

Werk

Label: Article **Jahr:** 1984

PURL: https://resolver.sub.uni-goettingen.de/purl?312901348_44-45|log25

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

UNIVERSITAS COMENIANA ACTA MATHEMATICA UNIVERSITATIS COMENIANAE XLIV—XLV—1984

ON MEASURABILITY OF SUPERPOSITIONS

JOZEF DRAVECKÝ, Bratislava

An important question, when dealing with differential equations, is to establish measurability of the superposition f(x, g(x)) where $g: X \rightarrow Y$, $f: X \times Y \rightarrow Z$. In case X, Y, Z are equipped with σ -algebras, the superposition measurability has been studied by I. V. Šragin, see e.g. [2], [3]. The aim of the present paper is to give sufficient conditions for the superposition measurability suitable also for the case when the measurable sets considered do not form a σ -algebra but a q-algebra only, i.e. a family closed under disjoint countable unions and complementation.

We are going to introduce a modified notion of measurability that will play the key role in formulating the main result.

Definition 1. Let X, Y be nonempty sets, $\mathscr X$ any family of subsets of X and $\mathscr V$ any family of subsets of $X \times Y$. We say that $g: X \to Y$ is $(\mathscr X, \mathscr V)$ -projection measurable iff for each $V \in \mathscr V$ the set $\{x: (x, g(x)) \in V\}$ is in $\mathscr X$.

In common situations the projection measurability is closely linked with the usual measurability of g defined by $g^{-1}(B) \in \mathcal{X}$ for all $B \in \mathcal{Y}$ where \mathcal{Y} is the family of "measurable" sets in Y.

Proposition 1. Let $\mathscr{X} \subset 2^x$, $\mathscr{Y} \subset 2^y$, $\mathscr{V} \subset 2^{x \times y}$, $g: X \to Y$. If for every $B \in \mathscr{Y}$ there exists $\tilde{B} \in \mathscr{X}$ such that $g^{-1}(B) \subset \tilde{B}$ and $\tilde{B} \times B \in \mathscr{V}$, then $(\mathscr{X}, \mathscr{V})$ -projection measurability of g implies the usual $(\mathscr{X}, \mathscr{Y})$ -measurability of g.

Proof. Let $B \in \mathcal{Y}$, then $g^{-1}(B) = \tilde{B} \cap g^{-1}(B) = \{x: (x, g(x)) \in \tilde{B} \times B\} \in \mathcal{X}$. **Example 1.** This example will show that the hypothesis $g^{-1}(B) \subset \tilde{B} \in \mathcal{X}$ is

essential in Proposition 1. Put $X = \{1, 2, 3\}$, $Y = \{1, 2\}$, $\mathcal{X} = \{\emptyset, \{1, 2\}, \{1, 3\}, \{2, 3\}\}$, $\mathcal{Y} = \{\emptyset, \{1, 2\}\}$, $\mathcal{V} = \{\emptyset, \{1, 2\} \times \{1, 2\}, \{1, 3\} \times \{1, 2\}, \{2, 3\} \times \{1, 2\}\}$ (\mathcal{V} is the q-ring generated by the measurable rectangles). Then g(x) = 1 is $(\mathcal{X}, \mathcal{V})$ -projection measurable but evidently not $(\mathcal{X}, \mathcal{Y})$ -measurable.

Example 2. Now we show that, in general, $(\mathcal{X}, \mathcal{Y})$ -measurability of g does not imply its $(\mathcal{X}, \mathcal{V})$ -projection measurability even if $\mathcal{V} = \{A \times B : A \in \mathcal{X}, B \in \mathcal{Y}\}$. Put $X = Y = \{1, 2, 3, 4\}, \ \mathcal{X} = \mathcal{Y} = \{A \subset X : \text{ card } A \text{ is even}\}, \ g(x) = x$. Then g is

evidently $(\mathcal{X}, \mathcal{Y})$ -measurable but for $E = \{1, 2\} \times \{1, 3\} \in \mathcal{V}$ we have $\{x: (x, g(x)) \in E\} = \{1\} \notin \mathcal{X}$.

Proposition 2. In any of the following situations $(\mathcal{X}, \mathcal{Y})$ -measurability of g implies its $(\mathcal{X}, \mathcal{Y})$ -projection measurability.

- a) \mathscr{X} is a σ -ring in X, \mathscr{Y} is a σ -ring in Y, and \mathscr{V} is the σ -ring generated by the measurable rectangles $A \times B$ ($A \in \mathscr{X}$, $B \in \mathscr{Y}$)
- b) \mathscr{X} is a q-algebra in X, \mathscr{Y} is a q-algebra in Y, and \mathscr{V} consists of $A \times Y$ and $X \times B$ with $A \in \mathscr{X}$, $B \in \mathscr{Y}$.
- **Proof.** a) Denote $\mathcal{L} = \{C \subset X \times Y: \{x: (x, g(x)) \in C\} \in \mathcal{X}\}$. The $(\mathcal{X}, \mathcal{Y})$ -measurability of g implies that for any rectangle $A \times B$ with $A \in \mathcal{X}, B \in \mathcal{Y}$ we have $\{x: (x, g(x)) \in A \times B\} = A \cap g^{-1}(B) \in \mathcal{X}$, hence \mathcal{L} contains all such rectangles. Evidently \mathcal{L} is a σ -ring, and so $\mathcal{L} \supset \mathcal{V}$, which means that g is $(\mathcal{X}, \mathcal{V})$ -projection measurable.
- b) Clearly, $\{x: (x, g(x)) \in A \times Y\} = A \in \mathcal{X}$, and $\{x: (x, g(x)) \in X \times B\}$ = $g^{-1}(B) \in \mathcal{X}$ due to $(\mathcal{X}, \mathcal{Y})$ -measurability of g.

