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SOME NEW CRITERIONS FOR SEQUENCES WHICH SATISFY
DUFFIN-SCHAEFFER CONJECTURE, IL

OTO STRAUCH, Bratislava

All our criterions in papers [1, 2] for sequences {q;} of positive integers which
satisfy Duffin—Schaeffer conjecture (abbreviated D.S.C., see introduction [2]) are
applications [1, Theorem 2] and they are based on the fact that a small subsum of

the sum
263

q q;

has few summands. Here x/q:, y/q; are rational numbers in the canonical form
from the interval [0, 1], m<i#j=n, x/q.— y/q;>0.

Summarizing, our primary problem is as follows:

Let {t} be a finite (not necessarily one-to-one) sequence of nonnegative reals
and let = be a subsum of Xt with k terms, i.e.

z=ti(1)+t,'(2)+...+t,'(k) (1)
i(1)#i(2)#... #i(k)

Our aim is to find a connection between the magnitude of the sum X and the
number k of its terms in a form

k=F(Z)+k, (2)

where F(u) is a nondecreasing function, F(u)—0 as u—0 and k, is a constant. In
the papers [1, 2] we have solved this problem by two following methods:

Method 1. Let {#} be a nondecreasing sequence. We need to find a nondec-
reasing sequence {g(i)} such that

g(i) =y 3)
for every i and such that the sum
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l;Skg(i)

has a good calculable lower estimation dependent on k (some initial segment of
{g(i)} can be negative). For example, we can use the integral

6= [ 9w dus 3, 90 @

Evidently, by (3), (4) also
G(k)== (5)

for every sum X of a form (1). For k=k, we find a function G,(k) such that
G,(k)=G(k) and G, has a good calculable inverse function G;', thus

k=G;'(Z)+k, (6)

i.e. we found an estimation (2).
In applications, a nondecreasing order of the sequence {t;} need not be known
(e. g if {#} is a sequence of lengths of rational numbers). In this cases we exchange

(3) with equivalent inequality
q@ 1)§t @

for every t>0, or (if g is increasing)
21=970)

The preceding Method 1 we have used in [1, Proposition 4], where we assumed
that the sequence {t} satisfies

l"‘Cz

1) = =t
g(i)="—"2— =4,
for every i which is equivalent to
Z 1=at+c
for every t>0. From it
‘ ké V6C12+3C2

We can generalize this result by the following
Example 1. Let {#} be nondecreasing sequence which satisfies

. _l.s-Czs.
g(i) o =

for every i (where s, ¢, ¢, are positive constants). It is equivalent to
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(2. 1),§c1t+c2 (8)

By (5) for every sum , from (1) we have

o+
b G G
From there it follows, if
kZQ2c(s + 1))
then
k=(2(s + 1)c;Z)e+v

Summarizing

k=(2(s + D)D)V + (2c(s + 1) 9)

Method 2. This method is based on an estimation of a sum

Y
;St

Let for nondecreasing {#} exist a nondecreasing function g(u), g(u)>0 as

u>0, such that
g (2 t.-) =y : (10)

g(’;t;)gt (11)

for every j, what is equivalent to

for all +>0. From (10) follows

< h b b
k=g(t1)+g(tn+tz)+"'+g(;&) (12)

The sum of the right side of (12) is a lower integral sum of the nonincreasing
function 1/g(u) on the interval [0, 2“*] which is divided into following intervals

[0, ], [, b+ ), [+ 62 1+ 2+ 8], ...
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Thus this sum is not greater than the integral of 1/g(u) on the interval [O, Z ti],
1=k
i.e. by (12)

kéG(;t.-)_S_G(Z) (13)
for every sum X from (1), where
G(Z)= J; :E‘z—% (14)

If the integral (14) is divergent in 0, then we take ¢, as a lower bound for integration
and we have

k-1=G(31) - G(n) (15)

i=k

Usually, in applications it is £t =c,, G(¢,)=0, —G(t;)— + © as t,—0. Hence
k—-1=-G(t,) (16)

Le. we obtain also an upper estimation for the total number of terms in the finite
sequence {#} which is dependent on t; =min {#} and which is better than a trivial
estimation c,/t;. Thus, we obtain (2) where the right side is not dependent on X and
k. =—G(t)+1.

