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1. Introduction

There several attempts have been to find a perfect rational cuboid, i. e.
a rectangular parallelepiped of which the legths of the edges, the face diagonals and
the body diagonal are integers. These attemps are discussed in [3]. Up to now, none
of these attemps was succesful ; related positive results can be found in [3], a bit
also in [2]. It was proved in [2] that there is no perfect rational cuboid with the least
edge less than 10000. This bound is enlarged to one million here. In both cases
computer computations were used, and the result of the present paper substantially
depends on that of [2]. Analogously as in [2], we shall not give details of the
computer program. We shall more concentrate on the number-theoretical back-
ground of the program, and we give also some results which are not immediately
used in it.

2. Notation and previous results

Most of our general notation is commonly used, and it is the same as in [2]. We
only notice that ex(p, n) denotes the greatest integer k such that p* | n. Special
notation also coincides with that of [2], and it will be repeated below together with
some results of [2].

In what follows let x, y, z always denote (the lengths of) the edges of
a primitive perfect rational cuboid, i. e. positive integers such that

V(x*+y?), V(x*+ 2%), VO’ + 29, V(x* + y* + 22 (2.1)
are also integers, and

D(x, y, z)=1. 2.2)
39



We shall also assume that y <z, and denote t =V(y*+ z?) so that
y<z<t. (2.3)

There are positive integers a, b, ¢ such that

y=%(%z—a), Z=%(£bf—b), t=%(x?z— ) (2.4)
The integers a, b, c satisfy
alx®, blx* c|x® (2.5)
and
x>a>b>c. (2.6)
Substituting (2.4) into the equality y*>+ z>=¢*> we can obtain the equation
(a®c*+ b2c? — a*b)x* — 2a*b*c*x* + a*b*c*(a* + b* — ¢*) =0. 2.7)

If we solve this equation (with respect to x? and then to x), we prove that there are
positive integers d, v such that

d*>=(a’+ b*)(a*— *)(b*— ¢?) (2.8)
v?=abc(abc — d)(a*+ b*— c?). (2.9)
Further, we can obtain the inequality
a’c’+ b*c*>a’b>. (2.10)
The inequalities (2.6) and (2.10) imply

bc
a<——(—l;2—_—;23, b<C\/§, a’<c’. (2.11)

If we also assume that x is the least edge, it holds also

x>(V2+V3)-c. (2.12)

Notice that we must not assume D(a, b, c) =1 it was possible in [2] because only
conditions not containing x were considered. The result of the computer computa-
tion referred in [2] can be given in the form

¢=3200-D(a, b, c). (2.13)
Together with (2.12) the estimation x =10000 was obtained.
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3. Conditionson x, a, b, ¢

In the theorems of this part we shall implicitely use everything from Part 2
except (2.12) and (2.13). The last two conditions will be mentioned explicitely if
they are necessary. Most of theorems proved here were used in the computer
computation.

3.1. Theorem. a) For every odd prime p, the integers ex(p, a), ex(p, b),
ex(p, c) belong to the interval [0, 2 - ex(p, x)], and at most one of them belongs to
the interval [1, 2 - ex(p, x) —1].

b) If x is even then ex(2, x)=2. Further, the integers ex(2, a), ex(2, b),
ex(2, c) belong to the interval [1, 2 - ex(2, x) — 1], and at most one of them belongs
to the interval [2, 2 - ex(2, x) —2].

Proof. Consider odd prime p ‘at first. If ex(p, x)=0 then (2.5) obviously
implies ex(p, a)=ex(p, b)=ex(p, ¢)=0. Otherwise (2.5) implies ex(p, a)=
2 - ex(p, x), and analogously for b, c. If ex(p, a), ex(p, b) or ex(p, c) belongs to
[1,2-ex(p, x)— 1] then y, z, or ¢ is divisible by p, respectively. However, if two of
these numbers are multiplies of p then so is the third. Hence p | D(x, y, z), which
contradicts (2.2).

