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A UNIFIED APPROACH
TO THE TRANSFINITE CONVERGENCE
AND GENERALIZED CONTINUITY

ANNA NEUBRUNNOVA, Bratislava

The problems, as to whether a given set of functions is closed with respect to
the transfinite convergence, were studied in various papers (see [6, 8, 9, 11, 12,
15]). The sets of functions which are considered are mostly sets of functions which
are continuous in some generalized sense. Most of the known results concern
functions on metric spaces.

The aim of the present paper is to give such results for general topological
spaces. On the other hand we want to unify some methods which are used in the
theory of the transfinite convergence of functions.

Basic notions and some results

Throughout all the paper a transfinite sequence is a sequence {a}:<q, where
2 is the first uncountable ordinal number. If the members a: belong to
a topological space, then we define the transfinite convergence as follows.

(I) A transfinite sequence {ae }:<q of elements of a topological space X is said

to be convergent to an element a € X (we write £1<n‘1, az = a), if to any neighbour-

hood U of a there exists & < £ such that a; € U for any &= &,.

The following lemma was proved by Sierpinski ([13]) for transfinite sequences
of real numbers. In the form stated here it may be found e. g. in [6].

Lemma 1. Let X be first-countable T;-space and {a:}:<q, a: € X a transfinite
sequence of elements convering to a€X. Then there exists & < £ such that a: =a
for E=E&,.

The preceding lemma motivates a new definition of the transfinite con-
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vergence, which may be used in any abstract set. The idea of such definition is due
to J. S. Lipinski [8].

(IT) Let X be a set and {ag}:<q a transfinite sequence of its elements. Then
{a}¢<q is said to be convergent to an element a € X, if there exists & < Q such,
that a; = a for £E=&,.

The following proposition follows immediately from Lemma 1.

Proposition 1. Let X be first-countable T;-space. Then the convergences in
both the senses (I), (II) coincide.

We give two simple examples, showing that the assumptions on X in
Proposition 1 are essential.

Example 1. Let X = {a, b} and 7= {#, X} a topology on X. Putting a; = a for
&< Q we see that {a; }¢<q converges in the sense (I) both to a and b, while in the
sense (II) the convergence is uniquely determined. The space X in this case is not
a T;-space.

Example 2. Consider X = {&: £ = Q} with the order topology (see [4], p. 87).
Put a; = § for £ < Q. The sequence {a}:<a converges in the sense (I) to Q, while it
does not converge in the sense (II).

Begining from now, if a topology on X is given, the convergence always means
convergence in the sense (I). Of course if the topology will not be given on X the
convergence is taken in the sense (II). In all topological cases where the converg-
ence of {a;}s<a Will be considered, the spaces will be first-countable and T, so
there will be no misunderstandings.

Let X, Y be two sets, {f:}s<a a sequence of functions f:: X— Y. The

(pointwise) convergence of {f;}:<q to a function f: X— Y means that 1515“, fe(x)=

f(x) for every x € X (shortly égg fe=0.

From the definition of the pointwise convergence and from a property of the
set of all ordinal numbers § < Q the following known theorem follows (For the case
of real functions see [13]).

Lemma 2. Let f;: X—>Y, f: X—> Y be such that lsi<n‘12f;=f. Let Mc X be

a countable set in X. Then there exists & < Q such that f,(x) = f(x) for EZ &, and
every xe M. -

Continuity

To unify various results on transfinite convergence and continuity and to
- obtain some new results, we chose the following approach.
Suppose Y to be aset. Let to any y € Y a collection ¥, of subsets of Y be given
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such that the following is true:
Sed,>yeS

Given such a collection we say that Y is an ¥-space.

Let X be a topological space and Y an #-space and f: X — Y a mapping. Then
f is said to be F-continuous at x € X if for any S € ¥y, there exists a neighbour-
hood U of x such that f(U) < S. If f is #-continuous at any x € X, we say that it is
&-continuous.

Remark 1. Obviously if both X and Y are topological space and if for any
y €Y the collection ¥, is the collection of all (open) neighbourhoods of y, then
-continuity coincides with the usual notion of continuity.

Theorem 1. Let X be a first-countable topological space, Y an %-space. Let
fe: X>Y(E§<Q) be F-continuous and let {f;}:<a converge to f. Then f is
F-continuous.