Example 2. Let a sequence {t} satisfy the estimation

Zt.-éct‘“ (e>0) (17)

for every t>0. In this case

and using (13), (14), we have
o £
k§c1+s_____(z)l+: (18)

for every sum X of the form (1) (for e =1 we obtain [1, (23)]).
Example 3. Let a sequence {#} satisfy the estimation

L (19)

for every ¢t > 0. In this case g(u) = u/c and the integral (14) is divergent. Therefore
by (16) we obtain

k—1=-clogt (20)
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if we assume that ¢, =1. Thus we obtain an estimation for the number of terms of
{t;} which is better than 1/¢,.
Example 4. Let

1+6
(;‘ z,) <ct (6>0) 1)
Then according to (16) we have
_1=t1
k—-1= o0 (22)

From preceding Examples 1—4 and by means of [1, Theorem 2] we can obtain
new criterions for a quick (and also for a uniformly quick) sequence {y;} (see
[1, Definitions 3,9]) by the following:

Let us order the finite section {y;}.<is. to a nondecreasing sequence

Yi(m+1)§)’.'(m+2)§---§)’i(n)
and put
{ti} = {yig+v— Yips m<j<n)}
Let us choose {t} such that
0==t] (23)

for every i (if we shall use Method 2 it must be #,>0). Let us put constants in the
assumptions (8), (17), (19), (21) such that their consequences (9), (18), (20), (22)
have the form

k=(n—m)c,.F(Z)+(n—m)c,, (24)
Concretely:
in(8) ci=(n—m)*'cn, ca=(n—m)c,, in(17)c=(n—m)"**c,,
in (19) ¢ =c,(n —m)/log (n —m), in (21) c=cp(n —m)' % (25)
We assume here in two last cases that

1

L= GT)K (26)

for a fixed positive K.

Since in all our cases we obtain in (24) a function F(u) nondecreasing and
F(u)—0 as u—0, we can use [1, Theorem 2] and from it

Theorem 1. Let {y;} be a positively distributed (uniformly distributed) sequ-
ence for which there exist sequences {#} which satisfy (23) and which satisfy at
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least one inequality from (8), (17), (19), (21) (with constants from (25)) for
infinitely many m (such that ¢, —0 as m— « and ¢, is arbitrarily large), for all
sufficiently large n and for every ¢t>0. Then {y;} is a quick (uniformly quick)
sequence (see [1, Definitions 1, 3, 9]).

Next, let {g:} be a one-to-one sequence of positive integers and {f(q;)} be
a sequence of positive reals and let {y;} be the one-to-one sequence of all rational
numbers from the interval [0, 1] denominators of which (in a canonical form) are
contained in the sequence {q.}, and ordering of which is induced by the place of
occurrence of q; in {q:}. Using Theorem 1 for this {y;} and [1, Part 5] we can
obtain new criterions for sequences {q;} which satisfy D.S.C. In this case let us
denote

{::}={%-é>0; m<i#jSn,0<x<q,0<y<q, (x.a)=( )=1]
(27)
o<t =t (28)
for all i. Note that we can use in (27) neighbouring rational numbers x/q;, y/q;

only. Now, in (25) we replace n —m by

A=Y @(q) (@ — Euler’s function) (29)

m<isn

Thus, the inequalities (8), (17), (19), (21) have a form

(él)sécmm”' +chAY (30)
;tiécmt”‘A“‘ (31)
.;. t=cht log% (32)
(“Z’t,-)mé ChHtA' @8 (33)
In two last cases we used the relation
ti =min {t:i ézlz—ﬂ (&> 0is arbitrarily small) (34)

for all {q:}, and we assume that also ¢, =min {t} satisfies (34). From preceding
results we obtain the following theorem