Now let x be even. Since y is an integer (2.4) implies 1=ex(2, a)=
2 -ex(2, x) — 1, and analogously for b, c. If ex(2, a), ex(2, b), or ex(2, c) belongs to
[2,2-ex(2,x)—2] then y, z, or t is even, respectively. However, if two of y, z, t
are even then so is the third. Therefore D(x, y, z) is even, which contradicts (2.2).
The inequality ex(2, x)=2, i.e. 4| x, follows from the fact that x? is the difference
of two odd squares, x>+ > and 2.

3.2. Theorem. a) If p=3 (mod 4) is a prime then

ex(p, ¢)=0 or ex(p, c)=2-ex(p, x).
b) If x is even then
ex(2,c)=1 or ex(2,c)=2-ex(2,x)—1.

Proof. For an odd prime p theorem 3.1 implies ex(p, c)=2 - ex(p, x). Now if
0<ex(p, c)<2-ex(p, x) then (2.4) implies p|(y*+ z?). Since p=3 (mod 4) we
obtain p |y, p|z, and hence p|D(x, y, z), which contradicts (2.2).

Analogously, for x even theorem 3.1 implies 1=ex(2, ¢)=2-ex(2, x)—1. If
1<ex(2,c)<2-ex(2,x)—1 then (2.3) implies 2|(y*+2z?). Since y>+2z> is
a square the numbers y, z must be even, which contradicts D(x, y, z)=1.

3.3. Theorem. Let x=p™ - q" for some odd primes p, q and nonnegative
integers m, n. Then p#q, p=1(mod4) or gq=1(mod4), m=2, n=2 and
m+n=S5.

Proof. If p =q (or m =0 or n =0) then x is a prime power, and the inequality
(2.11) cannot be fulfilled by any (pairwise different) powers of a prime. Hence p #
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(and m+ 0 and n+ 0). We may assume p™ < q". Since the set A = {a, b, c} consists
of some divisors of x> greater than 1 and smaller than x, we have

Ac{p“;1=su=2m-1}u{p*™}u{q’;1=Sv=2n—-1}u
u{p“q’; 1Su=2m—-1,1=v=2n-1}u{p*q’; 1Sv=2n-1}.

Further in this proof we always assume 1=u=2m-—1, 1=Sv=2n-1.

If A contains an element of the form p“q” then by theorem 3.1 the set
A cannot contain any element g*, p* or p>”q". It may contain p>” but the third
suitable element does not exist. Therefore A does not contain any element p“q"®.

If A contains an element of the form p*"q® then by theorem 3.1 it cannot
contain any q*. Hence it must contain p>" and some p“, and therefore c = p*“,
b = p*™, which contradicts (2.11). Therefore

A={q", p*, p*"}
for suitable u, v.

If q*>p®" then a=q", b=p*", c=p"“, and the inequality (2.11) does not
hold. Therefore p*™ is the greatest element of A, i. e., a=p*", {b, ¢} ={p“, q"}.
By theorem 3.2 a p=1 (mod 4) or g=1 (mod 4); otherwise c¢ can be neither p*
nor q°.

If mZu then a=p>" = p* = ¢? which contradicts (2.11). Therefore m<u,
hence u=2. Since 2m —1=u we obtain m=2 and u=3.

If n=1 then v=1, {b, ¢} ={q, p*}, and hence

2y=q*-p™, {2z, 2t} ={p*"q—q, p" 9" — p“}.
Since 4y*=|4z*>—4¢*| we have
(¢*-p*™)=|(p>"q —q)*—(p*"“q’ - p")’|.
From the last equality we can obtain the congruences
p*" =+ p* (mod q°)
4m—2u).

q*=*q’ (mod p

(Notice that p>*™~*| p* because u > m.) The first congruence implies q*| pam-2. £ 1,
and hence 2q>=p*™~2“+ 1, the other implies p*"~2*|q*% 1, and hence 2p*" =
q*+ 1. The sum of the inequalities gives a contradiction. Therefore n=2.