Proof. Suppose f not to be ¥-continuous at x,. Then there exists S € %,
such that for any neighbourhood U of x, there is x € U such that f(x)¢ S. Since X
is first countable, there exists a countable basis { U, };-; of neighbourhoods of x,
and we can choose x, € U, such that f(x,)¢ S for n=1, 2, ... By Lemma 2 we can
choose &,< Q such that

fe(x,)=f(x.) for n=0,1,2, ..., EZE,. (1)

By -continuity of fs, at x, there exists a neighbourhood U of x, such that
fo(U) = S. Hence for some n f,(U,) < fo(U) = S. Thus fs(x.) € S. The last and (1)
give f(x,)€S. It is a contradiction.

Corollary 1. Let X be a first-countable topological space, Y first-countable
T;-space. Let {f:}:<q be a transfinite sequence of continuous functions defined on
X with values in Y and converging to f. Then f is continuous.

Proof. It follows directly from Theorem 1 (see also Remark 1).

Remark 2. Corollary 1 covers some known results on transfinite convergence
of continuous functions (see [12, 13, 15]).

In [12] an example was given, showing that there exists a topological space,
and a sequence {f; } g of functions f; (£ < Q), f;: X— R, which are continuous and
the limit function is not continuous. The example was given by means of the
continuum hypothesis. The following example shows the same fact without the
continuum hypothesis. ‘

Example 3. Let X ={&: £§= Q} with the order topology (see [4] p. 87). Let
{Ns}t<a, M: <L be a transfinite sequence of non-limit ordinal numbers such that
{Ne}z<a is cofinal with Q. For £< Q define f;: X—R as

_ 1, lfxéng
fE(")‘{o, x>
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Then éingf;(x)=l, if xeX, x#Q, l!img E(22)=0. The limit function is not
< <

continuous, because it is not continuous at Q, while f: (§ < Q) are continuous.

Remark 3. Note that the limit function in Example 3 is not even weakly
continuous, while f:(§ <€) are obviously weakly continuous.

There are also another types of continuities for which the preserving under
transfinite convergence may be proved by means of Theorem 1.

If X, Y are topological spaces then a function f: X—Y is said to be
continuous in the sense of Singal (see [13]) at a point x € X, if for any neighbour-
hood V of f(x) there exists a neighbourhood U of x such that f(U)c(V)° (E°
denotes the interior of a set E). The continuity in the sense of Singal (on X) is
defined in an obvious way.

One can see that the last notion of continuity may be obtained as #-continuity
where for any y € Y we take ¥, as the set of all (V)° where V is a neighbourhood of
y. So from Theorem 1 we obtain the following.

Corollary 2. Let X be first-countable, Y first countable and T,. Let f;: X—

Y (& < Q) be continuous in the sense of Singal. Let mel} fs =f. Then f is continuous

in the sense of Singal.

Quasicontinuity

The classical notion of quasicontinuity of a function f: X— Y, where X, Y are
topological spaces (see [4], [7]) may be formulated also if Y is an $-space.

Suppose that X is a topological space, Y an ¥-space. A function f: X—> Y is
said to be ¥-quasicontinuous at x, € X, if for any S € ¥, and any neighbourhood
U of x, there exists a nonempty open set G = U such that f(G) = F;,,. It is said to
be ¥-quasicontinuous, if it is ¥-quasicontinuous at any x € X.

Remark 4. If both X, Y are topological spaces and if we take for any ye Y
the collection &, to be the collection of all neighbourhoods of y, then the
corresponding ¥-quasicontinuity coincides with the usual quasicontinuity.

Remark 5. If X, Y are topological spaces and if for y € Y we take ¥, as the
set of all closures V of all neighbourhoods V of y, we obtain weak quasicontinuity.

A topological space will said to be strongly separable if any of its subspace is
separable (in the relative topology). It is said to be strongly locally separable, if for
any x € X there exists a neighbourhood U of x, which is a strongly separable
subspace of X.

Theorem 2. Let X be strongly locally separable space, Y an &-space. Let
{fe}e<a be a transfinite sequence of ¥-quasicontinuous functions f;: X— Y con-
verging to f. Then f is ¥-quasicontinuous.

