

Werk

Label: Article **Jahr:** 1984

PURL: https://resolver.sub.uni-goettingen.de/purl?312901348_44-45|log13

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

UNIVERSITAS COMENIANA . ACTA MATHEMATICA UNIVERSITATIS COMENIANAE

XLIV-XLV-1984

TWO PROPERTIES OF THE SEQENCE $n\alpha \pmod{1}$

OTO STRAUCH, Bratislava

1. The first property is connected with an example of an infinite set A of positive integers (ordered by increasing) which does not contain any infinite arithmetic progression. If differences between consecutive terms of A are unbounded, then A has this property automaticaly. If these differences are bounded, then this property again is possible. A familiar example is the set $A = Z^+ - B$, where B is a set having at least one element common with each infinite arithmetic progression of positive integers and the differences between consecutive terms of B are greater than one. An entirely different example is the set

$$A = \{ n \in Z^+; \{ n\alpha \} \in I \}$$
 (1)

where α is irrational, $\{n\alpha\}$ is a fractional part of $n\alpha$, and I is a subinterval of [0, 1] the length |I| of which satisfies

This set has the following properties

Theorem 1.

- (i) The set A contains no infinite aritmetic progression.
- (ii) For the set A there exist positive integers k_1 , k_2 such that

$$n+k_1 \in A$$
 or $n+k_2 \in A$

for all $n \in A$.

(iii) The set A contains an arbitrarily long arithmetic progression.

Proof. The assertion (i) is an immediate consequence of the fact that a polynomial sequence P(n), n = 1, 2, ... is uniformly distributed mod 1 for every polynomial P(x) with at least one irrational (nonabsolute) coefficient (see [1, Theorem 3.2, p. 27]). In our case $P(n) = (an + b)\alpha$.

To prove (ii), let us suppose $n \in A$, i.e. $\{n\alpha\} \in I$. The point $\{n\alpha\}$ divides the interval I into two subintervals, left I_1 and right I_2 . Let us translate the interval I_1 to

the point 1 and the interval I_2 to the point 0 and let us denote these intervals as I'_1 and I'_2 , i.e.

$$I'_1 = I_1 + 1 - \{n\alpha\}$$

 $I'_2 = I_2 - \{n\alpha\}$

Clearly, it is true

$$\{(n+k)\alpha\} \in I_1 \Leftrightarrow \{k\alpha\} \in I'_1$$

 $\{(n+k)\alpha\} \in I_2 \Leftrightarrow \{k\alpha\} \in I'_2$

for all $k \in \mathbb{Z}^+$. Since the sequence

$$\{n\alpha\};\ n=1,2,...$$
 (2)

of fractional part is dense in [0, 1], there exist $k_1, k_2 \in \mathbb{Z}^+$ such that

$$|1-\{k_1\alpha\}|<\frac{|I|}{2}$$

$$|0-\{k_2\alpha\}|<\frac{|I|}{2}$$

Moreover, at least one from the intervals I_1' , I_2' has the length $\geq |I|/2$ and therefore either $\{k_1\alpha\} \in I_1'$ or $\{k_2\alpha\} \in I_2'$. Thus, the proof of (ii) is finished.

The assertion (iii) is an consequence of the Erdős—Szemerédi's theorem [2] and of the fact that the set A from (1) has the asymptotic density equal to |I| > 0. Using proof of (ii) we can prove (iii) directly in a more general form:

Theorem 2. Let D+1 be a length of an arithmetic sequence and let A be a set defined by (1). Then there exist positive integers K_1 , K_2 such that either

$$\{n, n + K_1, n + 2K_1, ..., n + DK_1\} \subset A$$

or

$$\{n, n + K_2, n + 2K_2, ..., n + DK_2\} \subset A$$

for all $n \in A$. It is sufficient to choose K_1 , K_2 such that

$$|1-\{K_1\alpha\}|<\frac{|I|}{2D}$$

$$|0-\{K_2\alpha\}|<\frac{|I|}{2D}$$

Proof. For every positive integer $i \leq D$ it is true

$$0 < i - i\{K_1\alpha\} < \frac{i|I|}{2D} < 1$$

From it

$$0 < i - i \{ K_1 \alpha \} = i - i K_1 \alpha + i [K_1 \alpha] = 1 - \{ i K_1 \alpha \} < |I|/2$$

