

(ii) For every disjoint sets Fi, F;e ¥ there exists We @ fulfilling the
following condition: for every fe G, EeW whenever f(E)NnF,#@ then
f(E)ynF;=0

(iii) for every U, Ve P there exists W e P such that W=U, W=V (for
every B e W there exists Ce U or ¥ respectively, such that B c C).

Now let F be any set in %. Put
Hr={UcX: Uisanopensetand thereare e G (i=1, ..., n)
such that ) f7'(U)> F}.
i=1
Evidently X € #; for every Fe %. Denote by ¥ = [ { ¥s: Fe )
(iv) Suppose that there exists a set A € % such that A € %.
Remark. Further we shall denote by A only this set.

Theorem 1. There exists a non-trivial set function A on the class Z satisfying
the following properties:

(a) A is finite and non negative,
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(b) A is monotone,
(¢) if E, Fe ¥ and also EUF € %, then

A(EUF)<A(E)+ A(F) (i.e. A is subadditive)
(d) if, moreover, EnF =0, then
A(EUF)=A(E)+ A(F) (i.e. A is additive)
(a) if for E€ %, fe G also j(E)e€ %, then
A(f(E))=A(E) (i.e. A is invariant under G).
Proof. For any set Fe Z and for any 9 € ? denote by F: U =min {n: there
exist E e, fieG (i=1, 2, ..., n) such that

U (E)>F) (M
By the condition (i) it follows that such minimum exists.

Denote further by
F: A =min {n: there exist fie G (i=1, ..., n) such that L"Jf,-“(A):F} )
i=1
Finally, denote by

A: U =min {n: there exist E;e U, fie G (i=1, ..., n) such that L"in-l(Ei)DA}
i=1

(3)
Define now for every U e & the set function Ax on the class % by
F:
M(F)—A: o forevery Fe ¥ 4)

We show now that it holds Ay (F)<F: A for any U e ? and Fe %.
Let F: A =s. Then by the definition of F: A it follows that there are g€ G

(j=1, ..., s) such that Ug,“(A):F.
j=1
Let A: A = n. Analogously, there are E; € U, f;e G (i=1, ..., n) such that

gfr*(a)sA.
Since

UU o) E)=UU g (7 (E)) =

j=1i=
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=Ua" (UrE))>Ugi"(a)>F
i= i= i=
it holds with respect to the definition of F: U that F: U <s - n and hence
A (F)<F: A. 5)

Consider now the following system of the compact topological spaces
{{0, F: A), %); Fe ¥}, where J is the relative topology of the usual topology
on the real line.

Denote by €2 a topological product of these compact topological spaces. It
follows by the Tychonov theorem that € is a compact topological space. By (5) it
follows that A, € Q (evidently, Ay (F)=0 for every F € %) for every AU € ?. Denote
by £ the following class of subsets of the space Q

L={0u: Ou={M:V=U VeP), UecP)
By the condition (iii) it follows that for any &, (i=1, ..., n) there exists We P

such that &y = () 84, Since 8y always contains Ay and it is therefore non empty, the

i=1
class £ has the finite intersection property. The compactness of £ implies that
there is a point A in the intersection of the closures of all 8, i.e. A €[ ){6u: U € P)
(Further we shall denote %o=[{bu: %€ P)}.)
We shall prove that 1 is the required set function, i.e. it satisfies the properties

(a)—(d).

(a) it is obvious that A is a finite and non negative set function

(b) let E and F be any sets in % such that EcF. By (1) it follows that
E: U <F: AU for any U e P. Then also

Ay (E)<MAxy(F) forany U e P (6)
Denote by 2, the following subset of Q
,={te Q: t(E)<t(F), for given E, Fe %)}

Evidently, €, is a closed subset of € and by (6) it follows that Aq € ©, for every
AU € P. This means that 8, = Q, for every U € P. Since Q, is closed, then also
Zo<= 2, and hence A(E)<A(F). This means that A is a monotone set function.

(c) Let E, F be any sets in & such that EUF € . Evidently, it holds for any

U e F that
EUF: U<E: U+ F: U and hence also

M(EUF) <Ay (E)+ A (F)
Denote again by €, ={te Q: t(EUF)<t(E)+ t(F)}
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It follows from the same reasons as in the proof of the property (b) that A € £2,, i.e.
AM(EUF)<A(E)+ A(F) forany E, Fe ¥ such that EUFe %.

