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ON SEQUENTIAL CHARACTERIZATIONS
OF QUASICONTINUOUS MULTIFUNCTIONS

TIBOR NEUBRUNN, Bratislava

The upper and the lower continuity of multifunctions admits a sequential
characterization (see e.g. [1], [5]). Such a characterization seems to be usefull in
some applications. (See [2]). If quasicontinuity of multifunctions is discussed, then
it is known (see [3]) that it cannot be in general characterized as a continuity on
a quasiopen set. In spite of it, a sequential characterization of the lower quasicon-
tinuity of a multifunction F by means of quasiopen sets is possible in some cases
when the characterization by means of its continuity on a quasiopen set fails.

Throughout the paper, if nothing else is said, X, Y denote the first countable
Hausdorff topological spaces. Multifunction is a mapping defined on X with the
values in the collection of nonempty subsets of Y. We write for shortness F: X— Y
to denote a multifunction F defined on X with the values in the potence setof Y. A
multifunction F: X— Y is said to be lower quasicontinuous at x,€ X if for any
open set V for which F(x,)n V#@ and for any open U containing x, there exists
a nonempty open G < U such that F(x n V## for any x € G. F is said to be upper
quasicontinuous at xo, if for any V open containing F(xo,) and any U open
containing xo, there exists a nonempty open set G < U such that F(x) < V for any
xe€G.

The notion lower semi-quasicontinuous and upper semi-quasicontinuous
would be more appropriate. It would correspond to upper semi-continuous and
lower semi-continuous respectively. We omit the word “semi’” for shortness.

If f: X— Y is a single valued function, then any of the above definitions of
upper (lower) quasicontinuity gives the notion of the quasicontinuity of f at xo. Of
course, f should be interpretted as a multifunction assigning to any x € X the value

{f(x)}-
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1. Lower quasicontinuity

Lemma 1. Let X, Y be first countable topological spaces. Let xoe X be
a point which is not isolated. Suppose that { P, } -, is a sequence of properties such
that to any neighbourhod U of x, a sequence { M, } -, of nonempty open sets exists
such that P, is satisfied on M,. Then a descending base { W, } 7, of neighbourhoods
of xo, and a sequence {Gi}s-; of mutually disjoint open sets exist such that
G, c W, GinW,,, =0, P, is satisfied on G, for k =1, 2, ... Evidently then the set

A= D Gu{xo} is quasiopen.
k=1

Proof. Let {U,}.-: be a descending base of neighbourhoods of x,. Put n;=1
and take U,,. There exists a nonempty open M, = U,, such that P, is satisfied on
M,. Using the fact that X is Hausdorff and M, # {x,}, we can find n,> n, with
M,-U,##0. Put G, =M,-U,, W,=U, W,=U, Evidently G,cW,
GinW,=0 and P, is satisfied on G,. Now let us proceed by induction. Suppose
that for k=1 the sets W, > W, > ... W, o W,,, are constructed such that W, =U,,,
where n;<n;,, for i=1, 2, ..., k. Further a sequence G,, G, ..., G; is such that

k
GinG; =0 for i# j, G; are nonempty open (U G,-)mU,,H, =@, and P, is satisfied on
i=1

G fori=1,2, ..., k. Then M., c U,,,, exists such that P,., is satisfied on M.,
and M,., is nonempty, and open. Again, since X is Hausdorff and M, # {xo}
there exists ny.,>n,,; such that M, ,, — U,,,,#0.

Put Giv1=M,,,—U,.,. The sets Gy, ..., Gi., are pairwise disjoint. It is
sufficient now to put W,.,=U,,.,.

Theorem 1. A multifunction F: X— Y is lower quasicontinuous at x,€ X if
and only if for any y € F(x,) a quasiopen set A containing x, exists such that for any
sequence {Xx,}n-1, X, € A, x,—> Xo there exists {y,}n=1, y. € F(x.), y.— .

Proof. Suppose F to be lower quasicontinuous at x,. If x, is an isolated point
then we can take A ={x,}. So let x, be not isolated. Let { V, }_; be a descending
sequence of open neighbourhoods which is a base at y. Let n be positive integer.
Denote- P, the property which asserts that to V,, and;any neighbourhod U of x,
there exists a nonempty open set M = U such that F(x)nV,# @ for any x € M. By
the lower quasicontinuity of F at x, such a set exists. By lemma 1 there exists

a sequence {Gy}r-: of mutually disjoint open sets such that A = D G.U{xo} is
k=1

quasiopen. Moreover, Gi, = W, for k=1, 2, ..., where { W, }¢.; is a descending
base of neighnourhoods at xo, Gy Wi.1 =0 and F(x)n V,## for any x € G;.
Now let x, € A, x,, — xo. With no loss of generality we may suppose x, # xo for
n=1,2,.... Since x,€ A, x,# xo, there exists i(n) such that x, € G, hence
F(x,)N Vi # 0. Take y, € F(x,)n V. Let V be any neighbourhood of y. Choose
k such that V, < V. Since x, — xo, there exists N such that x,, € W, for n = N. In this
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case we have i(n) = k, by the construction of the sequence { G, }i-,. S0 V< Vi
V. Thus for n=N, y, € F(x,)n Vi< V. The convergence y,— y is proved.
Now let us prove the sufficient part. Suppose that for any ye F(x,) the
quasiopen set A with the mentioned properties exists. Suppose F not to be lower
quasicontinuous at x,. So we have an y € V and an open set U containing x, such
that VA F(x)=# for any x belonging to a dense set D = U. Evidently {x,} is not
open. Take the quasiopen set A. Then AnU, as a nonempty intersection of an
open and quasiopen set, is quasiopen and the interior (AnU)" is nonempty.