Similarly,

$$i\{K_2\alpha\} = \{iK_2\alpha\} < \frac{|I|}{2}$$

2. The sequence (2) has also the following interesting property:

Let $\{I_i\}$ be a sequence of pairwise disjoint subintervals of [0, 1] which covers (2) such that the series $\Sigma |I_i|$ of the lengths of $\{I_i\}$ satisfies

$$\Sigma |I_i| < 1$$

Let n_i denote the number of terms of

$$\{\alpha\}, \{2\alpha\}, ..., \{n\alpha\} \tag{3}$$

which belong to the interval I_i . Using uniform distribution of (2) we have

$$\frac{n_i}{n} \rightarrow |I_i|$$

as $n \to \infty$. On the other hand,

$$1 = \frac{n}{n} = \frac{n_1}{n} + \frac{n_2}{n} + \dots$$
 (4)

Thus the left side of (4) is equal to 1 and the right side of (4) is by terms convergent to $\Sigma |I_i| < 1$ (i.e. the asymptotic density is not σ -additive). Where is a "loss"? If the irrational α has bounded partial quotients in the continued fraction expansion we have a following answer:

Let N denote the number of intervals from $\{I_i\}$ which contain any terms from (3). Then

$$\frac{N}{n} \to 1 - \Sigma |I_i| \tag{5}$$

as $n \to \infty$. A sequence which has the property (5) we call "uniformly quick", see [3, Definition 9].

Definition. An infinite sequence $\{y_i\}$ from a finite interval I is said to be uniformly quick in I, if for every sequence $\{I_i\}$ of pairwise disjoint subintervals of I for which $\{y_i\} \subset \cup I_i$ we have

$$\operatorname{card} \frac{\{I_j \in \{I_i\}; I_j \cap \{y_i\}_{i \le n} \neq \emptyset\}}{n} \to \frac{|I - \bigcup I_i|}{|I|}$$

as $n \to \infty$. We shall prove

Theorem 3. The sequence (2) is uniformly quick if and only if irrational α has bounded partial quotients.

Proof. Order the finite sequence (3) to an increasing sequence

$$0 < \{\alpha i_1\} < \{\alpha i_2\} < \dots < \{\alpha i_n\} < 1 \tag{6}$$

Evidently

$$N = n - N_1$$

where N_1 denotes the number of pairs of consecutive points $\{\alpha i_j\}$, $\{\alpha i_{j+1}\}$ from (6) which belong to the same interval from $\{I_i\}$. Similarly

$$N \ge n' - N'_1$$

where n' denotes the number of terms from (3) which are contained in

$$[0,1]-\bigcup_{i\leq k}I_i$$

and also N'_1 is just so reduced N_1 , i.e. N'_1 denotes the number of pairs of consecutive points from $\{I_i\}_{i>k}$.

Using uniform distribution of (2) we have

$$n' \ge (1 - \varepsilon) \left(1 - \sum_{i \le k} |I_i| \right) n \tag{7}$$

for all sufficiently large n. Put

$$d = \min_{1 \le i < n} \left\{ \alpha i_{j+1} \right\} - \left\{ \alpha i_{j} \right\}$$

Clearly,

$$N_1' \le \frac{\sum_{i > k} |I_i|}{d} \tag{8}$$

Next, let

$$\alpha = [a_0; a_1, a_2, ..., a_n, ...]$$

be a continued fraction expansion of α and $a_n \leq c$ for all n. Since, see [4, p. 36],

$$\left| \alpha - \frac{p}{q} \right| > \frac{1}{q^2(c+2)(c+1)^2} = \frac{1}{c'q^2}$$

for every integers p, q > 0, then

$$d \ge \frac{1}{c'n} \tag{9}$$

Summary, by (7), (8), (9)

$$\frac{N}{n} \ge \left(1 - \sum_{i \le k} |I_i|\right) (1 - \varepsilon) - \sum_{i \ge k} |I_i| c'$$

Thus

$$\frac{N}{n} \ge (1 - \Sigma |I_i|)(1 - \varepsilon)$$

for every $\varepsilon > 0$ and for all sufficiently large n.

On the other hand,

$$\frac{n-\sum_{j\leq k}n_j}{n}\geq \frac{N-k}{n}$$

Thus

$$1-\Sigma |I_i| \ge \frac{N}{n} - \varepsilon$$

for every $\varepsilon > 0$ and for all sufficiently large n. From it follows (5).

Now, let α be an irrational number which has unbounded partial quotient. Then by [5, p. 435] the sequence (2) is not eutaxic, by [3, Corollary 1] also it is not quick and therefore also not uniformly quick. From it follows that for this α there exists a sequence $\{I_i\}$ of pairwise disjoint subintervals of [0, 1], which covers (2),

$$\Sigma |I_i| < 1$$

and

$$\liminf_{n\to\infty}\frac{N}{n}=0$$

The proof of Theorem 3 is finished.