Theorem 2. Let {g;} be a one-to-one sequence of positive integers for which
there exist sequences {f} which satisfy (28) and which also satisfy at least one
inequality from (30)—(33) for infinitely many m (such that c,,— 0 as m— « and c,,
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is arbitrarily large), for all sufficiently large n and for every t>0. Then {gq;}
satisfies D.S.C. with every nonincreasing {f(g:)}.*

Note 1. Let us suppose that in the sequence {t;} from (27) we have only. the
lengths x/q; — y/q;>0 for which x/q:, y/q; are neighbouring. We can diminish
these lengths to 1/q%, where g« =max {qi, q;}. The number of neighbouring x/g;,
y/q; for which max {q:, q;} = qx is not greater than 2¢(qx). Thus in the sequence
{t} we can place 2¢(qx) times the number 1/43 for every k for which m <k =n.1In
this case it is sufficient to prove any estimation from (30)—(33) only for every
t=1/q% m <k =n. Next without loss of generality, we can assume that the finite
section {q:}m<is. is ordered by increasing and from it

2 "8 P
— ’ 2
N’ 2k;§nw(q.)/q-

I,-Sl/qi
for every k, m <k =n. By preceding and by Theorem 2 we can derive some new
criterions for sequences {gq;} which satisfy D.S.C., e.g. using (30) we have
Theorem 3. Let us have

(3 o@) saad( 3, e@) +ei 3 o@) (9

m<isn m<isn

for infinitely many m (such that c,,— 0 as m— « and c,, is arbitrarily large), for all
sufficiently large n and for every k, m <k =n (s is a fixed positive constant). Then
{q:} satisfies D.S.C. with every nonincreasing {f(q:)}.

Note 2. If we divide the sequence {t} into finite fixed parts such that every
part satisfies an inequality of the form (2) then also {t} satisfies (2) (with other
F, k,).

Next, the sequence {¢;} from (27) we can divide into two parts {¢;}', {ti}?,
where into {t;}' we put these lengths x/q; — y/q; for which

X _yloga; 36
4G 4G Qids (8¢t

whereas {¢/}? contains all the remaining ones. Here
di=(q: q)), 9s=qq/di (37)

By [2, Theorem 4] the number of x/g; — y/q; >0 which are not satisfying (36) (for
fixed i, j) is not greater than

log g
B = o i :
0.4, P(P(@),

* Since in (31) c.,=0, it is sufficient to assume that this estimation holds for some m.

61



and we can diminish each of them to 1/q;d;. Let us put in {#}? these 1/g,d; by
[B]-times for every i, j, m<i#j=n and let us give {t}'={t/}'. Let {t} be the
sum of {4}' and {#}>. Then {t} satisfies (28) and {t}' satisfies (see

[2, Theorem 4]) (30) with s=1, ¢,=0, ¢.=c,. For {)?; the sum 21 has an
estimation B, where the summation through over all i, j for which m<i#j=n,

1/q4d; =t. Similarly the sum 2 t. has an upper estimation
ti=t

log g;;
o i j 38
c U%S, 7 dﬁ)zw(q )o(q;) (38)

m<i#jSn

By Cauchy inequality (38) is not greater than AVC, where

log’ q; 9(g:) 9(q;)
C=c? ! . 39
€ 1/«%5: ady  a g (39)

m<i¥jSn

(also see (29)). If we replace in (31)—(33) the sum Zt,» by AVC and using

Theorem 2 we obtain some new criterions, e.g. if we use (31), then we have
Theorem 4. A sequence {q;} satisfies D.S.C. with every nonincreasing {f(q:)}
if
C=c.t’*"A" (40)

for some m, for all sufficiently large n and for every ¢>0.