It remains to exclude the case m =2, n =2 ; assume that it takes place. Since
u>m we have u=3. Hence a=p*, {b, c}={p’, q*}, and then

2y=q*-p*, {2z, 2t} ={pq* - p°, p*q* " —q"}.
Since 4y*>=|4z%>—4¢*| we have
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(q*-p*=I(pa*-p°Y - (p*q* - q")|.
From this equality we obtain
p°= £ p®(mod q°).

Therefore q*|p*+1, and hence q*>=p*+ 1, which contradicts p*<q>.

3.4. Theorem. Let x =2"q" for some prime q and nonnegative integers m, n.
Then g=1 (mod 4), m=4 and n=2.

Proof. Analogously as above we can see ¢>2, m=1, n=1, and by
theorem 3.1. b m=2. Denote A ={a, b, c}. The set A contains only some divisors
of x? less than x ; they must fulfil also the conditions of theorem 3.1. Therefore

Ac{2*;25us=2m—-2}u{2""}u{2¢"; 1=v=2n—-1}u
u{2¢*"}u{2“q®;2=sus=2m-2,1sv=2n-1}u
u{2*q*;2=u=2m-2}u{2*"'¢"; 1Sv=2n-1}.
Further in the proof we always assume
2=u=2m-2, 1=v=2n-1.
Theorem 3.1 implies that A contains at most one element of the forms
2q°, 2°q*, 2*"'q",
and at most one element of the forms
24, 24q", 24q™".

As a consequence we can see that A contains at least one of the elements 2™,
2q*". However, it cannot contain both of them because only one of them is less
than x. Now we can easily see that A does not contain any element of the form
24q”.
If 2°"'€ A then 2¢q*", 2“q*" are greater than x, and hence

A —~ {2qv’ 2!4, 22m—1} or A= {2!4, 22m—1, 22m—lqu}
for some u, v. However, the second case contradicts (2.11). Analogously, if
2q*" € A then 2°™7!, 2?™"'q¥ are greater than x, and hence

A={2"2q",2q"} or A={2"q*", 2q", 2q"}.
The second case again contradicts (2.11). In both remaining cases we have
{b, c}={2",2q"} and ae {2’ 2q*}. (Notice that y> will be determined
uniquely, independently on the choice of a.) However, theorem 3.2 implies

ex(2, ¢) # u, and hence c=2q", b=2".
Now the formulas (2.4) imply

43



y= l22m—2 _ q2n|’ z= 22m—1—uq2n —_ 2u—1 , = 22m—2q2n—u — qu ,
and therefore
(22m—2 = an)Z + (22m—luq2n g 2u—1)2 — (22m—2q2n—u — qu)Z .
The latest equality implies

24m=442**"2=0 (mod q?)
2¢m-2"244 1=0 (mod q?).

Since 4m —2 —2u >0 all divisors of the left side are of the form 4k + 1, and hence
g =1 (mod 4). (The left side is odd, and it is a sum of two relatively prime squares.)
Since the numbers 2%* + 1 are square-free for k=1, 2, 3, 4 we have 4m —2 —2u =
10, 4m=12+2u=16, and hence m=4. Notice also g>=2*""?"2“+1.

It remains to exclude the case n=1. If n=1 then v=1, c=2q, b=2",
ae {2, 2q* and

(22m—2_ q2)2 + (22m—1-uq2_ 2u—l)2=(22m—2q _ q)z

We shall reduce the last equality modulo 2*"~%~%*, To do that conveniently we have
to estimate u at first.

We can easily see that a =2q* contradicts the last inequality of (2.11), and
hence a =22, Using (2.11) once more we obtain (22" ')’ < ¢*<(2*)?, and hence
4m—-2=3u-1, 3u=3m+(m—1), what implies u=m+1. (We have proved
m>1.) Therefore u—1=2m—1—u and 2m—1=4m—2—-2u. Now we can
obtain

q*=q? (mod 2*~?72), 2" 22| g* —q*=¢q>- (¢ +1) - (¢ — 1).
Since ¢ =1 (mod 4) we obtain
2m-2-24=2 . (g —1).

On the other hand, we know that g>=2*""?"?4+1. Together we obtain g>=
2-(q—1)+1=2q+1, which is a contradiction.
3.5. Theorem. If x is the least edge then

a<x-(V2-1) and c<x-(V3-V2).