By Definition every uniformly quick sequence is also uniformly distributed and also can be characterized by integration of continued functions.

Theorem 4. A sequence $\{y_i\}$ is uniformly quick in I if and only if for every sequence $\{I_i\}$ of pairwise disjoint subintervals of I which covered $\{y_i\}$ and for every bounded continued function f on I it is true

$$\frac{1}{n} \left(\sum_{\substack{n_i > 0}} \frac{1}{n_i} \sum_{\substack{y_i \in I_i \\ i \le n}} f(y_i) \right) \rightarrow \frac{1}{|I|} \int_{I - \bigcup I_i} f(y) \, \mathrm{d}y \tag{10}$$

as $n \to \infty$. Here n_i denotes the number of terms from $\{y_i\}_{i \le n}$ which belong to I_i .

Proof. It is sufficient to prove (10) for every step function. By Definition it is true for f = constant. Let f/J = constant, where J is a subinterval of I, |J| > 0. The part of $\{y_i\}$ which belongs to J is also uniformly quick in J and therefore the sequence from (10) which is reduced on J convergents to

$$\frac{1}{|J|}\int_{J-\bigcup I_i}f(y)\,\mathrm{d}y$$

Since

$$\frac{\operatorname{card} \{y_i \in J; i \leq n\}}{n} \to \frac{|J|}{|I|}$$

the proof is finished.

Similarly we obtain

$$\frac{1}{n} \left(\sum_{i \le n} f(y_i) - \sum_{\substack{n_i > 0 \\ i \le n}} \frac{1}{n_i} \sum_{\substack{y_i \in I_i \\ i \le n}} f(y_i) \right) \rightarrow \frac{1}{|I|} \int_{\bigcup I_i} f(y) \, \mathrm{d}y \tag{11}$$

as $n \to \infty$.

The limits (10), (11) can be perhaps applied in numerical integrations.

BIBLIOGRAPHY

- [1] Kuipers, L.-Niederreiter, H.: Uniform distribution of sequences. New York 1974.
- [2] Szemerédi, E.: On sets of integers containing no k elements in arithmetic progression. Acta Arith., 27, 1975, p. 199—245.
- [3] Strauch, O.: Diffin—Schaeffer conjecture and some new types of real sequencs. Acta Math. Univ. Comen., 40—41, 1982, p. 233—265.
- [4] Chinčin, A. J.: Řetězové zlomky. Praha 1952.
- [5] de Mathan, B.: Un critére de non eutaxie. C.R. Acad. Sci. Paris, 273, 1971, A, p. 433-436.

Author's address:

Received: 16. 8. 1982

Oto Strauch, Katedra algebry a teórie čísel MFF UK Matematický pavilón, Mlynská dolina 842 15 Bratislava

SÚHRN

DVE VLASTNOSTI POSTUPNOSTI nα(mod 1)

O. Strauch, Bratislava

V práci je okrem iného ukázané, že ak α je iracionálne číslo s ohraničenými koeficientami v retazovom rozvoji a $\{I_i\}$ je postupnosť po dvoch disjunktných intervalov z [0, 1], ktoré pokrývajú postupnosť necelých častí $\{n\alpha\}$ (n = 1, 2, ...), potom integrál z ľubovolnej spojitej funkcie cez množinu $[0, 1] - \bigcup I_i$ môžeme vypočítať podľa (10) ako limitu z aritmetického priemeru istých aritmetických priemerov. Ohraničenosť koeficientov v reťazovom rozvoji α je i nutná podmienka.

РЕЗЮМЕ

О ДВУХ СВОЙСТВАХ ПОСЛЕДОВАТЕЛЬНОСТИ $n\alpha \pmod{1}$

О. Штраух, Братислава

В работе между прочим показано, что если α — ирациональное число, непрерывная дробь которого имеет ограниченные коэффиценты и $\{I_i\}$ — последовательность непересекающихся промежутков из [0,1] покрывающих последовательность дробных долей $\{n\alpha\}$ (n=1,2,...), то интеграл любой непрерывной функции относительно множества [0,1]— $\bigcup I_i$ можно вычислить по формуле (10) как предел среднего арифметического некоторых средних арифметических. Ограниченность коеффэффициентов непрерывной дроби числа α является необходимым условием.

,