Moreover, xo€ (ANU)°. From the last and from the first countability of X and
density of D there exists a sequence {x,}r.i, x,.eD, x,€A, x,—x,. Hence
F(x,)nV=0for n=1,2, ... and there is not a sequence {y,}:-, with y, € F(x,),
y.—y. It is a contradiction.

Remark. The set A in the above Theorem depends obviously on the point
y € F(xo). To show that in general it cannot be choscn independently on y € F(x,)
we can use an example given in another connections in [3].

Example. Let F: (0, 1)—> R be defined as

F(0)={1, 2}
. 1 1
{1} if xe<ﬂ, m>,

F(x)=
. 1 1
2r o xe<2n+1’§;)

n=1,2, .

It is easy to show (see [3]) that F is lower quasicontinuous. Let A be
a quasiopen set with the property that for any {x, }7_:, x, € A, there exists {y,}>_,,
y» € F(x,), y»—1, Then A necessarily contains a sequence {z,}i-:, z,#0, n=1,

=1 1
2, 25w o E,._L—J1<5;, ——n — 1).

Then for any y, € F(z,) we have y, =1, and so A may not serve for the point
2 € F(0).

The above example was used in [3] to show that lower quasicontinuity may not
be characterized by means of the lower continuity of its restriction on a quasiopen
set. In this connection we can give a necessary and sufficient condition for such
a characterization.

Theorem 2. Let F be a lower quasicontinuous multifunction at a point x,. In
order that a quasiopen set A exists such that F| A is lower continuous at x, the
following condition (C) is necessary and sufficient.

(C) There exists a quasiopen set A containing x, (not depending on y € F(x,))
such that for any y € F(x,) and any sequence {x,} -1, X, € A, x,— Xo, there exists
Yn € F(x,), y.—.
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Proof. Let A be quasiopen, xo€ A and F|A is lower continuous. We can
consider the relative topology on A, and the sequential characterization of the
lower continuous function F|A (see [4]) is possible, i.e. for any y e F| A(x,)
=F(x0)) and any sequence {x,}r-i, X, €A, X,— Xo, there exists y, e F|A(x,)
(=F(x,)) such that y,—y.

Now let (C) be satisfied and suppose that F| A is not lower continuous at xo.
Then an open set V, which is a neighbourhood of some y € F(x,), exists such that
for any neighbourhood U of x, there is a point x e Un A for which F(x)n'V =0. So
taking a countable base { U, }.- of the point x,, we obtain a sequence {x,}n-1,
x, € U,.nA with F(x,)nV=@. It is a contradiction to (C).

There is a possibility to characterize the lower quasicontinuity of F at x, by
means of selectors. Recall that a selector for F is a single valued function f such that
f(x) e F(x) for any x € X.

Theorem 3. A multifunction F is lower quasicontinuous at x, € X if and only if
for any ye F(x,) there exists a selector f which is quasicontinuous at x, and
f(x0)=y.

Proof. Let F be lower quasicontinuous at x,. If x, is an isolated point then any
f such that f(x0) =y, f(x) € F(x) if x# x, is a quasicontinuous selector at x,. So let
Xo be not isolated. Let y € F(xo) and { Vi }x-: be a descending base of neighbour-
hoods at the point y. Let {G.}z-:i, {Wi}k-1 have the same meaning as in
Theorem 1. Thus G, (k =1, 2, ...) are nonempty open mutually disjoint, G, c W,,
GinW,.1=0, where {W,} is a descending base of neighbourhoods at x,,
A = |J Gy U{xo} a quasiopen set and F(x)n Vi # @ if x € G. Define f as follows:

n=1

f(xo)=y
f(x)eF(x)nV, if xeG;,
f(x)e F(x) if xéA

The function f is evidently a selector for F. It is quasicontinuous at x,. In fact let V
be any neighbourhood of y and U any neighbourhood of x,. Let k be such that
Vi< V. There exists i >k such that W;c U, hence GicU. If xeG: then
f(x)e Vic Vi c V. The quasicontinuity of f at x, is proved.

Sufficiency. Let y € F(x,), V any neighbourhood of y and U any neighbour-
hood of x,. Let f be a quasicontinuous selector at x, with f(x,) =y. Then there is
a nonempty open G < U such that f(x)e V if x € G. Since f(x)e F(x), we have
F(x)n V> {f(x)} #0. Thus F is lower quasicontinuous at xo.