Proof. Suppose f not be F-quasicontinuous at xoe€ X. Then there exists
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S € . and a neighbourhood U of x, such that for any nonempty open G c U
there exists a point x € G for which f(x) ¢ S. Since X is strongly locally separable,
we may suppose U to be strongly separable. The set

M={x:xeU, f(x)¢S) (2)

is dense in U. Hence M contains a countable dense set D, which is dense in U.
Since {f:}:<a is convergent on DuU{x,}, we have from Lemma 2

fe(x)=f(x) forany xe Du{x,} and any E=E,,

where &< 2 is suitably chosen.

The ¥-quasisontinuity of fs, at x, implies that a nonempty open set W< U
exists such that f,,(W)cS. Since WnD# 0, there exists x e WnD with fy(x)€S.
Hence, by (3), f(x)€ S. Since x € M, it is a contradiction (see (2)).

If X satisfies the first-countability axiom we can omit in Theorem 2 the
assumption of strong local separability of X. We obtain

Theorem 3. Let X be locally separable, first countable topological space.
Then, under the same assumptions on Y and f:(£ <) as in Theorem 2, the limit
function f is ¥-quasicontinuous.

Proof. Suppose f not to be F-quasicontinuous at x,. Then a set S € ¥, and
a neighbourhood U of x, exists such that for any nonempty open G < U there is
x € G with f(x) ¢ S. U may be supposed separable. Let M be defined by (2) as in
the proof of Theorem 2. Let D be any countable dense set in U. For s € D let { B;)}
(n=1,2,...) be a countable basis of neighbourhoods of s. We may suppose
B. c U. Hence there is x; € B; such that x; € M. The set

T={x;:seDn=1,2,..}
is a countable dense set in U. Using Lemma 2 we obtain &< Q such that
fe(x)=f(x) forany xe Tu{x,} and any E=E,

Now we use the quasicontinuity of fs, at x, and the proof ends in the same way
as the proof of Theorem 2. '

Corollary 3. Let X be either strongly locall separable or locally separable and
first countable topological space. Let Y be first countable T;-space, fi: X —

" Y(& < Q) quasicontinuous functions such that 1§1<r{1) f: =f. Then f is quasicontinuous.

Proof. It follows from Theorem 1 and 2 (see also Remark 5).

Note that Corollary 1 generalizes the result on quasicontinuity of the limit of
a transfinite sequence of quasicontinuous functions defined on a locally separable
metric space (see [10]).

As another corollary we way obtain a new result concerning transfinite
convergence of weakly quasicontinuous functions.
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Corollary 4. Let X, Y satisfy the assumptions of Corollary 1. Let f;: X— Y,
E< Q, by weakly quasicontinuous and converging to f. Then f is weakly quasicon-
tinuous.

Note that the assumptions of strong local separability and local separability
and fist countability appearing in Theorem 2 and Theorem 3 respectively, are
independent each of other. One can see it from the following examples.

Example 4. Let X be an uncountable set with a topology consisting of all the
sets with finite complements and of the empty set (cofinite fopology). It is easy to
see that X is strongly separable, but not first countable.

Example 5. Let X be the set of all ordered pairs of real numbers. Define the
topology by means of the basis of neighbourhoods in each point (a, b)e X. As
a basis at each (a, b) € X we take the intervals (a, a + €) X (b, b + 1), where £ >0,
1n>0. The space is evidently first countable. But if we take any (a, b) € X and any
neighbourhood U of (a, b), then there exists a subspace of U, which is not
separable. The idea of the proof of this fact is developped in [3] p. 88. In fact, take
any neighbourhood of the type (a, a +¢) X (b, b+ ¢), € >0, of a point (a, b). For
the simplicity put a =0, b=0. Take now the set M of all (x, y) for which
£
2
the set M itself. Thus X is not strongly separable space.

(x, )€ {0, €)X (0, €) and y = —x +~. Then the only dense set in the space M is

Somewhat continuity

The notion of somewhat continuity for a function f: X— Y, where X, Y are
topological spaces, was introduced in [3]. f is called somewhat continuous, if for
any open GcY for which f7'(G)##, we have (f'(G))°#0. An equivalent
definition of somewhat continuity may be given using the following necessary and
sufficient condition of somewhat continuity.