Proof. Since y>x we have
1 /x?
'i (; = ) >x.
If we multiply the latest inequality by % and denote r=$ we obtain r*—1>2r,
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(}——1)2>2. However, r>1, and hence r—1>V2, r>1+V2. Therefore x>

-1 +V2), a<x-(V2-1). The second inequality immediately follows from
(2.12).
3.6. Theorem. Denote

E =(x*-b*c®*)(b*—c?), F=2b*c*x*, D=E(E +2F).

Then D is a square and

E+F+VD
Proof. The equation (2.7) can be rewritten into the form
(b*c?) - a*—(E+F) -2a*+ b*c*x*=0.
Let us solve it as a quadratic equation for A =a?. Its discriminant is

(E+F)Y—4-b*c* b*’c*x*=(E+F)}-F'=E(E+2F)=D,

- ﬁ+F:VB
1,2+ 2b2C2 .

Since A; - A,=x* and a’><x? we have a’= A,, and hence

x? 2b%c*x* x* F
a=\/A2= _:[ __=J —
VA, VE+F+VD VYE+F+VD
The next result was not used in computer computation, and does not depend
on it.
3.7. Theorem. If x, y, z are the edges of a perfect rational cuboid then
26-3°-5-7-11-19|xyz.
Proof. We may obviously assume (2.2). If ex(3, r)=ex(3, s) then r*+s? is
not a square because

and its roots are

(r* +5%)/3* > =2 (mod 3).

Therefore ex(3, x), ex(3,y), ex(3,z) are pairwise different, and hence
ex(3, xyz)=0+ 1+ 2=3. Arguing similarly (with the modul 8) we can see that the
difference of any two integers from ex(2, x), ex(2, y), ex(2, z) is at least 2. Hence
ex(2, xyz)=0+2 +4=6. It remains to prove 5-7-11-19|xyz.

Consider a prime p which does not divide xyz ; reduce all integers modulo p.
Denote K(p) the set of all quadratic residues modulo p and
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L(p)={ueK(p); u#0 and u+1eK(p)}.
Let y*=x?-u (mod p) and z?=x*- v (mod p). The numbers
y2’ y2+x2’ ZZ’ 22+x2, tZ’ t2+x2,
1. €.
2 u, x> (u+1), x* v, x> (v+1),x* (u+v), x*-(1+u+v)
are quadratic residues modulo p, hence so are

u,u+l,v,v+1l,u+v,u+v+1.

Therefore u, v, u + veL(p), i. e., the set L(p) contains the sum of its two elements
(not necessarily different) modulo p.
For p =19 we have

K(19)={0,1,4,5,6,7,9, 11, 16, 17}, L(19)={4, 5, 6, 16} .

The set L(19) does not contain any sum of its two elements; e. g., 16 +16=13
¢L(19). Therefore 19|xyz. For p=11,7,5 we have

K(11)={0, 1, 3, 4, 5,9}, L(11)={3, 4, 5},
K(7) ={0,1,2,4), L(7) ={1},
K(5) ={0,1,4), L(5) ={4)}.

The sets L(11), L(7), L(5) do not contain any sum of their elements, hence 11 | xyz,
7| xyz, 5| xyz, which completes the proof.

4. The computation

The program was written in the language Pascal B and run on the computer
CDC 3300; a portion of 5000 values of x was processed in about 2 minutes. Some
auxiliary computation (e. g., the table of primes) was done before the main cycle.
However, the essential part was the cycle where the values of x were considered in
the successive order, and gradually excluded (i. €., it was proved that there is no
primitive perfect rational cuboid with the least edge x). For every x the following
steps 1.—9. were performed (if a value of x was excluded then all further steps for
it were omitted): '

1. If x=2 (mod 4) then exclude x. (See theorem 3.1. b.)

2. Find the standard form of x.

3. Try to excude x by theorems 3.3 or 3.4.

4. Generate all candidates for c, i.e. all divisors of x> which satisfy the
inequality ¢=3200 or ¢=6400 if x is odd or even, respectively (see (2.13) nd
theorem 3.1), and the conditions from theorems 3.1, 3.2, 3.5. Denote by Cuminy Cmax
the minimal and the maximal candidate, respectively.
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5. If no candidates for ¢ was found then exclude x.
6. Generate all candidates for b, i.e. all divisors of x*> which satify the
inequality

Coin+2=b=min (Cmax - V2, x - (V2 —1))

and the conditions from theorems 3.1, 3.2, 3.5.