A question may arise, whether an analogical characterization as given in
Theorem 1 may be obtained if we omit the first countability axiom substituing
sequences by nets. The following example (used also in [3] in another connection)
shows that the answer is negative.

Example 2. Let X={x: x=w,} where w, is the first uncountable ordinal.
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Consider the order topology on X. Let Y =( — o, ®) with the usual topology. It is
well known that any x € X may be expressed in an unique manner as x =& +n,
where & is a limit ordinal number and n a nonnegative integer. Define now
a single-valued function f: X— R such that f(w,;)=0,

;11- if x=E+n, n#0,
fx)=

1 if x<w, n=0.

Then f is quasicontinuous (hence both upper and lower quasicontinuous,
because f is single-valued) at w;. It follows from the fact that in any neighbourhood
of w, there is an isolated point of the form & + n with sufficiently large n. On the
other hand, there is not a quasiopen set A containing w, such that for arbitrary net
{xs4}, xa€ A, converging to w, the net {f(xs)} converges to 0. In fact, if A is
quasiopen w; € A, then we may choose a transfinite scquence {xg }(& <w:)xz# wy,
such that it converges to w; However the net {f(x:)}(§ <w:) does not convege
to 0. In fact, if {f(xe)}(& < @) converges to 0, then f(xe) =0 begining from certain
1 < w, because it is a transfinite sequence of real numbers (see [4]). However it is
a contradiction to the definition of f.

2. Remarks on the upper quasicontinuity

The upper quasicontinuity may be under fairly general assumptions charac-
terized by means of the upper continuity on a quasiopen set. Thus in these cases the
sequential characterization may be obtained from the sequential characterization
of upper continuous multifunctions. Thus the problem of a sequential characteriza-
tion of an upper quasicontinous multifunction will follow immediately from two
konwn results. The first one (Lemma 2) concerns the characterization of the upper
quasicontinuous multifunction by means of the upper continuity of its restriction.
The second (Lemma 3) is a sequential characterization of the upper continuity.

Lemma 2. ([5] Theorem 2) Let X be a first countable Hausdorff space and Y
a second countable Hausdorff space. Let F: X— Y be such that F(x,) is compact.
Then F is upper quasicontinuous at x, if and only if there exists a quasiopen set A
containing x, such that F| A is upper continuous at xo.

Remark. In fact, Theorem 2 in [5] is formulated in slightly different way but
the proof of Lemma 2 is the same.

Lemma 3 ([S] Theorem 4). Let X be first countable, Y second countable
Hausdorff spaces. Let F: X— Y and F(x,) compact. Then F is upper continuous at
xo if and only if the following condition (D) is satisfied.

(D) If x, > xo and y, € F(x,), then there exists { y,, } x=: which is a subsequence
of {y.}n-1 such that y, —y € F(x).
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The above lemma coincides with Theorem 4 of [4]. An unessential change in
the proof of Theorem 4 of [5] should be done.

Theorem 4. Let X be first countable and Y second countable Hausdorff
spaces. Let xo€ X, F(x,) compact. Then F is upper quasicontinuous at x, if and
only if a quasiopen set containing x, exists such that the following is true. If x,, — xo,
x. €A, y.€ F(x,) (n=1, 2, ...), then there exists a subsequence {y,, } of {y.} such
that y,, — y € F(xo).

Proof. From Lemma 2 it follows that F is upper quasicontinuous if and only if
F|A is upper continuous on a quasiopen set A containing x,. However F|A
satisfies the assumptions of Lemma 3 when the relative topology on A is
considered. Hence F| A is upper continuous if and only if for any x, € A, x,— Xo
and y, € F(x,) there exists a subsequence {y,,} of {y.} such that y, — y € F(x,).
The proof is finished.

Of course another sequential characterizations of the upper quasicontinuity
may be obtained in the case when the upper quasicontinuity is characterized by
means of the upper continuity of its restriction F|A on a quasiopen set. It is
sufficient to use the appropriate sequential characterizations of the upper con-
tinuity. As to the latter it was discussed in [1] and [5].
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SUHRN
O POSTUPNOSTNYCH CHARAKTERIZ1CIACH KVAZISPOJITYCH MULTIFUNKCIf
T. Neubrunn, Bratislava
Charakterizuje sa kvazispojitost zhora a zdola pomocou postupnosti na niektorych typoch
topologickych priestorov.
PE3IOME

I[NOCIIENOBATEJNILHOCTHBIE XAPAKTEPU3ALIMUA KBA3WHEIIPEPLIBHOCTH
MHOI'O3HAYHBIX OTOBPAXEHUN

T. Ho#6pyn, Bpatucnasa

Harorcsa XapaKTE€pH3alu¥ KBa3HHENPEPLIBHOCTH CBEPXY M CHU3Y MPH NOMOLLIM NMOCJIEAOBATENBHOC-
TeH Ha HEKOTOPBIX TOMOJIOTHYECKUX MPOCTPAHCTBAX.
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