Proposition 2 (see [3]). A function f: X— Y is somewhat continuous if and
only if for any set D dense in X the set f(D) is dense in f(X).

To formulate a definition of somewhat continuity for functions with values in
F-spaces we introduce the notion of S-density.

Let, A, Bc Y. The set A is said to be ¥-dense in B if for any ye B and any
S € ¥, containing y there is SNA # 0.

Remark 6. Obviously the notion of ¥-density coincides with that of density, if
Y is a topological space and ¥, (y € Y) is defined by means of its topology.

Let X be a topological space and Y a ¥-space. A function f: X — Y is said to
be ¥-somewhat continuous if for any set D dense in X the set f(D) is ¥-dense in
f(X).

Theorem 4. Let X be a strongly separable topological space, Y an ¥-space.
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Let {f:}:<e be a transfinite scquence of #-somewhat continuous functions,
fe: X—'Y, converging to a function f. Then f is #-somewhat continuous.

Proof. Let M be a set dense in X. We have to prove that f(M) is #-sense in
f(X). There exists a countable dense set in M and hence in X. It is sufficient to
prove that the image of this countable set is dense in X. So we may suppose that M
is countable. According to the convergence of {f:}:q, there exists & such that
fe(x)=f(x) for EZ &, and every x € M. Let y, € f(X). There exists x, e X such that
f(x0) = yo. For sufficiently large & we have f:(xo) = f(xo). With no loss of generality
we may suppose that &, was chosen such that f:(x,) = f(xo) for EZ &,. The set fs,(M)
is #-dense in fs,(X) due to the somewhat continuity of fs,. Hence for any S containg
Yo, there exists y € f,(M) = f(M). Thus f(M) is #-dense in f(X).

Corollary 5. Let X be a strongly separable topological space and Y a first
countable T;-space. Then any convergent transfinite sequence { f: } .. of somewhat
continuous functions f;: X— Y converges to a somewhat continuous function.

Remark 7. The above Corollary is obviously valid for metric spaces. The
version for metric spaces is given in [10]. In [11] there was also given an example
that for locally separable metric spaces such theorem is not valid. So Theorem 4
can not be extended to strongly locally separable topological spaces.

The notion of the weak somewhat continuity can be formulated in the
following way.

A function f: X—Y, where X, Y are topological spaces, is said to be weakly
somewhat continuous, if for any open set G Y for which f'(G)#@ we have
(fH(G))° #0.

Let Y be a topological space. A set A < Y will be said to be weakly dense in
a set Bc Y if for any point ye B and any neighbourhood V of y we have
VNA#.

The following proposition will be useful.

Proposition 3. Let X, Y be topological spaces. A function f: X — Y is weakly
somewhat continuous if and only if for any set D = X, dense in X, the set f(D) is
weakly dense in f(X).

Proof. Let f be weakly somewhat continuous. Let y,€ f(X) and V any
neighbourhood of y,. Then f~'(V)## and by the weak somewhat continuity
(f'(V))°#0. By density of D, there exists a point x € D, x € (f '(V))°. Hence
f(x)e V. So f(D) is weakly dense in f(X).

Conversely let f(D) be weakly dense in f(X) for any set D, dense in X.
Suppose f not to be weakly somewhat continuous. Then there exists V openin Y
such that f (V) #0, (f'(V))°=0. Put D= X — f~(V). Then D is dense in X. But

fD)=f(X-f(V)=f(X)-V

is not weakly dense in f(X), because Vnf(D)=40.
The weak somewhat continuity may be interpre!ted as ¥-somewhat continuity
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if we take for any y € Y the set ¥, as the set of all V where V is a neighbourhood
of y.

So we may now obtain a result for transfinite of weakly somewhat continuous
functions.

Theorem 5. Let X be a strongly separable topological space, Y a first
countable T;-space. Let {f:}:<o be a transfinite sequence of weakly somewhat
continuous functions, f;: X— Y, converging to f. Then f is weakly somewhat
continuous.

Proof. It follows from Theorem 4 and Proposition 3.

Cliquishness

The cliquish functions are defined in the literature for functions defined on
a topological space X with values in a metric space Y with the metric g. (see e.g.
[9)). .

