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ON MEASURABILITY OF SUPERPOSITIONS

JOZEF DRAVECKY, Bratislava

An important question, when dealing with differential equations, is to
establish measurability of the superposition f(x, g(x)) where g¢g: X—Y,
f: XXY—>Z. In case X, Y, Z are equipped with o-algebras, the superposition
measurability has been studied by I. V. Sragin, see e.g. [2], [3]. The aim of the
present paper is to give sufficient conditions for the superposition measurability
suitable also for the case when the measurable sets considered do not form
a o-algebra but a g-algebra only, i.e. a family closed under disjoint countable
unions and complementation.

We are going to introduce a modified notion of measurability that will play the
key role in formulating the main result.

Definition 1. Let X, Y be nonempty sets, ¥ any family of subsets of X and ¥
any family of subsets of X xY. We say that g: X—>Y is (%, ¥)-projection
measurable iff for each Ve ¥ the set {x: (x, g(x))e V} is in Z.

In common situations the projection measurability is closely linked with the
usual measurability of g defined by g~'(B) € Z for all B € % where ¥ is the family
of “measurable” sets in Y.

Proposition 1. Let ¥ c2*, ¥ <2Y, V'=2**Y, g: X> Y. If for every Be ¥
there exists B e % such that g'(B)cB and B x Be ¥, then (%, ¥)-projection
measurability of g implies the usual (Z, ¥)-measurability of g.

Proof. Let Be %, then g7'(B)=Bng'(B)={x: (x, g(x)) € BXxB)e%.

Example 1. This example will show that the hypothesis g~'(B)cBe ¥ is
essential in Proposition 1. Put X={1, 2, 3}, Y={(1, 2}, Z={90, {1, 2}, {1, 3},
{2,3}}, ¥={0, {1,2}}, V={0, {1,2} x{1, 2}, {1, 3} x{1, 2}, {2,3} x{1,2}}
(V is the q-ring generated by the measurable rectangles). Then g(x)=1 is
(Z, V)-projection measurable but evidently not (¥, ¥)-measurable.

Example 2. Now we show that, in general, (%, %¥)-measurability of g does not
imply its (Z, ¥')-projection measurability even if ¥V={A XB: A€ %, Be ¥}. Put
X=Y={1,2,3,4}), =¥={AcX: card A is even}, g(x)=x. Then g is
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evidently (%, ¥)-measurable but for E={1,2}x{1,3}e¥ we have
{x:(x,g(x))eE} = {1} ¢X.

Proposition 2. In any of the following situations (%, %¥)-measurability of g
implies its (%, ¥)-projection measurability.

a) Zisa o-ringin X, ¥ is a o-ring in Y, and ¥ is the o-ring generated by the
measurable rectangles A XB (Ae%, Be %)

b) Zis a g-algebrain X, % is a g-algebra in Y, and ¥ consists of A X Y and
X XB with AeZ, Be%.

Proof. a) Denote Y={CcXxY: {x: (x,9(x)eC}eZ}. The
(%, ¥)-measurability of g implies that for any rectangle A X B with Ae %, Be %
we have {x: (x, g(x)) €e AXB} = Ang '(B)eZ, hence ¥ contains all such
rectangles. Evidently ¥ is a o-ring, and so ¥> %, which means that g is
(%, V')-projection measurable.

b) Clearly, {x:(x,g(x))eAXY}=A€e%, and {x: (x, g(x)) € XXB}
= g '(B)e ¥ due to (%, ¥)-measurability of g.

Theorem 1. If ZXc2*, ¥c2Y, V2XY, Zc2%, i XXY->Z is
(V, Z)-measurable and g: X—>Y is (&, ¥)-projection measurable, then
f(-, g())is (%, Z)-measurable.

Proof. For Ce %, we have {x: f(x, g(x))eC} = {x: (x,9(x)) e f ' (C)} e X
by the hypotheses.

Corollary. Let Z, ¥, & be g-algebras on X, Y, Z, respectively, let f: X X
Y—>Z and g: X—Y. Any of the following conditions is sufficient for
(%, Z)-measurability of the superposition f( -, g(-)).

a) fis (V, ¥)-measurable, where V={A XY, XXB: Ae%, Be%¥},and g
is (¥, ¥)-measurable

b) f is (V, ¥)-measurable with V" being the g-algebra generated by the
rectangles AXB (Ae¥%, Be %), and g is (¥, V)-projection measurable.

Other conditions implying superposition measurability can be obtained by
combining our results with those of T. Neubrunn [1]. Recall that a subfamily ./ of
a g-algebra is strongly compatible iff for any A, B € ¢/ the intersection AnB is in
the smallest g-algebra containing .«/. Now Theorem 1 of [1] together with Part b of
the last Corollary yields

Theorem 2. Let Z be a g-algebra of subsets of X, let Y be a second-counta-
ble topological space and % a o-algebra of subsets of Y containing all open sets.
Let B denote the Borel o-algebra on the real line R. Let f: X X Y— R be such
that f(x, -) is continuous for every x and there exists a dense set D c Y such that
. {{x: f(x,y)eB}: ye D, Be B} is a strongly compatible subfamily of X. Let ¥
denote the g-algebra generated by rectangles AXB (AeZ%,Be%). If g: X—>Y
is (%, V)-projection measurable, then f(-, g(-)) is (%, B)-measurable.

The last theorem can be modified in the manner of Theorem 2 of [1], using the
notion of P-system.
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SUHRN
O MERATELNOSTI SUPERPOZICIf
J. Dravecky, Bratislava
V ¢lanku sa podavaju postacujice podmienky meratelnosti superpozicie f( -, g(-)), kde f: X x

Y—>Z, g: X— Y, pri¢om triedy merateInych mnozin v priestoroch X, Y, Z nemusia byt o-algebry, ale
vieobecnejsie systémy.

PE3IOME
OB U3BMEPUMOCTH CYIIEPITO3ULIMM
M. [IpaBenku, Bpatucnasa
B craTbe aafyTcs JOCTaTOYHBIE YCIIOBHA H3MEPMMOCTH cyniepnio3uumy (-, g(-)), rae f: XX Y—

Z, g: X— Y M KJ1acchl H3MEPHMBIX MHOXeECTB B nipocTpaHcTBaux X, Y, Z Gonee obiue cHCTEMBI YeM
CYETHO aIUTHBHBIE KOJbLA.

183






	
	Article