(d) Moreover, let E and F be disjoint. By the condition (ii) it follows that
there exists U°e P such that for every fe G and C e U° whenever f(C)NnE+0,
then f(C)nF=0. (7)

Let now Y€ ? and V'=U°. If we put EUF: ¥ =n then it follows (by the
definition of EUF: ¥') that there exist E?¢ ¥, fie G (i=1, ..., n) such that

er‘(E,-):EuF (8)

Let T, = J{fT(E))nE+#@} and T,=J{fi '(E9)nF+@}. Then by (7) and (8) we
have T, o E, T, F and n =card T, + card T. This implies the following inequali-
ty n=EUF: V=E: ¥V+F: ¥ and hence also Ay (EUF) =Ay(E) + Ay(F). Then it
holds (the opposite inequality has been proved abready)

A (EUF)=A+(E)+ Av(F) forany ¥'=a° 9
Denote again by
Q:={te Q: t(EUF)=t(E)+t(F)}

The subset Q; is evidently closed. Then it follows by (9): 8, = £2; and hence also
.,(£0C Qg, i.e.

A(EUF)=A(E)+ A(F) for any E, F € % such that
EuFe % and EnF=46.
(e) Let Fe %, fe G and let also f(E)e %. It follows from the equalities

(U @) =Uten(8)
and
(U5 8)) =Uhes ) (B that B: a= (E):
for any % € ? and hence also

Au(E)=Aa(f(E)) forany Ue P (10)

Denote again by Q,={1€ Q: t(E)=t(f(E))}.
The subset €, is closed. By (10) it holds Ay € €2, for any U € 2. Then 6a = Q.
and hence also %, < €2,. Since A € %, we get

A(E)=A(f(E)).
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We shall suppose that the class Z still fulfils the following conditions::
(K)) Let Ee %, EcJU,, U, be open sets (i=1, 2, ...).
i=1

Then there exists n e N such that E cL"J U.
i=1

(K;) If Fe # and U and V are open sets such that
Fc UuUYV, then there exist F,, F,e % such that
FicU, F,cV, and F=F,UF,.

(Ks) For every E € F there exist sets U and F such that
U is an open set, Fe ¥, and Ec UcF.

(Ks) If E€ %, feG, then also f(E)e %

We shall now construct (going out from the set function 1) on the o-ring H(F)
generated by # a non trivial measure, invariant with respect to the group G.
Define first on the system of all open sets a set function A by

Ax(U)=sup {A(F): Fc U, Fe %) (11)

Remark. By (K;) it follows that # e %.

Theorem. The set function A vanishes at @, it is monotone, and countably
subadditive.

Proof. The first two properties of A« are evident. We prove now the third
property. We show a subadditivity of the function A« at first. If U and V are open
sets and if E € & is such that E < UU 'V, then by (K;) there exist E; € % and E, e %
such that E,c U, E,cV, and E = E,;UE,. Since

A(E) <A(E)) + A(E2) < Ax(U) + Ax(V), it follows that
A+(UuV)=sup {A(E): EcUUV, Ee %)} <ix(U)+A(V),

i.e. that A« is subadditive. It follows immediately, by the mathematical induction,
that A+ is finitely subadditive. If {U;}i, is a sequence of open sets and if E € %,

such that E D U,, then by (K,) there is a positive integer n such that E L"J U. It
i=1 i=1

follows that

A(E)sa*(g U.) sé‘iA*(lJi)sgh(u)

and therefore

A*(D U.)=sup {A(E): ECQl U,Ee g}sgl*(Uf)

i=1
i.e. A+ is countably subadditive.
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Let now E be any subset of X. Put
m*(E) =inf {Ax(U): Ec U, U is a open set.}

Theorem. The set function m* is an outer measure defined on the system of
all subsets of X.

Proof. The set function m* is non negative, monotone and vanishes at §
evidently. We prove that m* is also countably subadditive (i.e. it has all properties
of an outer measure).

If {Ei}: is a sequence of subsets of X, then, for every £>0 and for every

i=1, 2, ... there exists an open set U, such that E; = U; and A*(U.-)Sm*(Ei)+§.