From it for the k-th powers we have

Theorem 5. A sequence {q}} satisfies D.S.C. for every nonincreasing {f(q%)}
if
drsc( 3 alah) @1)

m<i#jsSn m<isn

for some m and for every sufficiently large n. Here d; =(qi, q;), k > 1 is an integer,
cw is arbitrarily large, € is a positive constant for which *

0<e<1—% (42)

Proof. From C in (39) we can omit @(q:)®@(q;)/q.q;. For d; =constant the
number of solutions of g, = g (see (37)) is not greater than 2°® (v(q) denotes the
number of different prime factors of q). Therefore,

1 log’ q
C=c? ol 08 9 5ua
e Bt & (43)

* In (41) the summation through over all pairwise different d;
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The second sum is not greater than the integral from c/q>~° (4 is sufficiently small,
c is sufficiently large) in the interval [1/d;t, + ). If we replace {q:} by the
sequence {q*%} of the k-th powers, then we must replace also d;, q by df, ¢* and
the second sum in (43) is not greater than the integral of ¢/q*~° on the interval
[1/d;t"%, + ). Thus

C§Ct3—(6+l)/k2 d‘((l_(l—(6+1)/k) (44)
Next we substitute (44) to (40) and we choose 8 such that >0, 3k — 6>1and
6+1
3- % = 2+¢

i.e. such that the exponents of ¢ in (44) and in (40) are equal. From it and from
Theorem 4 there follows Theorem 5.

We note than we can prove Theorem 5 also using (30) in Theorem 2.

Using [2, Theorem 2] we can prove a new criterion which is based also on
a property of d;.

Theorem 6. Suppose that

d;=(qq)"” (45)
for every i#j and
2 .
3t (46)

Then {gq;} satisfies D.S.C. with every {f(q:)}.
Proof. If the series

q a\
ora_< oF (&) e ()
2 ij — 2 ij — 2 ij

qij qiq; q.q;

is convergent, then {¢;} satisfies the assumption of [2, Theorem 2]. Moreover, the
function
(%)
u2

is increasing in (0, Vqiqi/e] and decreasing in [Vgiq/e, + ®). From that and by
(45) it follows that the series from (47) is majorized by

(47)

. log? qiq;
248 (a:9)™
and if it holds (46), then this series is convergent.
Example 5. Let {q;} = {uwv} such that
(i) {w)} are relative primes
(i) vy=Sul* for all i
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If { q;} satisfies (46) then also satisfies D.S.C with every {f(q;)}. Really, by (ii)
(vivy)* = (wy)'**
and from it by (i)
dii = (vv;)"? = (uviuy;)>~*
Thus {g:} satisfies the assumptions of Theorem 6.
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SUHRN

NIEKTORE NOVE KRITERIA PRE POSTUPNOSTI,
KTORE SPLNAJU DUFFIN—SCHAEFFEROVU HYPOTEZU, II

O.Strauch, Bratislava

V préci je okrem iného ukazané, 7e ak postupnost k-tych mocnin {q}} spiia (41), postupnost
kladnych reédlnych é&isel {f(q:)} je nerastica a

Zf(gDe(qh) =+

potom skoro pre vietky a mé nerovnost

<f(qf

x
T
pre nekoneéne vela i celodiselné rieSenie x také, Ze x, q; st nesiideliteIné.
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PE3IOME

HEKOTOPBIE HOBBIE IMPU3HAKMU JISI TTOCIIENOBATEJILHOCTEN
YOOBJIETBOPAIOIUX T'MITOTE3E JA®®HUH—IIAPDEPA, II.

O. WTpayx, Bpatucnasa
B pa6oTe MexXmy MpoYMM MOKa3aHO, YTO €CHM MOCHENOBATENLHOCTh K-ThIX CTeneHei {q%)

YAOBJIETBOPSIET ycNOBHIO (41), MOCIENOBATENLHOCTE IOIOXKHUTENBHBIX IEHCTBUTENLHBIX uncen {f(g%))
— HeyObIBawoLas 1

2f(gH)@(qf) =+ =,

TO AJI1 MOYTH BCEX @ HEPABEHCTBO
x k
|a_'7|<f(4i)
qi

HMEET LIEJIOYUCIIEHHOE peLlieHHE X 11 6€CKOHEeYHO MHOTHX i, Takoe, 4TO X, i — B3aWMHO NpPOCThbIE.
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