Such a function is said to be cliquish at xoe X if for any £¢>0 and any
neighbourhood U of x, there exists a nonempty open set G = U such that for any
x1, X2€ G o(f(x1), f(x2)) <e. Itis said to be cliquish if it is cliquish at any x € X.

It is possible to define the notion of the cliquish function for a function with
values in an uniform topological space. But we can define it in an abstract way
similarly as we have introduced the previous continuity notions.

Let Y be a set. Consider a collection & of subsets of Y X Y such that the
diagonal, i. e. the set A={(y, y): ye Y} is a subset of any S e ¥. Given such
a collection ¥ on YXY we say that Y is an uniform %-space with the
F-uniformity .

Let X be a topological space, Y an uniform ¥-space. A function f: X— Y is
said to be #-cliquish at xo€ X, if for any S € & and any neighbourhood U of x,
there exists a nonempty open set G< U such that for any x, ye G we have
f(x), f(y))€eS.

Remark 8. If Y is a uniform topological space with the uniformity ¥ (see [2],
p. 203), then taking =% we obtain uniform ¥-space.

In case of metric spaces, taking the natural uniformity, we obtain from the
corresponding &-cliquisnes the usual cliquishness.

Theorem 6. Let X be a first-countable locally separable topological space.
Let Y be an %-uniform space. Let a transfinite sequence {f;}s<q of ¥-cliquish
functions defined on X taking values in Y converge to f. Then f is ¥-cliquish.

Proof. Suppose f not to be F-cliquish at xo € X. Then there exists S € ¥ and
an open set U containing x, such that for any nonempty open set G = U there is
a pair (y, z), y € G, z € G with (f(y), f(z)) ¢ S. Let M be the set of all pairs (y, z),
y € U, z e U for which (f(y), f(z)) ¢ S. With no loss of generality we may suppose
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that U is separable. Let D c U be a countable dense set in U. For any s € D let
{B;}, B;c=U be a countable basis of neighbourhoods of the point s. Take
(v, z5)e M, where y;, 7, € B;.

Put

T=\_L‘JD Ul {yatulz)

The set T is countable and since {f; } <o is convergent to f, there exists & < Q such
that for E= &, fe(1) = f(t) for any t € T. Since fy, is S-cliquish at x,, there exists a set
G < U with (fs(y), fs(2)) € S for any y, z € G. But for suitably chosen n we have
{B;} c G, hence y;, z;€G. Since fe(y:)=fu(ys) and fs(z:)=/(z,) we have
(f(y:), f(zi)€S. It is a contradiction because (y;, z;) e M.

Corollary 6. Let X be a locally separable, first countable topological space.
Let Y be a uniform first countable topological space. Then any convergent
transfinite sequence {f:}e<o Of cliquish functions defined on X with values in Y
converges to a cliquish function.

The preceding Corollary covers a result known for transfinite sequence of
cliquish functions defined on a locally separable metric space with values in
a metric space (see [9]).
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SUHRN

JEDNOTNY POHLAD NA TRANSINITNU KONVERGENCIU
A ZOVSEOBECNENU SPOJITOST

A. Neubrunnova, Bratislava
Z jednotného hladiska sa skiima zachovavanie réznych typov spojitosti pri konvergencii trans-

finitnych postupnosti. Nové vysledky sa dosahuju najma pre funkcie definované na lokalne separabil-
nych topologickych priestoroch, ktoré nie sii nevyhnutne metrickymi.

PE3IOME

OBIIAA TOYKA 3PEHHS HA TPAHC®PUHUTHYIO CXOIOUMOCTb
W OBOBIIEH7I0 HEITPEPBIBHOCTb

A. Ho#6pynHoBa, Bpatuciasa
C oflei TOYKM 3pEHHs MCCIIENyeTCs COXpPaHEHHe Pa3IMYHBIX THIOB HENPEPbIBHOCTH MpPH
CXOJMMOCTH TpPaHC(HHMTHBIX mociefoBaTenbHocTed. HoBble pe3ympTaThl QOKa3aHbl MMEHHO MAJIs

¢yHKUMI onpefesieHHbIX Ha JIOKAIBLHO cenapabelbHbIX TONMOJOTHYECKHX, Heobs3aTensHO MeTpHYec-
KHX, IPOCTPAHCTBaXx.
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