It follows that
m*(ga)éh(g U) sgh(Ui)sg HHEY &

the arbitrariness of € >0 implies the countable subadditivity of m*.

Remark. It follows immediately by the definition of m*, that m*(U) = Ax(U)
for any open set U.

Denote by A the system of all m*-measurable sets. We use the terminology
according to [1]. In [1] it is proved that % is a o-ring and the set function u*
defined on B by u*(E) = m*(E) for any E € A is a measure on the 3. By the same
method as in [1] (p. 234) it is possible to prove: any set F in % is m*-measurabe.
Then it follows that if ¥(%) is the o-ring generated by %, it holds (%)< A.
Hence the set function u defined on #(%) by u(E) = m*(E) for every E € #(F) is
a measure on ¥(%).

Theorem. The measure u fulfils the following conditions:

(a) u is a non trivial measure,

(b) u is a finite measure on F

(c) u is an invariant measure under G.

Proof.
(a) First we show for any F in % that u(F)=A(F). Let U is any open set such
that Fc U. Since A«(U)=A(F) it follows that
u(F)=m*(F)=inf {A«(U): Fc U} ZA(F).
Since A c A it follows that
o AU .
M(A)-—mzl (10) for any U in .

The set Qs={te Q: t(A)=1} is closed and by (10) Ay € Qs for every U in 2. It
follows that %< s and hence also A(A)=1. Since u(A)=A(A), then also
u(A)=1.
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(b) Let F is any set in %. By (K;) there exist an open set U and a set E in %
such that Fc UcE. Let C be any set in & such that C < U. Since A(C) <A(E), it
follows that

Ax(U)=sup {A(C): Cc U, Ce ¥} <A(E).
It follows from the following inequalities that u is finite:
u(F)=m*(F)sm*(U)=A+(U)<A(E)< .
(c) First we prove for any open set u and for any f in G that
Ax(U) =2Ax(f(U)):
Ax(U)=sup {A(E): Ec U, E € ¥} =sup {A(f(E)):
EcU, Ee F}=sup {A(F): Fcf(U), Fe ¥} =A(f(U)).

Analogously m*(E)=inf {A«(U): Ec U, U is an open set} = inf {1x(f(U)):
EcU, Uisanopenset} = inf {Ax(V): f(E)c V, Vis an open set} = m*(f(E))
and hence if E € #(%) then u(f(E)) = m*(f(E)) = m*(E) = u(E) i.e. that u is
invariant under G.

I

We show now some special cases of our general theory.
Example 1. Let X be a locally compact topological group (the group opera-
tion is denoted by - ), Z be a class of all compact sets in X and

G={fa: fi(x)=a-x,ae X}

Denote by %. the class of all neighbourhoods of the identity element e of the
topological group X.
Put

P={{a-U:aeX},Ue.}.

We show that the conditions (i}—(iv) given in section I. are fulfilled:
(i) Let F be any compact set and

AU ={a-U: ae X} beanyelementin 2.
Since | J{a - U: ae X} o F by the compactness of F and by the properties of the

topological group, there is a positive integer n such that | JaUSF, i.e.

i=1

Qf:'(a;U):F.
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(ii) The validity of this condition follows from the properties of the topologi-
cal group.

Let F,, F; be any disjoint compact sets of X. There exists U in 9. such that
(Fi- U)n(F,- U)=0. Let V be a set in 9, such that V'- Vc U.

Denote by W={a-V:aeX}. We show for any b in X: whenever
fo(a- V)nF, = (b-a-V)nF,#0 then f,(a- V)AnF, = (b-a-V)nF,=0. We
prove this implication by the contradiction.

Let there be ce(b-a- V)nF, and ze(b-a- V)nF,. Then c=b-a- vy,
z=b-a-v; v, v2€V and this implies that z=c-vi'-v,ie. zec- V' Vc
cF,U.

This is a contradiction, since z=1z-ee F,U.

(iii) Let U ={a-U:aeX)} and ¥={ae V: ae X}, where U and V are in
U

Put W={a-(UnV):aeX}. Then evidently UnV is in U, and W=7,
W=a.