7. If no candidate for b was found then exclude x.

8. For every pair of candidates (c, b), ¢ <b, do the following:

8.1. Solve the equation (2.7) with respect to the unknown a by theorem 3.6,
and denote the solution by a;. (Even if x, ¢, b correspond to a perfect rational
cuboid a; need not be an integer because of rounding errors. Notice that the
formula for a avoids any substraction of reals.)

8.2. Let a be the integer nearest to a,. If a=b or |a—a|=0.002 then
exclude the pair (c, b) just considered.

8.3. Verify (2.7) modulo 2003; if (2.7) does not hold then exclude the pair
(¢, b) just considered.

8.4. Find out whether a divides x?; if not then exclude the actual pair (c, b).

8.5. Print the pair (c, b), and x, a, too, if it has not been excluded.

9. Print x if it has not been excluded (i. e., if at least one pair (c, b) was
printed in 8.5).

Notice that the step 2 need not be always finished; e. g., it can be interrupted
(and x can be excluded) if it is clear that x has no prime divisor less than the cubic
root of x (see theorems 3.3 and 3.4). In the steps 4. and 6. the standard form of x is
used to generate divisors of x? (in 4. only suitable ones, see theorem 3.2) ; only then
the inequalities for them are tested. It is much faster than a test of divisibility for all
integers from the suitable interval. The constant 0.002 in 8.2 could be rather
diminished but more safe computation was preferred ; nevertheless, the relative
error of a; was checked. The prime p =2003 in 8.3 was chosen so that 2p?* can be
immediately represented as an integer, and p =3 (mod 4) ; however, 2003 can be
replaced by any smaller integer. The tests in 8.2 and 8.3 are so strong that by
testing 8.4, 8.5 and 9. the constants 0.002 and 2003 had to be replaced by 0.3 and
11; otherwise those steps were too rare in the computation. That was also the
reason why the test like 8.3. was not repeated with another prime.

Gradually all x up to one million were excluded, and hence it was proved:

The result. There is no perfect rational cuboid with the least edge less than
1000000.
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SUHRN
NEEXISTENCIA MALEHO PYTAGOREJSKEHO KVADRA, IL
1. Korec, Bratislava
V prici sa s pouzitim samoc¢inného pocitaca dokazuje, Ze neexistuje pytagorejsky kvader (t. j.
kvider, v ktorom dlzky vsetkych hran i uhloprieéok su celé ¢isla) s dlzkou najkratsej hrany mensou nez

1000000. Okrem toho sa dokazuje, Ze ak pytagorejsky kvader existuje, tak jeho objem je delitelny
dislom 64-27-5-7-11-19.

PE3IOME
MAIJIBI COBEPIIEHHBI¥ PAILIMOHAJIbHBIVI KYBOU HE CYWECTBYET, II.
H. Kopen, Bpatuciapa
IIpsiMoyronbHbI# Napajulen3nHne] Ha3bIBaeTC COBEPLICHHBIM PAlIHOHANBLHbIM KYGOHIOM, eciTH
WIHHbI ero peGep, ero AMaroHali W JHaroHaJiel BCeX ero rpaHell SBISIOTCHA LEJAbIMH YHCIaMH.

Hokxa3biBaeTcsd, YTO [UIHHA KaXgoro pebpa COBEPLIEHHOrO palMOHAJIBLHOrO KybGouga (eciu Tako#
BoOGi1ie cymiecTByeT) 6onbiie win paBHa 1000000, 4 uTo ero o6bem nenurca Ha 64 -27-5-7-11 - 19.
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