Theorem 1. If $\mathscr{X} \subset 2^{x}$, $\mathscr{Y} \subset 2^{Y}$, $\mathscr{V} \subset 2^{X \times Y}$, $\mathscr{Z} \subset 2^{Z}$, $f: X \times Y \to Z$ is $(\mathscr{V}, \mathscr{Z})$ -measurable and $g: X \to Y$ is $(\mathscr{X}, \mathscr{V})$ -projection measurable, then $f(\cdot, g(\cdot))$ is $(\mathscr{X}, \mathscr{Z})$ -measurable.

Proof. For $C \in \mathcal{Z}$, we have $\{x: f(x, g(x)) \in C\} = \{x: (x, g(x)) \in f^{-1}(C)\} \in \mathcal{Z}$ by the hypotheses.

Corollary. Let \mathcal{X} , \mathcal{Y} , \mathcal{Z} be q-algebras on X, Y, Z, respectively, let $f: X \times Y \to Z$ and $g: X \to Y$. Any of the following conditions is sufficient for $(\mathcal{X}, \mathcal{Z})$ -measurability of the superposition $f(\cdot, g(\cdot))$.

- a) f is $(\mathcal{V}, \mathcal{Z})$ -measurable, where $\mathcal{V} = \{A \times Y, X \times B : A \in \mathcal{X}, B \in \mathcal{Y}\}$, and g is $(\mathcal{X}, \mathcal{Y})$ -measurable
- b) f is $(\mathcal{V}, \mathcal{Z})$ -measurable with \mathcal{V} being the q-algebra generated by the rectangles $A \times B$ $(A \in \mathcal{X}, B \in \mathcal{Y})$, and g is $(\mathcal{X}, \mathcal{V})$ -projection measurable.

Other conditions implying superposition measurability can be obtained by combining our results with those of T. Neubrunn [1]. Recall that a subfamily \mathcal{A} of a q-algebra is strongly compatible iff for any A, $B \in \mathcal{A}$ the intersection $A \cap B$ is in the smallest q-algebra containing \mathcal{A} . Now Theorem 1 of [1] together with Part b of the last Corollary yields

Theorem 2. Let \mathscr{X} be a q-algebra of subsets of X, let Y be a second-countable topological space and \mathscr{Y} a σ -algebra of subsets of Y containing all open sets. Let \mathscr{B} denote the Borel σ -algebra on the real line R. Let $f: X \times Y \to R$ be such that $f(x, \cdot)$ is continuous for every x and there exists a dense set $D \subset Y$ such that $\{\{x: f(x, y) \in B\}: y \in D, B \in \mathscr{B}\}$ is a strongly compatible subfamily of X. Let \mathscr{V} denote the q-algebra generated by rectangles $A \times B$ ($A \in \mathscr{X}$, $B \in \mathscr{Y}$). If $g: X \to Y$ is $(\mathscr{X}, \mathscr{V})$ -projection measurable, then $f(\cdot, g(\cdot))$ is $(\mathscr{X}, \mathscr{B})$ -measurable.

The last theorem can be modified in the manner of Theorem 2 of [1], using the notion of P-system.

REFERENCES

- [1] Neubrunn, T.: Compatibility in quantum logics. To appear in Proceedings of Conference on Ergodic Theory and Related Topics, Vitte 1981.
- [2] Šragin, I. V.: Uslovija izmerimosti superpozicii. Doklady Akademii Nauk SSSR 197, 1971, 295—298.
- [3] Šragin, I.V.: Superpozicionnaja izmerimosť. Izvestija vysšich učebnych zavedenij (Matematika) 1, 1975, 82—92.

Author's address:

Jozef Dravecký Katedra matematickej analýzy MFF UK Matematický pavilón Mlynská dolina 842 15 Bratislava

SÚHRN

O MERATEĽNOSTI SUPERPOZÍCIÍ

J. Dravecký, Bratislava

V článku sa podávajú postačujúce podmienky merateľnosti superpozície $f(\cdot, g(\cdot))$, kde $f: X \times Y \to Z$, $g: X \to Y$, pričom triedy merateľných množín v priestoroch X, Y, Z nemusia byt σ -algebry, ale všeobecnejšie systémy.

РЕЗЮМЕ

ОБ ИЗМЕРИМОСТИ СУПЕРПОЗИЦИЙ

Й. Дравецки, Братислава

В статье дадутся достаточные условия измеримости суперпозиции $f(\cdot, g(\cdot))$, где $f\colon X\times Y\to Z, g\colon X\to Y$ и классы измеримых множеств в пространствацх X, Y, Z более общие системы чем счётно аддитивные кольца.

Received: 30, 12, 1981