(iv) Let U? be such neighbourhood of the identity element e that U? is
a compact set and let F be any compact set. Since | J{aU%: ae F} o F, by the
compactness of F there is a positive integer n such that

L"Ja,»US:)F ie. L"Jfgl(U,):JF.
i=1 i=1 a!

We proved the existence of a set A considered in the section I.

The conditions (K;)—(K,) are evidently fulfilled. We get now the following
known theorem from the results of the section L.

Theorem. Let X be a locally compact topological group. There exists a non
trivial Borel measure u such that u(E) = u(a - E) for any a € X and any Borel set
E.

Remark: The measure u is called a Haar measure.

Example 2. Let (X, 0) be a compact metric space, & be a class of all compact
sets and G be a group of autohomeomorphisms of the space X such that for any
€ >0 there exists é >0 such that o(f(x1), f(x.)) <& for every x, x, € X such that

o(x1, x;)<6 andforevery feG. 1)

Put ?={{O(a, ¢), ae X}, £>0}, where O(a, £¢)={xe X: o(a, x)<e}
We show again that the. conditions (i)—(iv) are fulfilled.
(ii) Let F be any compact set
AU ={0O(a, €), a€ X} be any element in P and f be any autohomeomorphism
in G. Since
U{f(O(a, €)); ae X} oF, by the compactness of F there exist ay, ..., a,
such that

'_L:Jlf"(O(af, £))>F.
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(ii) Let F;, F, be any disjoint compact subsets of X and f be any auto-
homeomorphism in G. Denote byd =inf {g(x, x;): x; € Fy, x; € F>}. The distance d
is positive since X is a compact metric space. By the condition (1) it follows that
there exists 8 >0 such that o(f(x1), f(x.)) <d for every f € G whenever o(xi, x2) <
6.

Put %={O(a,—g), an}. We show by a contradiction that whenever

/(O(a, g))mF, #0 then /(o(a, g))nE:ﬂ:
Let zle/(O<a,§))mF. and zze/(O(a,g))sz. Then z,=f(x),

X1 € O(a, g>, 22=f(x2), x2 € O(a, g).Since o(x1, x2) <6, we get that g(f(x1), f(x2))

= 0(z1, 22)<d. This is a contradiction since z; € Fi, z2€ F>.

(iii) Let U={O(a, &:): ae X}, ¥V={O(a,c): aecX}. Denote by &=
min (%%) and put W ={O(a, ¢): ac X}. Then W= and WZ V.

(iv) Since X e ¥ (the definition of % is given in the section I.) we can put
A=X.

Evidently the conditions (K;)—(K,) are satisfied too. Then we get the
following theorem from the results of the section L.

Theorem. Let X be a compact metric space and G a group of auto-
homeomorphisms of X fulfilling the condition (1). There exists a probability Borel
measure P invariant under G, i.e. P(f(E)) = P(E) for any Borel set E and f € G.
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SUHRN
KONSTRUKCIA INVARIANTNEJ MIERY
J. Kalas, Bratislava
Prva ¢ast prace sa zaobera konStrukciou miery na o-okruhu generovanom istou triedou
uzavretych mnozin nejakého topologického priestoru X. Konstruovana miera je invariantna vzhladom

na nejakd grupu autohomeomorfizmov priestoru X.
V druhej &asti prace si uvedené dva $pecidlne pripady uvaZovanej konStrukcii.

PE3IOME
MOCTPOEHUE UHBAPUAHTHOW MEPbBI
M. Kanac, Bpatucnasa
epBast acTh paboThl CONCPXKRHT NOCTPOCHUE MEPDL, ONPEJICSICHHON HA 0-KOJTbIE NOPOXKAEHHOM
HEKOTOPBbIM KJIaCCOM 3aMKHYTBIX MHOXECTB KaKOro-HMOyab TOMOJIOTHYECKOTO npocTpaHcTBa X.
[MocTpoeHHas Mepa ABNAETCS HHBAPHAHTHOH OTHOCHTENILHO IaHOH rpynibli roMeoMopdHbIX 0TOGpaxe-

HUIA npocTpaHcTRa X.
Bropas yacTh paboTbhl COTEPXHUT /1Ba CIELHANIbHBIX CIy4ast 3TOrO MOCTPOCHHUS.
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